
Unit-IV 
Dynamic Programming 

Dynamic programming is a technique that breaks the problems into sub-problems, and 
saves the result for future purposes so that we do not need to compute the result again. The 
subproblems are optimized to optimize the overall solution is known as optimal substructure 
property. The main use of dynamic programming is to solve optimization problems.  

Here, optimization problems mean that when we are trying to find out the minimum or 
the maximum solution of a problem. The dynamic programming guarantees to find the optimal 
solution of a problem if the solution exists. 

The definition of dynamic programming says that it is a technique for solving a complex 
problem by first breaking into a collection of simpler subproblems, solving each subproblem just 
once, and then storing their solutions to avoid repetitive computations. 

Let's understand this approach through an example. 

Consider an example of the Fibonacci series. The following series is the Fibonacci series: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ,… 

The numbers in the above series are not randomly calculated. Mathematically, we could 
write each of the terms using the below formula: 

F(n) = F(n-1) + F(n-2), 

With the base values F(0) = 0, and F(1) = 1. To calculate the other numbers, we follow 
the above relationship. For example, F(2) is the sum f(0) and f(1), which is equal to 1. 

How can we calculate F(20)? 
The F(20) term will be calculated using the nth formula of the Fibonacci series. The below figure 
shows that how F(20) is calculated. 

 

As we can observe in the above figure that F(20) is calculated as the sum of F(19) and 
F(18). In the dynamic programming approach, we try to divide the problem into the similar 
subproblems.  

We are following this approach in the above case where F(20) into the similar 
subproblems, i.e., F(19) and F(18). If we recap the definition of dynamic programming that it 
says the similar subproblem should not be computed more than once. Still, in the above case, the 
subproblem is calculated twice.  



In the above example, F(18) is calculated two times; similarly, F(17) is also calculated 
twice. However, this technique is quite useful as it solves the similar subproblems, but we need 
to be cautious while storing the results because we are not particular about storing the result that 
we have computed once, then it can lead to a wastage of resources. 

Approaches of dynamic programming 
There are two approaches to dynamic programming: 

o​ Top-down approach 
o​ Bottom-up approach 

Top-down approach 
The top-down approach follows the memorization technique, while bottom-up approach follows 
the tabulation method. Here memorization is equal to the sum of recursion and caching. 
Recursion means calling the function itself, while caching means storing the intermediate results. 

Bottom-Up approach 
The bottom-up approach is also one of the techniques which can be used to implement the 
dynamic programming. It uses the tabulation technique to implement the dynamic programming 
approach. It solves the same kind of problems but it removes the recursion. If we remove the 
recursion, there is no stack overflow issue and no overhead of the recursive functions. In this 
tabulation technique, we solve the problems and store the results in a matrix. 

Multistage Graph 
A multistage graph G = (V, E) is a directed graph where vertices are partitioned 

into k (where k > 1) number of disjoint subsets S = {s1,s2,…,sk} such that edge (u, v) is in E, 
then u Є si and v Є s1 + 1 for some subsets in the partition and |s1| = |sk| = 1. 

The vertex s Є s1 is called the source and the vertex t Є sk is called sink. 

G is usually assumed to be a weighted graph. In this graph, cost of an edge (i, j) is 
represented by c(i, j). Hence, the cost of path from source s to sink t is the sum of costs of each 
edges in this path. 

The multistage graph problem is finding the path with minimum cost from source s to sink t. 

Example 

Consider the following example to understand the concept of multistage graph. 

 

According to the formula, we have to calculate the cost (i, j) using the following steps 



Step 1: Cost (K-2, j) 

In this step, three nodes (node 4, 5. 6) are selected as j. Hence, we have three options to choose 
the minimum cost at this step. 

Cost(3, 4) = min {c(4, 7) + Cost(7, 9),c(4, 8) + Cost(8, 9)} = 7 

Cost(3, 5) = min {c(5, 7) + Cost(7, 9),c(5, 8) + Cost(8, 9)} = 5 

Cost(3, 6) = min {c(6, 7) + Cost(7, 9),c(6, 8) + Cost(8, 9)} = 5 

Step 2: Cost (K-3, j) 

Two nodes are selected as j because at stage k - 3 = 2 there are two nodes, 2 and 3. So, the value i 
= 2 and j = 2 and 3. 

Cost(2, 2) = min {c(2, 4) + Cost(4, 8) + Cost(8, 9),c(2, 6) + 

Cost(6, 8) + Cost(8, 9)} = 8 

Cost(2, 3) = {c(3, 4) + Cost(4, 8) + Cost(8, 9), c(3, 5) + Cost(5, 8)+ Cost(8, 9), c(3, 6) + Cost(6, 
8) + Cost(8, 9)} = 10 

Step 3: Cost (K-4, j) 

Cost (1, 1) = {c(1, 2) + Cost(2, 6) + Cost(6, 8) + Cost(8, 9), c(1, 3) + Cost(3, 5) + Cost(5, 8) + 
Cost(8, 9))} = 12 

c(1, 3) + Cost(3, 6) + Cost(6, 8 + Cost(8, 9))} = 13 

Hence, the path having the minimum cost is 1→ 3→ 5→ 8→ 9. 

 
 
 
 
 
 
 
 
All-Pairs Shortest Paths 

The all pair shortest path algorithm is also known as Floyd-Warshall algorithm is used to 
find all pair shortest path problem from a given weighted graph. As a result of this algorithm, it 
will generate a matrix, which will represent the minimum distance from any node to all other 
nodes in the graph. 

 

At first the output matrix is same as given cost matrix of the graph. After that the output 
matrix will be updated with all vertices k as the intermediate vertex. 



The time complexity of this algorithm is O(V3), here V is the number of vertices in the graph. 

Input − The cost matrix of the graph. 

0 3 6 ∞ ∞ ∞ ∞ 

3 0 2 1 ∞ ∞ ∞ 

6 2 0 1 4 2 ∞ 

∞ 1 1 0 2 ∞ 4 

∞ ∞ 4 2 0 2 1 

∞ ∞ 2 ∞ 2 0 1 

∞ ∞ ∞ 4 1 1 0 

Output − Matrix of all pair shortest path. 

0 3 4 5 6 7 7 

3 0 2 1 3 4 4 

4 2 0 1 3 2 3 

5 1 1 0 2 3 3 

6 3 3 2 0 2 1 

7 4 2 3 2 0 1 

7 4 3 3 1 1 0 

Algorithm 
floydWarshal(cost) 
 

Input − The cost matrix of given Graph. 

Output − Matrix to for shortest path between any vertex to any vertex. 

Begin 

   for k := 0 to n, do 

      for i := 0 to n, do 

         for j := 0 to n, do 

            if cost[i,k] + cost[k,j] < cost[i,j], then 

               cost[i,j] := cost[i,k] + cost[k,j] 

            done 

         done 

      done 

      display the current cost matrix 

End 

Optimal Binary Search Tree 

As we know that in binary search tree, the nodes in the left subtree have lesser value than 
the root node and the nodes in the right subtree have greater value than the root node. 



We know the key values of each node in the tree, and we also know the frequencies of 
each node in terms of searching means how much time is required to search a node. The 
frequency and key-value determine the overall cost of searching a node. The cost of searching is 
a very important factor in various applications.  

The overall cost of searching a node should be less. The time required to search a node in 
BST is more than the balanced binary search tree as a balanced binary search tree contains a 
lesser number of levels than the BST. There is one way that can reduce the cost of a binary 
search tree is known as an optimal binary search tree. 

Let's understand through an example. 

If the keys are 10, 20, 30, 40, 50, 60, 70 

 

In the above tree, all the nodes on the left subtree are smaller than the value of the root 
node, and all the nodes on the right subtree are larger than the value of the root node. The 
maximum time required to search a node is equal to the minimum height of the tree, equal to 
logn. 

Now we will see how many binary search trees can be made from the given number of keys. 

For example: 10, 20, 30 are the keys, and the following are the binary search trees that can be 
made out from these keys. 

 

The Formula for calculating the number of trees: 

 

When we use the above formula, then it is found that total 5 number of trees can be created. 

The cost required for searching an element depends on the comparisons to be made to 
search an element. Now, we will calculate the average cost of time of the above binary search 
trees. 

https://www.javatpoint.com/binary-search-tree
https://www.javatpoint.com/binary-search-tree


 

In the above tree, total number of 3 comparisons can be made. The average number of 
comparisons can be made as: 

​

 

In the above tree, the average number of comparisons that can be made as: 

​

 

In the above tree, the average number of comparisons that can be made as: 

​

 

In the above tree, the total number of comparisons can be made as 3. Therefore, the average 
number of comparisons that can be made as: 



​

 

In the above tree, the total number of comparisons can be made as 3. Therefore, the 
average number of comparisons that can be made as: 

 

In the third case, the number of comparisons is less because the height of the tree is less, 
so it's a balanced binary search tree. 

Till now, we read about the height-balanced binary search tree. To find the optimal binary 
search tree, we will determine the frequency of searching a key. 

Let's assume that frequencies associated with the keys 10, 20, 30 are 3, 2, 5. 

The above trees have different frequencies. The tree with the lowest frequency would be 
considered the optimal binary search tree. The tree with the frequency 17 is the lowest, so it 
would be considered as the optimal binary search tree. 

String Edit distance 
The Edit distance is a problem to measure how much two strings are different from one 

another by counting the minimum number of operations required to convert one string into the 
other.  

Edit distance problem can be solved by many different approaches.But the most 
efficient approach to solve the Edit distance problem is Dynamic programming 
approach which takes the O(N * M) time complexity, where N and M are sizes of the strings. 
Edit distance has different definitions which uses different sets of string operations. 

Levenshtein distance operations is the basic set of operations which is used in Edit distance 
Problem.​
Operation allowed are: 

1.​ Delete any character from the string. 
2.​ Replace any character with any other 
3.​ Add any character into any part of the string. 

Problem Statement 

Given two strings str1 and str2, and the task is to find minimum number operations required to 
convert string str1 into str2. 

Edit Distance Problem Example 

Below is the example of Edit Distance Problem with input- output constraint and the solution for 
the example using the Dynamic programming approach. 

https://en.wikipedia.org/wiki/Edit_distance
https://prepfortech.in/interview-topics/dynamic-programming
https://prepfortech.in/interview-topics/dynamic-programming
https://en.wikipedia.org/wiki/Levenshtein_distance


Input – Output Data for the Algorithm 

●​ Str_1 : This contains the first string. 
●​ Str_2 : This contains the second string. 
●​ N : This contains the size of the first string. 
●​ M : This contains the size of the second string. 
●​ Solution : This is used to store the number of operations required. 

Input and Output of the Example 

Given two strings str1 = “Big” and str2 = “Bang” of size of N = 3 and N = 3 respectively, and 
the task is to find minimum number operations required to convert string str1 into str2. 
Answer: 2 

Solution of the Edit Distance Problem Example 

Solution of the above example using the Dynamic programming approach.​
Given data are 

String 1 : B i g 

 

String 1 : B a n g 

1.Create a empty table where First column represents the String 1 and First Row represents the 
String 2 with additional Value( empty value) in both. 

String 1 \ String 
2 Φ B a n g 

Φ      

B      

i      

g      

2.Let us start filling the table untill one of the string is empty. We will compare “Big” to Φ and 
then “Bang” to Φ. 

●​ To convert Φ to Φ, we need no operation so value is 0. 
●​ To convert B to Φ, we need 1 operation of modify, so value is 1. 
●​ To convert i to Φ, we need 2 operation of modify and insert, so value is 2. 
●​ for g to Φ, value is 3. 
●​ Similarly for Bang, values will be 0, 1, 2, 3, 4. 

 

 

 



Updated table will be 

String 1 \ 
String 2 Φ B a n g 

Φ 0 1 2 3 4 

B 1     

i 2     

g 3     

3.Now check the each character of String 1 with String 2. And update the table according to 
approach. 

If Str_1[i-1] == Str_2[j-1]:  
    Table[i,j] = Table[i-1,j-1] 
else: 
    Table[i,j] = 1 + min(Table[i-1][j-1], Table[i-1][j], Table[i][j-1]) 

String 1 \ String 
2 Φ B a n g 

Φ 0 1 2 3 4 

B 1 0 1 2 3 

i 2 1 1 2 3 

g 3 2 2 2 2 

6.Return Table[-1][-1] for the answer 

 

0/1 Knapsack problem 

Here knapsack is like a container or a bag. Suppose we have given some items which 
have some weights or profits. We have to put some items in the knapsack in such a way total 
value produces a maximum profit. 

For example, the weight of the container is 20 kg. We have to select the items in such a 
way that the sum of the weight of items should be either smaller than or equal to the weight of 
the container, and the profit should be maximum. 

There are two types of knapsack problems: 



o​ 0/1 knapsack problem 
o​ Fractional knapsack problem 

We will discuss both the problems one by one. First, we will learn about the 0/1 knapsack 
problem. 

What is the 0/1 knapsack problem? 
The 0/1 knapsack problem means that the items are either completely or no items are 

filled in a knapsack. For example, we have two items having weights 2kg and 3kg, respectively. 
If we pick the 2kg item then we cannot pick 1kg item from the 2kg item (item is not divisible); 
we have to pick the 2kg item completely. This is a 0/1 knapsack problem in which either we pick 
the item completely or we will pick that item. The 0/1 knapsack problem is solved by the 
dynamic programming. 

What is the fractional knapsack problem? 
The fractional knapsack problem means that we can divide the item. For example, we 

have an item of 3 kg then we can pick the item of 2 kg and leave the item of 1 kg. The fractional 
knapsack problem is solved by the Greedy approach. 

Example of 0/1 knapsack problem. 
Consider the problem having weights and profits are: 

Weights: {3, 4, 6, 5} 

Profits: {2, 3, 1, 4} 

The weight of the knapsack is 8 kg 

The number of items is 4 

The above problem can be solved by using the following method: 

xi = {1, 0, 0, 1} 

= {0, 0, 0, 1} 

= {0, 1, 0, 1} 

The above are the possible combinations. 1 denotes that the item is completely picked 
and 0 means that no item is picked. Since there are 4 items so possible combinations will be: 

24 = 16; So. There are 16 possible combinations that can be made by using the above problem. 
Once all the combinations are made, we have to select the combination that provides the 
maximum profit. 

 

Another approach to solve the problem is dynamic programming approach. In dynamic 
programming approach, the complicated problem is divided into sub-problems, then we find the 
solution of a sub-problem and the solution of the sub-problem will be used to find the solution of 
a complex problem. 

x = { 1, 0, 0} 



The profit corresponding to the weight is 3. Therefore, the remaining profit is (5 - 3) 
equals to 2. Now we will compare this value 2 with the row i = 2. Since the row (i = 1) contains 
the value 2; therefore, the pointer shifted upwards shown below: 

 0 1 2 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 0 

1 0 0 0 2 2 2 2 2 2 

2 0 0 0 2 3 3 3 5 5 

3 0 0 0 2 3 3 3 5 5 

4 0 0 0 2 3 3 4 5 5 

Again we compare the value 2 with a above row, i.e., i = 1. Since the row i =0 does not contain 
the value 2, so row i = 1 will be selected and the weight corresponding to the i = 1 is 3 shown 
below: 

X = {1, 1, 0, 0} 

The profit corresponding to the weight is 2. Therefore, the remaining profit is 0. We compare 0 
value with the above row. Since the above row contains a 0 value but the profit corresponding to 
this row is 0. In this problem, two weights are selected, i.e., 3 and 4 to maximize the profit. 

Reliability design problem 
In reliability design, the problem is to design a system that is composed of several 

devices connected in series. 

 

If we imagine that r1 is the reliability of the device. 

Then the reliability of the function can be given by πr1. 

If r1 = 0.99 and n = 10 that n devices are set in a series, 1 <= i <= 10, then reliability of the 
whole system πri can be given as: Πri = 0.904 

 

So, if we duplicate the devices at each stage then the reliability of the system can be increased. 

It can be said that multiple copies of the same device type are connected in parallel 
through the use of switching circuits. Here, switching circuit determines which devices in any 
given group are functioning properly. Then they make use of such devices at each stage, that 
result is increase in reliability at each stage. If at each stage, there are mi similar types of 
devices Di, then the probability that all mi have a malfunction is (1 - ri)^mi, which is very less. 



And the reliability of the stage I becomes (1 – (1 - ri) ^mi). Thus, if ri = 0.99 and mi = 2, 
then the stage reliability becomes 0.9999 which is almost equal to 1. Which is much better than 
that of the previous case or we can say the reliability is little less than 1 - (1 - ri) ^mi because of 
less reliability of switching circuits. 

 

In reliability design, we try to use device duplication to maximize reliability. But this 
maximization should be considered along with the cost. 

Let c is the maximum allowable cost and ci be the cost of each unit of device i. Then the 
maximization problem can be given as follows: 

Maximize π Øi (mi) for 1 <= I <= n 

Subject to: 

​
 

mi>= 1 and integer 1 <= i <= n 

Here, Øi (mi) denotes the reliability of the stage i. 

The reliability of the system can be given as follows: 

Π Øi (mi) for 1 <= i <= n 

If we increase the number of devices at any stage beyond the certain limit, then also only the cost 
will increase but the reliability could not increase. 

 
 
 
 
 
Travelling Salesman Problem 

The travelling salesman problem is a graph computational problem where the salesman 
needs to visit all cities (represented using nodes in a graph) in a list just once and the distances 
(represented using edges in the graph) between all these cities are known. The solution that is 
needed to be found for this problem is the shortest possible route in which the salesman visits all 
the cities and returns to the origin city. 

If you look at the graph below, considering that the salesman starts from the vertex ‘a’, 
they need to travel through all the remaining vertices b, c, d, e, f and get back to ‘a’ while 
making sure that the cost taken is minimum. 



 

There are various approaches to find the solution to the travelling salesman problem: 
naïve approach, greedy approach, dynamic programming approach, etc. In this tutorial we will 
be learning about solving travelling salesman problem using greedy approach. 

Travelling Salesperson Algorithm 

As the definition for greedy approach states, we need to find the best optimal solution 
locally to figure out the global optimal solution. The inputs taken by the algorithm are the graph 
G {V, E}, where V is the set of vertices and E is the set of edges. The shortest path of graph G 
starting from one vertex returning to the same vertex is obtained as the output. 

Algorithm 
●​ Travelling salesman problem takes a graph G {V, E} as an input and declare another graph 

as the output (say G’) which will record the path the salesman is going to take from one 
node to another. 

●​ The algorithm begins by sorting all the edges in the input graph G from the least distance 
to the largest distance. 

●​ The first edge selected is the edge with least distance, and one of the two vertices (say A 
and B) being the origin node (say A). 

●​ Then among the adjacent edges of the node other than the origin node (B), find the least 
cost edge and add it onto the output graph. 

●​ Continue the process with further nodes making sure there are no cycles in the output 
graph and the path reaches back to the origin node A. 

●​ However, if the origin is mentioned in the given problem, then the solution must always 
start from that node only. Let us look at some example problems to understand this better. 

 
 
 
Examples 

Consider the following graph with six cities and the distances between them − 



 

From the given graph, since the origin is already mentioned, the solution must always 
start from that node. Among the edges leading from A, A → B has the shortest distance. 

 

Then, B → C has the shortest and only edge between, therefore it is included in the output graph. 

 

There’s only one edge between C → D, therefore it is added to the output graph. 

 

There’s two outward edges from D. Even though, D → B has lower distance than D → E, 
B is already visited once and it would form a cycle if added to the output graph. Therefore, D → 
E is added into the output graph. 

 



There’s only one edge from e, that is E → F. Therefore, it is added into the output graph. 

 

Again, even though F → C has lower distance than F → A, F → A is added into the output graph 
in order to avoid the cycle that would form and C is already visited once. 

 

The shortest path that originates and ends at A is A → B → C → D → E → F → A 

The cost of the path is: 16 + 21 + 12 + 15 + 16 + 34 = 114. 

Even though, the cost of path could be decreased if it originates from other nodes but the 
question is not raised with respect to that. 

 

Traversal technique for Binary Tree 
Binary Tree 

A binary tree is a finite collection of elements or it can be said it is made up of nodes. 
Where each node contains the left pointer, right pointer, and a data element. The root pointer 
points to the topmost node in the tree. When the binary tree is not empty, so it will have a root 
element and the remaining elements are partitioned into two binary trees which are called the left 
pointer and right pointer of a tree. 

Traversing in the Binary Tree 
Tree traversal is the process of visiting each node in the tree exactly once. Visiting each 

node in a graph should be done in a systematic manner. If search result in a visit to all the 
vertices, it is called a traversal. There are basically three traversal techniques for a binary tree 
that are, 

1.​ Preorder traversal 
2.​ Inorder traversal 
3.​ Postorder traversal 



1) Preorder traversal 
To traverse a binary tree in preorder, following operations are carried out: 

1.​ Visit the root. 
2.​ Traverse the left sub tree of root. 
3.​ Traverse the right sub tree of root. 

Note: Preorder traversal is also known as NLR traversal. 

Algorithm: 

Algorithm preorder(t) 
/*t is a binary tree. Each node of t has three fields:  
lchild, data, and rchild.*/ 
{ 
​ If t! =0 then 
​ { 
​ ​ Visit(t); 
​ ​ Preorder(t->lchild); 
​ ​ Preorder(t->rchild); 
​ } 
} 
​
Example: Let us consider the given binary tree, 

​
 

Therefore, the preorder traversal of the above tree will be: 7,1,0,3,2,5,4,6,9,8,10 

2) Inorder traversal 
To traverse a binary tree in inorder traversal, following operations are carried out: 

1.​ Traverse the left most sub tree. 
2.​ Visit the root. 
3.​ Traverse the right most sub tree. 

Note: Inorder traversal is also known as LNR traversal. 

Algorithm: 

Algorithm inorder(t) 



 
/*t is a binary tree. Each node of t has three fields:  
lchild, data, and rchild.*/ 
{ 
​ If t! =0 then 
​ { 
​ ​ Inorder(t->lchild); 
​ ​ Visit(t); 
​ ​ Inorder(t->rchild); 
​ } 
} 
​
 

Example: Let us consider a given binary tree. 

​
 

Therefore the inorder traversal of above tree will be: 0,1,2,3,4,5,6,7,8,9,10 

3) Postorder traversal 
To traverse a binary tree in postorder traversal, following operations are carried out: 

1.​ Traverse the left sub tree of root. 
2.​ Traverse the right sub tree of root. 
3.​ Visit the root. 

Note: Postorder traversal is also known as LRN traversal. 

 

 

 

 

Algorithm: 

Algorithm postorder(t) 
 
/*t is a binary tree .Each node of t has three fields:  
lchild, data, and rchild.*/ 
{ 



​ If t! =0 then 
​ { 
​ ​ Postorder(t->lchild); 
​ ​ Postorder(t->rchild); 
​ ​ Visit(t); 
​ } 
} 
Example: Let us consider a given binary tree. 

​
 

Therefore the postorder traversal of the above tree will be: 0,2,4,6,5,3,1,8,10,9,7 

Techniques of graph 

Definition 

A graph G(V, E) is a non-linear data structure that consists of node and edge pairs of 
objects connected by links. 

There are 2 types of graphs: 

●​ Directed 
●​ Undirected 

Breadth-First Search 
Traversing or searching is one of the most used operations that are undertaken while 

working on graphs. Therefore, in breadth-first-search (BFS), you start at a particular vertex, 
and the algorithm tries to visit all the neighbors at the given depth before moving on to the next 
level of traversal of vertices. Unlike trees, graphs may contain cyclic paths where the first and 
last vertices are remarkably the same always. Thus, in BFS, you need to keep note of all the track 
of the vertices you are visiting. To implement such an order, you use a queue data structure 
which First-in, First-out approach. To understand this, see the image given below. 



 

Algorithm 

1.​ Start putting anyone vertices from the graph at the back of the queue. 
2.​ First, move the front queue item and add it to the list of the visited node. 
3.​ Next, create nodes of the adjacent vertex of that list and add them which have not been 

visited yet. 
4.​ Keep repeating steps two and three until the queue is found to be empty. 

Pseudocode 

1.​ Set all nodes to "not visited";   
2.​    q = new Queue();   
3.​    q.enqueue(initial node);   
4.​    while ( q ? empty ) do   
5.​    {   
6.​       x = q.dequeue();   
7.​       if ( x has not been visited )   
8.​       {   
9.​          visited[x] = true;         // Visit node x !   
10.​   
11.​         for ( every edge (x, y)  /* we are using all edges ! */ )       
12.​            if ( y has not been visited )      
13.​           q.enqueue(y);       // Use the edge (x,y) !!!   
14.​      }   
15.​   }   

Complexity: 0(V+E) where V is vertices and E is edges. 

Applications 

BFS algorithm has various applications. For example, it is used to determine the shortest 
path and minimum spanning tree. It is also used in web crawlers to creates web page indexes. 
It is also used as powering search engines on social media networks and helps to find out 
peer-to-peer networks in BitTorrent. 

Depth-first search 
In depth-first-search (DFS), you start by particularly from the vertex and explore as much 

as you along all the branches before backtracking. In DFS, it is essential to keep note of the 
tracks of visited nodes, and for this, you use stack data structure. 



 

Algorithm 

1.​ Start by putting one of the vertexes of the graph on the stack's top. 
2.​ Put the top item of the stack and add it to the visited vertex list. 
3.​ Create a list of all the adjacent nodes of the vertex and then add those nodes to the 

unvisited at the top of the stack. 
4.​ Keep repeating steps 2 and 3, and the stack becomes empty. 

Pseudocode 

1.​ DFS(G,v)   ( v is the vertex where the search starts )   
2.​         Stack S := {};   ( start with an empty stack )   
3.​         for each vertex u, set visited[u] := false;   
4.​         push S, v;   
5.​         while (S is not empty) do   
6.​            u := pop S;   
7.​            if (not visited[u]) then   
8.​               visited[u] := true;   
9.​               for each unvisited neighbour w of uu   
10.​                 push S, w;   
11.​           end if   
12.​        end while   
13.​     END DFS()  
14.​ 
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