Занятие 5. Классы веществ. Часть 2.

Кислоты, их классификация, названия, получение, свойства.

Соли, классификация, номенклатура, свойства.

Генетическая связь между классами неорганических веществ.

Теория.

Кислоты, их классификация, названия, получение, свойства.

Кислота — это сложное вещество, в молекуле которого имеется один или несколько атомов водорода и кислотный остаток.

Пример: H_3PO_4 – фосфорная кислота.

Свойства кислот определяются тем, что они способны заменять в своих молекулах атомы водорода на атомы металлов.

Кислоты классифицируют по таким признакам:

- а) по наличию или отсутствию кислорода в молекуле и
- б) по числу атомов водорода.

По первому признаку кислоты делятся на кислородсодержащие и бескислородные.

Классификация кислот по составу.

Кислородсодержащие кислоты	Бескислородные кислоты
H ₂ SO ₄ серная кислота	Н фтороводородная кислота
H_2SO_3 сернистая кислота	НС1 хлороводородная кислота (соляная кислота)
HNO ₃ азотная кислота	НВг бромоводородная кислота
Н ₃ РО ₄ фосфорная кислота	НІ иодоводородная кислота
H ₂ CO ₃ угольная кислота	H ₂ S сероводородная кислота
H ₂ SiO ₃ кремниевая кислота	

По количеству атомов водорода, способных замещаться на металл, все кислоты делятся на одноосновные (с одним атомом водорода), двухосновные (с 2 атомами H) и трехосновные (с 3 атомами H), как показано в табл:

Классификация кислот по числу атомов водорода.

	КИСЛОТЫ	
Одноосновные	Двухосновные	Трехосновные
HNO ₃ азотная	H ₂ SO ₄ серная	Н₃РО₄ фосфорная
НГ фтороводородная	H ₂ SO ₃ сернистая	
НС1 хлороводородная	H ₂ S сероводородная	
HBr бромоводородная	H_2CO_3 угольная	
HI иодоводородная	H ₂ SiO ₃ кремниевая	

Сила кислот.

Сильные кислоты	Слабые кислоты
НІ иодоводородная	НҒ фтороводородная
HBr бромоводородная	Н ₃ РО ₄ фосфорная
НС1 хлороводородная	H ₂ SO ₃ сернистая (неустойчивая)
H ₂ SO ₄ серная	H ₂ S сероводородная

HNO ₃ азотная	H ₂ CO ₃ угольная (неустойчивая)
	H_2SiO_3 кремниевая

Способы получения кислот

Способ	Пример	Примечания
1. Взаимодействие	$SO_3 + H_2O = H_2SO_4$	Только кислородсодержащие
оксидов с водой		кислоты. Кроме кислот,
		нерастворимых в воде
		(кремниевая)
2. Взаимодействие	$H_2 + S $ H_2S	Только бескислородные кислоты.
простых веществ	-	
3. Вытеснение более	$2HC1 + \underline{Na_2S} = 2NaC1 + \underline{H_2S}$	
I .	$2HC1 + \underline{Na}_{2}\underline{CO}_{3} = 2NaC1 + \underline{[H_{2}CO_{3}]}$	
солей более		
сильными кислотами.		
4. Окисление кислот	$\underline{SO_2} + Br_2 + H_2O = \underline{H_2SO_4} + HBr$	Реакции протекают в водном
(или оксидов в	$SO_2 + Br_2 + H_2O = \underline{H_2SO_4} + HBr$ $\underline{H_3PO_3} + O_2 - (t^o)\grave{a} \underline{H_3PO_4}$	растворе.
водном растворе) с	<u></u>	
меньшей степенью		
окисления до более		
высокой.		

Свойства кислот.

Свойство	Примеры	Примечания
	HCl ≥ H ⁺ + Cl ⁻	
еская	Многоосновные кислоты диссоциируют по ступеням	
диссоциация в	(в основном по первой):	
	$H_2SO_4 \rightleftharpoons H^+ + HSO_4^- $ (1 ступень) и	
растворах.	$HSO_4^- \rightleftharpoons H^+ + SO_4^{2-} (2 \text{ ступень}).$	
1	$HSO_4 \leftarrow H + SO_4 $ (2 ступень).	
2. Действие	Растворы кислот в воде изменяют окраску	
растворов	индикаторов.	
кислот на	Индикатор лакмус окрашивается растворами	
индикаторы.	кислот в красный цвет, индикатор метиловый	
	оранжевый – тоже в красный цвет.	
3.	$H_2SO_4+Ca(OH)_2=CaSO_4+2H_2O$	Реакция нейтрализации.
Взаимодействи	$H_3PO_4+Al(OH)_3=AlPO_4+3H_2O$	Кремниевая кислота –
	$2H_3PO_4+3Ca(OH)_2 = Ca_3(PO_4)_2 + 6H_2O$	только со щелочами
OCHODAHIIAMII II	$H_2SiO_3 + 2NaOH = Na_2SiO_3 + 2H_2O$	
амфотерными	$\begin{bmatrix} 11_2 \\ 51 \\ 0_3 \end{bmatrix} + 211a \\ 011 - 11a_2 \\ 51 \\ 0_3 \end{bmatrix} + 211_2 \\ 0$	
гидроксидами.		
4.	$2 HCl + CaO = CaCl_2 + H_2O$	Кремниевая – только при
Взаимодействи	2 H3PO4+Fe2O3 = FePO4+3H2O	сплавлении.
е кислот с	3 - 4 - 2 - 3 4 - 2 -	
основными и		
амфотерными		
оксидами		
	$2HCl+Na_2CO_3=2NaCl+CO_2+H_2O$	Реакция происходит, если
Взаимодействи	$BaCl_2 + H_2SO_4 = BaSO_4 + 2HCl$	соль образована более
е кислот с	2 2 2 2 4 = 3 2 4 4 =	слабой кислотой, или если
солями.		образуется осадок

ле кислот с металлами. 7. Взаимодействи е с металлами кислот-окислит елей: азотной и концентрирован	2 HCl+2 Na = 2 NaCl + H ₂ H ₂ SO ₄ +Zn = ZnSO ₄ + H ₂ Cu + 4HNO ₃ (конц.) =Cu(NO ₃) ₂ + 2NO ₂ + 2H ₂ O 3Cu +8HNO ₃ (разб.) = 3Cu(NO ₃) ₂ +2NO +4H ₂ O 8K+5H ₂ SO ₄ (конц.) = 4K ₂ SO ₄ + H ₂ S + 4H ₂ O 3Zn + 4H ₂ SO ₄ (конц.) = 3ZnSO ₄ + S + 4H ₂ O	Металл в ряду активности – до водорода. Кислота должна быть сильной и растворимой. Исключение: при реакции с металлами азотной и конц. серной кислот водород не выделяется! (см.п. 7) Пассивация Al, Cr, Fe — не реагируют с холодной концентрированной HNO ₃ и H ₂ SO ₄
ной серной. 8. Разложение.	1)H ₂ SiO ₃ -(t°)à SiO ₂ + H ₂ O 2) HI -(t°)à H ₂ + I ₂	1)При разложении кислородсодержащих кислот получаются кислотный оксид и вода. 2) Бескислородные кислоты распадаются на простые вещества.

	+ металл
Кислота	
	+ оксид металла
	+ основной или амфотерный гидроксид
	+ соль
	🤅 разложение при нагревании

Соли, классификация, номенклатура, свойства.

Соли - это сложные вещества, состоящие из одного (нескольких) **атомов металла** (или более сложных катионных групп, например, аммонийных групп NH_4^+ , гидроксилированных групп $Me(OH)_n^{m+}$) и одного (нескольких) **кислотных остатко**в.

Классификация солей.

СОЛИ					
Средние	Кислые	Основные	Двойные -	Смешанны	Комплексные
(нормальные	(гидросоли)	(гидроксосоли)	содержат два	е - содержат	
) - продукт	- продукт	-продукт	разных	один металл	
полного	неполного	неполного	металла и	и несколько	
замещения	замещения	замещения	один	кислотных	
атомов	атомов	ОН-групп	кислотный	остатков	
водорода в	водорода в	основания на	остаток		
кислоте на	кислоте на	кислотный			
металл	металл	остаток		Ca OCI(CI)	
				Ca ClB r	
AICI ₃	K H SO₄	Fe OH Cl			K[Al(OH) ₄]
			$KAI(SO_4)_2$		[Cu(NH ₃) ₄]SO ₄
			KNaSO ₄		

Номенклатура солей. В названиях солей используются латинские названия образующих кислоты неметаллов.

Элемент	Латинское название Корень	
Н	гидрогениум	гидр-
С	карбоникум	КАРБ-
N	нитрогениум	НИТР-
0	оксигениум	ОКС-
S	сульфур	СУЛЬФ-

Построение названий солей.

	Соль какой кислоты	·	Название солей	Примеры
Выс шие кисл оты	Азотная HNO₃	NO ₃ ²⁻	нитр<u>ат</u>ы	Ca(NO₃)₂ нитрат кальция
	Кремниевая H₂SiO₃	SiO ₃ ²⁻	силик<u>ат</u>ы	Na₂SiO₃ силикат натрия
	Угольная Н ₂ СО ₃	CO ₃ ²⁻	карбон<u>ат</u>ы	Na ₂ CO ₃ карбонат натрия
	Фосфорная Н₃РО₄	PO ₄ ³⁻	фосф<u>ат</u>ы	AIPO₄ фосфат алюминия
	Серная H ₂ SO ₄	SO ₄ ²⁻	сульф<u>ат</u>ы	PbSO₄ сульфат свинца
Беск исло родн ые	Бромо <u>водород</u> ная HBr	Br ⁻	бром<u>ид</u>ы	NaBr бромид натрия
кисл				

оты				
	Иодо <u>водород</u> ная HI	I-	иод<u>ид</u>ы	KI иодид калия
	Серо <u>водород</u> ная Н ₂ S	S ²⁻	сульф<u>ид</u>ы	FeS сульфид железа (II)
	Соляная HCl	Cl ⁻	хлор<u>ид</u>ы	NH₄Cl хлорид аммония
	(хлоро <u>водород</u> ная)		_	
	Фторо <u>водород</u> ная НF	F ⁻	фтор<u>ид</u>ы	СаF₂ фторид кальция
Более	Серн <u>ист</u> ая кислота	SO ₃ ²⁻	сульф <mark>ит</mark> ы	К₂SO₃ сульф <mark>ит</mark> калия
низкая степ.ок.	H₂SO ₃			

Кислые соли, помимо ионов металла и кислотного остатка, содержат ионы водорода. Названия кислых солей содержат приставку **"гидро"**.

Например: NaHCO₃ – **гидро**карбонат натрия,

 K_2HPO_4 — **гидро**фосфат калия, KH_2PO_4 — **дигидро**фосфат калия.

Основные соли, помимо ионов металла и кислотного остатка, содержат гидроксильные группы. **Основные соли** образуются при неполной нейтрализации основания. Названия основных солей образуют с помощью приставки **"гидроксо":**

Mg(OH)Cl - гидроксохлорид магния (основная соль) **Двойные соли** – имеют два катиона. В названии их перечисляют через дефис.

Пример: KCr(SO₄)₂ — сульфат хрома (III)-калия.

Смешанные соли — имеют два аниона. В названии их называют через дефис. Пример: $CaOCl_2$ или CaCl(OCl) - хлорид-гипохлорит кальция (традиционное название хлорная известь).

Комплексные соли – содержат сложный комплексный анион (или реже катион), состоящий из металла-комплексообразователя и нескольких лигандов (отрицательно заряженные ионы или молекулы аммиака или воды).

Пример: $K[Al(OH)_4]$ – тетрагидроксоалюминат калия $K_4[Fe(CN)_6]$ – гексацианоферрат калия $[Cu(NH_3)_4]Cl_2$ – хлорид тетраамминмеди (II)

Бытовые (традиционные) названия некоторых солей.

Соль	Международное название	Русское название	Традиционное название
Na ₂ CO ₃	Карбонат натрия	Натрий углекислый	Сода кальцинированная
Na ₂ CO ₃ ·10H ₂ O	Декагидрат карбоната натрия	Натрий углекислый десятиводный	Сода кристаллическая
NaHCO₃	Гидрокарбонат натрия	Натрий углекислый кислый	Сода питьевая
K_2CO_3	Карбонат калия	Калий углекислый	Поташ
Na ₂ SO ₄	Сульфат натрия	Натрий сернокислый	Глауберова соль
KClO ₃	Хлорат калия	Калий хлорноватокислый	Бертолетова соль
CuSO₄·5H₂O	Пентагидрат сульфата меди	Медь сернокислая пятиводная	Медный купорос

Получение солей.

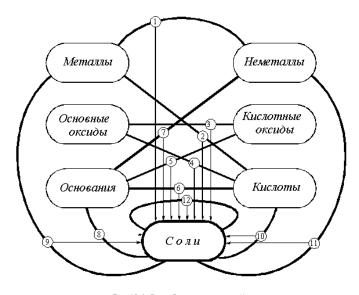


Рис. 13.6. Способы получения солей. На схеме жирными линиями соединены классы неорганических веществ, представители которых, реагируя, образуют соли.

		1
Способ получения	Примеры	Примечания
1. Взаимодействие	$H_2SO_4 + 2KOH = \mathbf{K_2SO_4} + 2H_2O$	В реакции нейтрализации –
кислот и оснований.	сульфат калия	средняя соль, в избытке
	H_2SO_4 + KOH = KHSO₄ + H_2O	многоосновной кислоты – кислая
	гидросульфат калия	<u>соль,</u> в избытке <u>многокислотного</u>
	$AI(OH)_3 + 2HCI = AI(OH)CI_2 + 2H_2O$	основания – основная соль
	гидроксохлорид алюминия	
2. Реакция кислот с	$H_2SO_4+CuO = CuSO_4+H_2O$	Возможно образование кислой
основными	$2H_2SO_4 + CaO = H_2O + Ca(HSO_4)_2$	соли в избытке кислоты.
оксидами.		
3. Реакция	$Ca(OH)_{2(\mu_36)} + CO_2 = CaCO_3 + H_2O$	В избытке основания – средняя
оснований с	карбонат кальция	соль, в избытке кислотного
кислотными		оксида – кислая соль.
оксидами	$Ca(OH)_2 + CO_{2(\mu_{36})} = Ca(HCO_3)_2 + H_2O$	
	гидрокарбонат кальция	
4. Реакция основных	$CaO+CO_2 = CaCO_3$	
(амфотерных) и	карбонат кальция	
кислотных оксидов	BaO + ZnO = BaZnO ₂	
между собой	цинкат бария	
	$ZnO + SO_3 = ZnSO_4$	
	сульфат цинка	
5. Реакция кислот со	$H_2S+CuCl_2 = CuS + 2HCl$	В продуктах – осадок, газ или
средними и	$HCI + CaCO_3 = CaCl_2 + CO_2 + H_2O$	вода.
основными солями.	$AI(OH)_2CI + 2HCI = AICI_3 + 2H_2O$	
6. Реакция	$3NaOH+FeCl_3 = Fe(OH)_3 \downarrow +3NaCl$	Соль должна быть растворима.
оснований со	$KOH+ KHSO_4 = K_2SO_4+ H_2O$	Реагент – щелочь, в продуктах –
средними и		осадок или вода.
кислыми солями.		
7. Реакция двух	AgNO ₃ +KCl=AgCl↓+KNO ₃	Реакцию идёт, если хотя бы одна
растворимых		из образующихся солей выпадает
солей.		в осадок.
8. Реакция металлов	$Fe+H_2SO_4_{(pa36.)} = FeSO_4+H_2$	Реагируют металлы, стоящие в
с минеральными		ряду активности до водорода,

кислотами (соляной, фосфорной, уксусной, разбавленной серной).		при этом выделяется водород. Железо и хром проявляют минимальную степень окисления - +2.
9. Реакция металлов	2K+Cl₂ -t ℂ 2KCl	
с неметаллами.		
10. Реакция	Zn+CuSO ₄ =Cu+ZnSO ₄	Металлы, стоящие в ряду
металлов с		активности <u>левее, но не</u>
растворимыми		реагирующие с водой,
солями.		вытесняют из растворов солей
		стоящие правее металлы.

Свойства солей.

Свойства	Примеры	Примечания
1) Диссоциация в	1. Средние, двойные, смешанные соли	
растворе.	<u>диссоциируют полностью:</u> $(\alpha = 1)$	
	NaCl [©] Na ⁺ + Cl [−]	
	$KNaSO_4 K^+ + Na^+ + SO_4^{2-}$	
	CaClBr © Ca ²⁺ + Cl ⁻ + Br ⁻	
	2. <u>Кислые соли:</u>	
	$KHSO_4 \subseteq K^+ + HSO_4^- (a = 1)$	
	$HSO_4^- \rightleftarrows H^+ + SO_4^{2-} (a < 1)$	
	3. Основные соли:	
	FeOHCl © FeOH+ + Cl- (a = 1)	
	$FeOH^+ \rightleftharpoons Fe^{2+} + OH^-(a < 1)$	
	4. Комплексные соли:	
	$[Cu(NH_3)_4]SO_4$ $[Cu(NH_3)_4]^{2+} + SO_4^{2-}$ $(a = 1)$ $[Cu(NH_3)_4]^{2+} \approx Cu^{2+} + 4NH_3 (a < 1)$	
2)Взаимодействие с	$2HCI + Na_2CO_3 = 2NaCI + CO_2 + H_2O$	Реакция
кислотами:	CaCl2 + H2SO4 = CaSO4 + 2HCl	происходит, если
	Основные соли при действии кислот переходят в	соль образована
	средние: FeOHCl + HCl = FeCl ₂ + H_2O .	более слабой или
	Средние соли, образованные многоосновными	летучей кислотой,
	кислотами, при взаимодействии с ними образуют	или если
	кислые соли: $Na_2SO_4 + H_2SO_4 = 2NaHSO_4$.	образуется осадок
		или газ.
3) Взаимодействие С	$Na_2CO_3 + SiO_2 - (t^\circ)\grave{a} CO_2 \uparrow + Na_2SiO_3$	Вытеснение
кислотными		твёрдым оксидом
оксидами.		летучего при
		сплавлении.
4) Взаимодействие	$CuSO_4 + 2NaOH = Cu(OH)_2 + Na_2SO_4$	Реакция
растворимых солей	$NH_4CI + KOH = KCI + NH_3 + H_2O$	происходит если
со щелочами.	Кислые соли придействии щелочей превращаются	образуется
	в средние: $KHCO_3 + KOH = K_2CO_3 + H_2O$	осадок, газ или
		вода.
5) Взаимодействие	AgNO ₃ + NaCl =AgCl → +NaNO ₃	Реакция
растворимых солей	При взаимодействии двух кислых солей разных по	происходит, если
друг с другом.	силе кислот возможно вытеснение более слабой и	взаимодействуют
	летучей:	растворимые соли
	$NaHSO_4 + NaHS = H_2S\uparrow + Na_2SO_4$	и при этом
		образуется осадок

6) Разимонайствиа С	Fe + CuSO ₄ =Cu + FeSO ₄	Металлы,
6) Взаимодействие С	FE + Cu3O ₄	· ·
металлами.		стоящие <u>левее в</u>
		ряду активности
		<u>и не</u>
		реагирующие с
		водой вытесняют
		из солей стоящие
		правее металлы.
7) Разложение при	CaCO ₃ -(t°)à CaO + CO ₂ .	2 оксида, или 2
нагревании.	2AgCl -(t°)àAg + Cl ₂	простых
	$2KNO_2$ - (t°) à $2KNO_2$ + O_2 .	вещества.
		Нитраты –
		сложнее.
8) Электролиз	Соли подвергаются электролизу в растворах и	
(разложение под	расплавах:	
действием тока).	2NaCl +2H ₂ O -(эл.ток)àH ₂ +2NaOH + Cl ₂	
,	2NaCl расплав -(эл.ток)à2Na + Cl ₂	
Ряд	, , , , , , , , , , , , , , , , , , , ,	
<u>напряжений</u>		
<u>металлов:</u>		
Li, Rb, K, Ba, Sr, Ca, Na,		
Mg, Al, Mn, Zn, Cr, Fe, Cd,		
Co, Ni, Sn, Pb, H ,Sb, Bi,		
Cu, Hg, Ag, Pd, Pt, Au		