[README]

study

budi

4

https://nusstudybuddy.vercel.app/

NUS Orbital 2024
Milestone 3

Accidental Study Buddies

Zaidan Sani
Rachel Tai

https://nusstudybuddy.vercel.app/

Contents

Project Summary
Proposed Level of Achievement
Motivation
Aim
Scope
User Stories
Features
Timetable
Timetable addition
Timetable comparison
Adding other non-timetable events
Booking meetings
Timetable summary statistics
Slot statistics
Course recommender
Module planner
Live sync to Google Calendar
Social Network
User authentication
User profiles
Addition of friends
Chat
Alternative
Mod storage
Alternative Plan (Original)
Matching algorithms
QoL Extensions
Light and Dark Mode
Email notifications
Data export
Timetable comparison for non-authenticated users
System Design
Tech Stack
Diagrams
Class Diagrams
Activity Diagram
Use-Case Diagram
Wireframes
Landing Page

© © O N NOODOOO o bbb DMDHA

NN =2 0 0O 0O 4O m = a0 a0 a0 a0 o a4 s s
O O ©W © 0O NNOPPPEEPEPPWWWMNDNDNDNDNIDDIIIO OO

Sign in/sign up
Timetable Views
Social Network
Software Engineering Practices
Component-Based Architecture
N-Tier Architecture
Version Control
Branching
Pull Requests
Testing
Unit Testing
User Testing
Integration Testing
Regression Testing
Bug Fixing
Bugs Found and Solutions
Development Plan
Testing Plan
Unit testing of components
Unit testing of functions
Integration testing
Regression testing
User testing
Methodology
Questions
Results
Beta testing
General Problems Encountered
Time Constraints
Lack of Experience
Feature Complexity
Limitations
Username and email lock-in
Username limitation
Appendix
Features (as from Milestone 1)
Timetable Comparison
Social Network
Quiality of Life (QoL) Improvements
Links

20

21
23
25
25
25
26
26
27
27
27
28
28
28
29
29
30
32
32
38
44
46
50
50
50

o1
53
54
54
54
54
55
55
95
56
56
56
56
57
58

Project Summary

Proposed Level of Achievement
Apollo 1

Motivation

A common challenge that everyone faces in NUS is module planning. The large amount of
concerns when it comes to this makes it a more complex issue than expected, due to how much
the concerns can vary, and how deceptively difficult it can be to fulfil all the wants that a student
needs.

We have seen a lot of attempts to solve some of the problems. A lot of them aim to solve the
module planning issue, such as https://nusplanner.com/ which aims to help students craft their
academic plan, and the ever-prominent https://nusmods.com which not only lets students see
their course information, but also plan out a timetable.

However, a commonality between students is that they would like to take subjects with their
friends, or at least find people that they can befriend within their tutorial slots, so that they have
some form of support, be it academically or morally, during these sessions. Within our anecdotal
experiences, we find that this is a very common problem, and we have had trouble coordinating
our timetables with our friends, which can be a slight demotivator for certain students with
different comfort zone tolerances.

In addition, when it comes to group work, there is a high chance paired students come from
different courses, and may have extremely varied timetables, meaning that there is a difficulty to
synchronise timings for meetings.

We believe that collaborative learning is extremely helpful in navigating the complexity of the
modules here and believe that solving this issue will be a boon to the students that do utilise the
proposed service.

Aim

We first hope to facilitate this coordination by allowing an easy platform for students to share
their timetables, and communicate with their friends in order to plan better. This would come in
the form of visualisations of overlapping timetables slots, the ability to account for other things
such as CCAs, or outside commitments. We also hope to solve some unseen problems, such as

distributing the demand away from popular timeslots, by allowing students to see predicted
demand and for them to plan for it.

https://nusplanner.com/
https://nusmods.com

Scope

Summar StudyBuddy is a module planning platform for students to compare their
y timetables and find friends to take their courses with.

StudyBuddy is a platform designed to tackle the challenges faced by students at NUS in
collaborating module planning with friends. It enhances coordination and promotes collaborative
module planning among peers.

StudyBuddy will offer comprehensive timetable comparison features, allowing students to
create and manage their timetables, including adding other events. In addition to timetable
comparison, StudyBuddy will incorporate social networking features. Students will have user
profiles and secure authentication, storing module information for matching algorithms. They
can add friends and engage in chats, with a simple matching algorithm extension to help find
like-minded peers.

To further enhance the user experience, StudyBuddy will include several quality of life
improvements. These will offer a choice between light and dark modes, email notifications, data
export options, iCal integration, and the ability to share timetable images.

StudyBuddy facilitates better timetable coordination and communication among students,
promoting collaborative learning and addressing the complexities of module planning. By
providing visualizations of overlapping slots, incorporating non-academic commitments, and
offering predictive insights to distribute demand away from popular timeslots, StudyBuddy
seeks to create a supportive and efficient environment for academic planning.

User Stories

| want to plan my timetable with my friends.

| want to take the same classes with people | am comfortable with.

| want to compare my timetable with my friends' timetables easily.

| want to see the demand for each time slot, so | can adjust my schedule if needed.
| want to add my non-academic commitments to my timetable.

| want to find like-minded students who are taking the same modules or tutorial slots as
me.

| want to communicate comfortably with other students, both online and offline.

| want to coordinate meetings and discussions by finding a common free time slot.
9. Iwant to have a dashboard to view all my lectures, tutorials, meetings, and other
academically related activities in one place.

G N R N

o N

[studybuddy |

Features

The following section shows the features we have, and the general philosophy behind it.
Our original planned feature set can be seen in the appendix.

The terminology on courses and modules are used interchangeably in the documentation here.
The programme/degree/major is referred to as aforementioned.

Note

Timetable

Timetable addition

Type Core

Projected Actual

Completion Status Milestone 1 Milestone 1

This feature refers to the ability to add a timetable to the view.

Philosophy

For convenience, instead of implementing a pure timetable selector, where users would choose
their classes for each course, we decided to implement one that would be able to take
NUSmods URLs as well. This is as the NUSmods is a commonly used website for all NUS
students, as it has been made the main source of course information for all NUS students, and
the timetable function is well-refined.

As an extension, we consider implementing a manual timetable creator, given the time allows.

Adding timetable

Adding a timetable

Name timetable

Add through NUS mods Add manually

page 6

[studybuddy |

Timetable comparison

Type Core

Projected Actual

Completion Status Milestone 3 Milestone 2

Remark: This was originally written as two separate features in the README for Milestone 1- comparing with someone else
(projected Milestone 2) & comparing with multiple other people (projected Milestone 3). Due to the component nature, this was
implemented at the same time.

This feature refers to the ability to compare timetables visually.

Philosophy

This feature was the main focus of the project, and is the highlight feature.

The comparison allows for comparison of timetables from three sources:
1. The saved timetables added by the user
2. Saved timetables added by the user’s friends
3. ANUSmods timetable

With this implementation, it allows for users to not only compare timetables with their friends
who use the website actively, but it also allows users to compare their timetables with their
other possible timetables, as well as a NUSmods timetable link, that could be sent by their
friends who are not using the application.

The comparison allows for up to four slots, and was limited to such as anything more would be

visual clutter. In addition, it would not be effective for the user to compare more than 4
timetables at a singular time.

Adding other non-timetable events

Type Core

Projected Actual

Completion Status Milestone 2 Milestone 2

This refers to the ability to add events not directly correlated to the timetables.

Philosophy

This feature was implemented simply as another field in the user data, which allows for easy
query utilising Firestore.

page 7

[studybuddy |

The events are stored separately from the timetables so that they can be accessed easily when
the timetable is changed. Since the application allows for storage of multiple timetables, having
the events be separate allows for easy change when a different timetable is selected.

Booking meetings

Type Core

Projected Actual

Completion Status Milestone 2 Moved to future plans

shifted to Milestone 3

The feature is reliant on the social network. Due to time constraints, we
were only able to get the social network up pretty late.

Reason for Change

This refers to the ability to add events not directly correlated to the timetables.

Philosophy

Booking Meetings

User 1 Sends meeting invite

Sends new meeting invite é o
with new date
Accepts Not free on date Approval? User 2

Reject F No.

Event added to User 1 and
User 2

This feature is reliant on the Social Network feature.

Using a dropdown, the user can invite multiple of his friends, and then send them a meeting
invite. The diagram above shows a simulation of a meeting between two people.

1. When a meeting is created, a new record will be made in the meetings folder. The users
involved will then have the meetingID be added into their meeting field, with a status
field showing their status (approved, proposed change, rejected)

page 8

[studybuddy |

2. The record in the meetings folder will store these changes in status. Once the entire
meeting is approved by everyone, the meeting will be written into their events field.

Timetable summary statistics

Type Extension

Projected Actual

Completion Status Milestone 3 Moved to future plans
This was moved to future plans due to a pivot in the project focus to focus on a more

polished project.

This feature provides users with summary statistics of their timetable, such as total hours per
week, busiest days, and free time slots.

Philosophy

For this feature, the plan is to provide
1. Total hours per weeks
2. Busiest days
3. Freetime slots

We plan on utilising user feedback to determine which statistics should be provided.

Slot statistics

Type Extension

Projected Actual

Completion Status Milestone 3 Moved to future plans
This was moved to future plans due to a pivot in the project focus to focus on a more

polished project.

This feature provides users with slot statistics - where the users are able to see how popular a
current slot is for the modules they picked, which may allow them to counter pick.

Philosophy

For this feature, the plan is to provide
1. Popularity of specific class
2. Popularity of timeslot (useful for when there are multiple classes for the same period)

page 9

[studybuddy |

We plan on utilising user feedback to determine which statistics should be provided.

Course recommender

Type Extension

Projected Actual

Completion Status Milestone 3 Moved to future plans

This was moved to future plans due to a pivot in the project focus to focus on a more
polished project.

This feature provides users with courses (modules) to take based on their previous mods.

Philosophy

We plan on utilising a simple ML implementation for this.
We have yet to confirm the implementation details of this feature.

Module planner

Type Extension

Projected Actual

Completion Status Milestone 3 Milestone 3

Philosophy

We plan on implementing a very simple module planner - more for visual purposes (no pre-req
tracking, no major requirements checking).

Live sync to Google Calendar

Type Extension

Projected Actual

Completion Status Milestone 3 Scrapped

Scrapped due to resource requirements.

page 10

[studybuddy |

Social Network

User authentication

Type Core

Projected Actual

Completion Status Milestone 1 Milestone 1

Philosophy

As authentication is a very important part, we wanted to make sure we did not do it from
scratch as that could result in badly configured security.

We decided to use Firebase Authentication, as it allowed us to integrate it easily with our
Firestore database that we used to store user data. The automatic hashing of passwords,

allowed us to spend more time implementing the other features, which did not already have a
widely accessible implementation in other libraries.

User profiles

Type Core

Projected Actual

Completion Status Milestone 2 Milestone 2

Philosophy

We utilised a non-relational database, to allow us to have a more flexible schema with regards to
the user details. The potential of the user data stored made us reconsider our original mySQL
choice because of the lack of ability to adapt to new requirements if need be.

The user profiles will be used for users to find new friends, and the details provided would be
used for the matching algorithm proposed below.

page 11

[studybuddy |

Addition of friends

Type Core

Projected Actual

Completion Status Milestone 2 Milestone 2

Philosophy

As the addition of friends is only a two-way thing, we found it acceptable to negate the need of
an extra collection, and instead use a value in the user field.

The list of friends is stored with the other user as the key, and the status of the friendship as the
value. The value is one of “None” | “Pending” | “Requested” | “Friend”, whichis
used by the application logic to process friend requests and friend approvals.

Chat

Type Core

Projected Actual

Completion Status Milestone 2 Milestone 2

The chat is currently working, but we may implement changes to it in the future.

Philosophy

As a user can have multiple chats, and a chat can have multiple messages, it was not feasible to
store the whole chats in the user fields, like done for the friend requests. Hence, only the
chatlDs are stored in the user fields.

Thus,
1. Ifachatis to be created, it is given a chatlD that is then added to the Chats array in both
users.
2. The chat object will then contain a chatlD, the email / username of both users, and an
array of messages.
3. The complete chat object is stored in another collection called “chats”, with each
document identified by a unique chatlD.

Alternative

We considered having the chat be stored twice in both the users data, which would negate the
need for a new collection, but it would result in large data duplication, and would not be good for
the queries as it would mean there would be 2 writes instead of 1 for each chat.

page 12

[studybuddy |

Mod storage

Type Extension

Projected Actual

Completion Status Milestone 3 Milestone 3

Merged with study plan. Mods are stored through the study plan.

Philosophy

Storing the mods would allow people to find their friends off the modules they take, allowing it to
be used for the matching algorithm.

The modules are now stored under the study plan, instead, which categorises the modules
better over the original plan which is mentioned below. This means data is non-duplicated.

Alternative Plan (Original)

The plan is to store the mods in three sections.
1. Past mods
2. Current mods
3. Future planned mods

Past mods will be used for the course recommender while the current and future planned mods
will be used for the matching algorithm.

In addition, the mods will also be visible when they are using the basic mod planner, and this will
be a small QoL improvement for them to visualise their plan.

Matching algorithms

Type Extension

Projected Actual

Completion Status Milestone 3 Moved to future plans

Philosophy

Currently, we do not have an intricate or complex plan with regards to the algorithms used for
the matching. The current plan is to implement simple matching in a checklist manner, and then
just returning the results in the sorted order based on how many items they have checked off.

page 13

[studybuddy |

We do eventually plan on implementing simple machine learning through external libraries, as
well as using our user surveys to decide what features should be weighted higher.

QoL Extensions

Light and Dark Mode

Type Extension

Projected Actual

Completion Status Milestone 2 Milestone 2

Philosophy

Due to our standardised approach to using JoyUl, light and dark mode was easy to implement
using the theming provided. We just utilised the theming provided and added a button to switch
between the modes.

Email notifications

Type Extension

Projected Actual

Completion Status Milestone 3 Scrapped

Scrapped due to resource requirements.

Data export

Type Extension

Projected Actual

Completion Status Milestone 3 Milestone 3

Philosophy

Similar to NUSmods, we plan on implementing export to images (a screenshot of the timetable)
as well as export to iCal.

This was added simply using a library which targets a <div> element.

page 14

[studybuddy]

page 15

[studybuddy |

Timetable comparison for non-authenticated users

Type Extension

Projected Actual

Completion Status Milestone 3 Milestone 3

Philosophy

Anyone can still use the Timetable Comparison function without signing up or logging in. It is
available on the landing page.

page 16

[studybuddy |

System Design

Tech Stack

Programming Language
Ts TypeScript

Instead of using just JavaScript, we will use TypeScript, as the type-system and error-checking
allows us to create more robust and scalable code that will be vital in maintaining the code as
we implement additional features.

Front-End Libraries
React

As mentioned, we will be using React for the front-end, as it allows us to create our desired Ul
efficiently and promote code reusability, allowing there to be standardisation among all the
views.

In addition, the community around React development is large and developed, allowing us to
leverage on numerous sources of documentation as well as discussion.

w Front-End Libraries
JoyUl

We decided to elect for a front-end component library to help in standardisation across pages
and components.

The component library of choice was JoyUl, a variant from MaterialUl, which we chose due to
its similarity in appearance to our mockups previously made.

Next.js

React framework

page 17

[studybuddy |

Runtime Environment
NodedS

Back-End
Firebase Cloud Firestore

We opted for a noSQL database as we wanted to be more flexible with our schema. Originally,
we had planned on using MySQL, but after discussion and further research, we realised that the
structure of our data would need to not be constrained by a pre-set schema.

Hosting

Vercel

As our app utilises Next.js, it was intuitive for us to elect for Vercel hosting.

Diagrams

Class Diagrams

Previously, in Milestone 1, we had 2 UML class diagrams. However, we rethought our approach
towards the project and ended up focusing towards a functional approach instead, making the
class diagram inaccurate, even though it did help us drive the design of the functional
programming types.

We have removed the diagram as it is now inaccurate to our current system design.

page 18

[studybuddy |

Activity Diagram

........

B —— e
somain s [-
\ s s
J
sEmim pr—
Vo s
oo e et s
—
P— p— st o NN o S
g s riveormd At samd
NNNNNN Akt manaty; NUSmods timetable timetable Viaw bl
o,

This diagram describes the activities the user can undertake.
There are more specific diagrams for each feature listed in the feature portion.

Use-Case Diagram

. Sgnua

Won-Fogstored

Signin
. Send messsge
Uaers
Add events
. Ghange parsonal profile
Viaw ather pref s
Agistoro
Search bor othery

Save timerables
View tmetables

Connpare imetables

Save study plan

page 19

gggggggggggggggg

Ghangeprofies.

[studybuddy |

Wireframes

Here are the original design mockups for the Ul of the website.

Landing Page

the collaborative module planner for NUS students

Landing page

Sign in/sign up

study
buckly

Login
Enter your email and password to login

email@domain.com

password

or continue with
G Google

Create a new account Forgot password

page 20

Timetable Views
study
budicly
A4
0700
@ Home MON
Timetable TUE
|%Dﬂ Social WED
ET:] Messages THU
&b settings FRI

[studybuddy |

Login

8

Create an account
Enter your email and password to sign up
email@domain.com
password

confirm password

or continue with

Google

@

Signin

timetable displayed
V1 v

0800 0900 1000 1700 1200 1300 1400 1500 1600 1700 1800 1800 2000

Add Event Book A Meeting

Timetable view

page 21

Pud
Uy

Home

Timetable

Bl &

Du Friends

Be

Messages

& o

Settings

study
buc‘lidy

Home

Timetable

9 sacial
T} Messages

&b Settings

[studybuddy |

timetable displayed
Vi v

0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

MON
-
Add Event Book A Meeting
Event name:
Start Time:
End Time:
Day:...
Book Meeting
Adding an event
welcome to your dashboard! comparing with dinatitte s teyed
CHE
0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
MON
TUE
WED
THU
FRI

YOUR EVENTS TODAY

MONDAY

Week 13
30/02/2027

Edit Timetable

100 €S1010S
1600 MEETING o coeor

Export Timetable

Timetable comparison

page 22

Social Network

stu
budy

ety

Home
Timetable
Friends
Messages

Settings

Home
Timetable
Social
Messages

Settings

0700 0800 0900 1000

MON
TUE

WED
THU

FRI

[studybuddy |

timetable displayed
V1 v

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Add Event Book A Meeting

Event name:

Start Time:
End Time:
Day:...
Book Meeting
Chatting
Profile
First name Last name Profile;plenire
Jane Smitherton
Username Gender Matriculation Year
janesmitherton Female 2023

Email address

email@janesfakedomain.net

Interests

Swimming, Coding

Change picture

I am looking for a friend taking the course(s)

Update Profile

Setting profile

page 23

[studybuddy |

study
bu@y Connections Friend requests

FRIEND 1 REMOVE FRIEND 1 ADD
B s FRIEND 2 REMOVE FRIEND 2 ADD
—— FRIEND 3 REMOVE FRIEND 3 ADD
92 social FRIEND 4 REMOVE FRIEND 4 ADD
M) Messages FRIEND 5 REMOVE FRIEND 5 ADD
@ settings FRIEND 6 REMOVE FRIEND 6 ADD
FRIEND 7 REMOVE FRIEND 7 ADD
Find Friends To Connect With Find New Friends

Type your friend’s name Gender Matriculation Year

Interests

Finding friends

page 24

Software Engineering Practices

Component-Based Architecture

We used component-based architecture, where our React web application is built using
independent, reusable components. Each component is a self-contained unit that encapsulates
its own structure, style, and behaviour. This modular approach makes it easier for us to develop,
maintain, and scale our React web application.

N-Tier Architecture

We utilise a three-tier architecture, similar to industry practices with regards to web
development.

Web Server React
Application Server Node.JS

Database Server Firestore

Version Control

Branching

We utilise branches to work on separate features without breaking each other’s work

unintentionally.

Branches

Overview Yours Active Stale Al

Q Searc
Default
Branch

LD

Active branches

Updated

0 9 minutes ago

Updated

© 13 minutes ago

Current branches

~ Recent

%
%
*
%
v Local

&
*

o
o
.-ﬁ,
o
o

%9

user-profiles
documentation
timetable-view-v2
main

settings2

user-profiles

main

chat

documentation
landing-page-ui-changes
settings

settings2

theme

New branch

Default

originfmain >

History of branches (from WebStorm IDE)

With branches, we are also able to push changes without pushing to the main branch, which
allows us to review code better. With Vercel, we are able to deploy the branches and see if they
build correctly when hosted, which then allows us to double-check that our code runs properly

before merging into the main branch, using pull requests.

Production Deployment Bulldlogs Runtimelogs O InstantRollback

The d

Depl
nus-studybuddy-m7nt7gg9j-mzaidansani.vercel.app

o d1845d Merge pull reques

Active Branches «e stats 45

on () zaidansani/studybuddy that h

ind select friend to chat with (#38)
chell

Vercel branches

Pull Requests

We use pull requests to merge the branches. Vercel helps to test if merging causes deployment
issues, allowing us to verify that our main branch works as intended even after a merger.

friend requests page and select friend to chat with #38
BSMergedl) rxchell merged 10 commits into main fro @12 o

Q) Conversation (1

A vercel bor o
A

The latest updates on your projects. Learn more about

Name Status Preview Comments Updated (UTC)

nus-studybuddy Ready () ® Add feedback Jun 25, 2024 2:46pm

©

Example of pull request to merge branches

Testing

Unit Testing

Jest
We will write and run unit tests for components, functions, and utilities. We will be testing:

e Rendering: Ensure components render correctly with different props.
State Management: Test state changes and updates within components.
Functionality: Test various functionalities such as button clicks, form submissions, and
user interactions.

User Testing

We will gather feedback directly from users to evaluate the usability and functionality of our
product.
e Usability: Evaluate how easy the application is to use for its intended audience.
e Features: Gather suggestions and insights on what features users find useful or would
like to see improved.

Google Forms will be used to create surveys and gather structured feedback from users about
their experience with our web application.

Integration Testing

Integration testing verifies interactions between different components or systems to ensure
they work together as expected.

We will use Jest to test
e Component Integration: Test how different components interact and behave together.
e Deployment Testing: Ensure the application functions smoothly in its deployed
environment.

Regression Testing

We will use Github actions for test automation that can be used to automate regression tests.

We will also use Vercel's Git integration. The Preview Deployments allows testing of new
features and changes before merging to the main branch, with automatic production
deployment afterward. There is also Live feedback, with real-time comments on preview
environments.

Whenever new features or changes are added to the application, regression tests ensure that
existing features continue to work as expected without unintended side effects.

Thus there is continuous integration and development (Cl / CD) in the development
workflow. Whenever there is a pull request or push, the CI / CD pipeline runs the automated
tests to ensure our web application can be run and built, and that all functionalities continue
working as expected.

[studybuddy |

Bug Fixing

We were able to spot bugs from multiple sources:
1. Ourselves (while testing and programming)
2. Milestone feedback by other teams
3. User testing forms

Bugs Found and Solutions

User is not redirected to the e Ensure that the User object is defined and the
dashboard upon a successful sign username property exists

up

Login, Signup, and Timetable e Added the Alert Status components to show the
pages do not display error corresponding error messages

messages e Forlogin and signup pages, the error messages

are based on firebase authentication errors

Profile information of receiver are e Set the receiver or sender of the text bubble /
wrongly displayed as the current conversation display based on whether the
user in the text bubble and receiver or sender of the chat is the current user

conversation display

page 29

[studybuddy |

Development Plan

The development plan will be spilit into four parts:
Ideation (pre-milestone 1)

Prototype (pre-milestone 2)

Extension (pre-milestone 3)
Refinement (pre-splashdown)

N N

Ideation 20/05 - 03/06

Category From In-charge

13/05

Confirm general system design R

Planning 13/05 27/05 Confirm Ul design R

25/05 28/05 Confirm database design R
Authentication 27/05 02/06 Authentication R
Timetable 27/05 02/06 Timetable layout

Prototype 04/06 - 01/07
Category From In-charge
10/06 15/06 Chat function R
Social Network
15/06 20/06 Add friend R
03/06 10/06 Add events R
Timetable 03/06 10/06 Collab view for 2 users z
10/06 17/06 Collab view for >2 users yA
QoL functions 20/06 23/06 Light & dark mode R

page 30

[studybuddy |

Extensions 03/07 - 29/07

Category From In-charge

Social Network 01/07 28/07 Buddy matching yA R
01/07 04/07 Email notification
01/07 14/07 Slot statistics

QoL functions 04/07 06/07 Data export
06/07 14/07 Basic module planner

14/07 28/07 Mod recommenders

highlighted: The feature was originally planned for milestone 2, but was moved over due to complexity.

Refinement 29/07 - 28/08

Category From To In-charge

System testing 29/07 28/08 - yA R

page 31

[studybuddy |

Testing Plan

Jest Rendering: Ensure components render correctly with
different props.

State Management: Test state changes and updates within
components.

Functionality: Test various functionalities such as button
clicks, form submissions, and user interactions.

Integration LT Component Integration: Test how different components
testing interact and behave together.

System Integration: Verify interactions between frontend
components and backend APIs.

Deployment Testing: Ensure the application functions
smoothly in its deployed environment.

(LGRS B Jest and Regression testing is automated and done after each small
testing Github change. The software is tested again when there is a new
Actions push to a branch or a new merge with the main branch.

Vercel's Git Preview Deployments allow testing of new features and
integration changes before merging to the main branch, with automatic
production deployment afterward.

Google Forms Gather feedback on real users on the usability and features
of our product.

Unit testing of components

Landing page Page renders with the buttons “Login”, “Sign Up", and
“Compare Timetables”
e Snapshot testing captures the output of the Page to
ensure it renders as expected

Login page User inputs valid email and password
e Agreen “Sign in Successfull” alert appears
e Useris redirected to the home page

User inputs invalid email
e Ared “Please use a valid email address.” alert
appears
e User remains in the login page

page 32

Sign up page

AlertStatus

Loading page

Home page

User inputs wrong password
e Ared “Incorrect password.” alert appears
e User remains in the login page

User inputs invalid username
e Ared "User not found" alert appears
e User remains in the login page

User does not enter password
e Ared " Please enter a password.” alert appears
e User remains in the login page

User inputs incorrect email and / or password
e Ared " Invalid credential.” alert appears
e User remains in the login page

User inputs valid first name, last name, username, email and
password

e Agreen “Sign up Successfull” alert appears

e User s redirected to the home page

User inputs weak password
e Ared “Password should have at least 6 characters.”
alert appears
e User remains in the login page

User inputs invalid email
o Ared “Please use a valid email address."” alert
appears
e User remains in the login page

User inputs an email which already exists
e Ared " Account with email already exists.” alert
appears
e User remains in the login page

User inputs a username which already exists
e Ared " Username is already taken." alert appears
e User remains in the login page

e Ensuresthat AlertStatus renders correctly
based on its success prop. It checks for the
presence of the correct message and icon.

e Uses render to mount the component, screen to
query elements, and expect with matchers to assert
conditions.

User is waiting for the page to load
e The page renders the logo and the “Loading...” text

User is not logged in
e Useris redirected to the landing page

Navigation Bar

LightDarkMode

NonAuth Header

Documentation

Timetable Select

AddEventDialog

ScheduleView

TodayEvents

AddTimetableDialog

TimetableView

User is logged in
e Page renders the Dashboard component

When the user clicks on each item
e The user is redirected to the corresponding page

The user clicks on Timetable or Social item
e Shows the nested pages like View Timetable,
Compare Timetables

Web application changes from dark / light mode to light /
dark mode when this button is clicked

When the user is not logged in, the NonAuthHeader
component renders the logo and the login and sign-up
buttons correctly with the corresponding attributes present

Snapshot testing captures the output of the
Documentation component to ensure it renders as
expected

User wants to select a timetable and clicks the button
e Shows a dropdown of all the saved timetables

User clicks on the “Add Event” button
e Opens a dialog to add a new event

User inputs all fields
e Theeventis created

Some fields are empty
e "Please fill in this field" notification appears

Renders the calendar with the corresponding lessons and
events highlighted at the particular date and time

Renders all the events for the day, otherwise “You have no
events today!"

User clicks on the "Add Timetable" button
e Opens a dialog to add a new timetable

User enters a name and valid NUSmods url
e Agreen "Timetable added successfully” alert
appears

User does not enter name and / or description
e "Please fill in this field" notification appears

User does not enter a valid NUSmods url
e "Failed to add timetable" alert status appears

User wants to see all days of the week

TimetableDay

TimetableSlot

Timetable Comparison

Timetablelnput

TimetableOtherUserSelect

TimetableAccordion

StudyPlan

AddModuleSelector

UsernameSearch

UserDisplay

e Renders a column (Timetable day component) for
each day of the week

User wants to see the time for each day of the week
e Renders the text showing the day and the time slots

User wants to see when the events are
e Time slots are coloured if there is an event during
that particular duration

User wants to see what type of event
e Displays the course code, lesson type, time, and
location

User clicks on the “Add Comparison” button
e A new column appears for the user to add a new
timetable to compare

User clicks on the “Remove Comparison” button
e The timetable is removed

User clicks on the “Save as image” button
e The timetable is downloaded as a JPEG

User wants to add a new timetable using the NUSmods url
and clicks the “Change” button
e Anew timetable is displayed for comparison

User clicks the "Choose a friend” button
e Adrop down appears for the user to choose a friend

User clicks the “Choose a timetable” button
e A drop down appears for the user to choose a
timetable to compare

User clicks on “Class List"
e Adrop down appears for the user to see the list of
courses taken by the user's friend

User clicks on “Save your changes” button
e The updated timetable is saved to the user's
information

User clicks on the “Add" icon button
e The added module will be seen in the study plan

User inputs a username and clicks the “Search” button
e Alist of users with the username would appear in a
dropdown

User clicks on the other user’s profile
e Redirects the user to the other user’s profile page

AddFriendButton

AllChats

CreateChat

ConversationDisplay

Chatlnput

Documentation

Profile

User is not friends with the other user
e Thereis a "Add Friend” button

User clicks on the “"Add Friend" button
e The button changes to “Friend request sent"

User has a friend request
e Thereis a "Accept friend request" button

User clicks on the “Accept friend request” button
e Already added!

User inputs a username in the search bar to filter the chats
e Alist of chats with the corresponding name appears
in the chat list

User clicks the pencil icon
e A new modal pops out for the user to create a new
chat with a user

User clicks on a particular chat
e The corresponding chat appears on the right pane
to display the conversation

User selects a friend to chat with
e A dropdown of the user’s friends appears
e The “Start chatting” button appears

User already has an existing chat with the friend and clicks
on the “Start chatting” button
e Ared “Chat already exists” alert appears

User has no existing chat with the friend and clicks on the
“Start chatting” button
e A green “Chat created successfully!” alert appears
e Useris redirected to the messages page

User clicks on the “View profile” button
e User is redirected to the other user’s profile page

User types a message in the text area and clicks the send
icon
e The message is sent and a text bubble with the
message appears in the conversation

User clicks on the search bar to choose a topic
e Adrop down of a list of topics appears

User selects the topic
e The information regarding the topic is displayed in
the documentation page

User clicks on the pencil icon

e User can upload a picture to be the profile picture

User clicks on the “Save profile” button and it is successful
e The updated user details are saved
e The saved user details are displayed the next time
the user goes to the settings page
e A green "Profile updated successfully!” alert
appears

User clicks on the "Save profile” button and it fails
e Ared "Profile update failed!" alert appears

[studybuddy |

Unit testing of functions

Date

utils/Timetable convertLessonType Takes in a LessonTypeSmall object and convertLessonType(lesso LEC converted to Lecture, 28/06/2024
converts it to the corresponding n: LessonTypeSmall) TUT converted to Tutorial
LessonType eg Lecture, Tutorial etc

utils/Timetable convertLessonTypeS Takes in a LessonType object and converts convertLessonTypeSmall(Lecture converted to LEC, 28/06/2024

mall it to the corresponding LessonTypeSmall lesson: LessonType) Tutorial converted to TUT

object eg LEC, TUT etc

utils/Timetable convertToSemester Takes in a NUSmodsSemester and convertToSemester(seml sem-1converted to 1, 28/06/2024
converts it to a corresponding number nput: sem-2 converted to 2 etc

NUSmodsSemester)

utils/Timetable convertToCourseSlot Takes in a CourseParameterisedString and convertToCourseSlot(str: | A courseslot is created 28/06/2024
Semester, converting it to a CourseSlot CourseParameterisedStri with lessonType, classNo,
with its parameters lessonType, classNo, ng, sem: Semester) and semester

and semester

utils/Timetable convertToCourseTim Takes in a CourseParameterisedString and ' convertToCourseTimetabl A CourseTimetable is 28/06/2024
etable Semester, converting to a CourseTimetable e(str: created with Semester,
type with semester, course, and lessons CourseParameterisedStri CourseCode, and
ng, sem: Semester) CourseSlot[]
utils/Timetable convertUserCPS Takes in a user's Course Parameterised get timetable from CPS A UserTimetable is 23/07/2024
String and semester, converting to created with the fields
UserTimetable with the fields semester and semester and timetable
timetable

utils/Timetable getStringfromNUSmo Ensures that the function correctly extracts should return the correct | String format of data is 23/07/2024
ds the query string from the URL CPS returned from a url

page 38

utils/Timetable

utils/Timetable

utils/Timetable

utils/Timetable

utils/Timetable

utils/Timetable

utils/parsers

utils/parsers

getSemesterfromNU
Smods

getClassesFromTimet
able

getEventsForUser

getClassesForUser

convertUserCPS

convertSlotToClass

convertToCourse

convertToCourse

Returns a NUSModsSemester from the
URL

Converts CourseTimetable and
CourseClasses objects to an array of
CourseClass objects

Converts a UserCPS and Semester into an
array of events

Converts a UserCPS and Semester into an
array of CourseClass

Takes in a user's Course Parameterised
String and semester, converting to
UserTimetable with the fields semester and
timetable

Takes in a CourseSlot and convertsit to a
CourseClass with parameters like
lessonType, classNo, and semester

Transforms a JSON object (jsonData) into a
Course object

Converts a JSON object representing
course data into a Course object.

should return the correct
semester

get class from timetable

get events for user

get events for user

convertUserCPS(cps:
UserCPS, sem: Semester)

convertSlotToClass(cs:
CourseSlot)

convert JSON response
to course

Convert JSON of a course
into events

A number representing
the corresponding
semester

An array of CourseClass
objects

An array of events sorted
by date

An array of CourseClass
objects

A UserTimetable is
created with the fields
semester and timetable

A CourseClass is created
with parameters
lessonType, classNo, and
semester

Returns a Course object
containing the code,
name, academicYear, and
the array of classes

Returns a Course object
containing the code,
name, academicYear, and
the array of classes

23/07/2024

23/07/2024

23/07/2024

23/07/2024

28/06/2024

28/06/2024

23/07/2024

23/07/2024

utils/events

utils/events

utils/events

services/ChatService

services/ChatService

services/ChatService

services/ChatService

services/ChatService

services/ChatService

convertCourseClassT
oEvents

convertCourseClassT
oEvents

convertCourseClassT
oEvents

retrieveChats

retrieveAllReceivers

createNewChat

getChatsLength

chatExists

createNewChat

For classes without weeks, assert
toHavelLength(0) to ensure the output
array is empty

Generates events for a CourseClass with
specified weeks

To transform course data into a series of
events

Takes in a user email and returns all the
chats that the user has

Takes in a user email and returns the other
users whom the user has chats with

Takes in a sender and receiver to create a
new Chat with parameters chatld, sender,
receiver, and messages

Takes in a user email and counts the
number of chats the user has

Takes in a sender and receiver to check if
there is a chat between the two users

Takes in a sender and receiver to create a
new Chat with parameters chatld, sender,
receiver, and messages

should work on classes
without weeks

should work on classes
with weeks

Convert JSON of a course
into events

retrieveChats(userEmail:
string)

retrieveAllReceivers(userk
mail: string)

ChatService

getChatsLength(userEmai
I: string)

chatExists(sender: string,
receiver: string)

createNewChat(sender:
string, receiver: string)

An empty array, as no
events should be
generated without week
information.

An array of ClassEvent
objects for the specified
weeks

Returns the array of
ClassEvent objects

Returns an array of chats
the user has, in the form
of a Chat object

Returns an array of user
emails

A new Chat is created
with parameters chatld,
sender, receiver, and
messages

Returns the number of
chats the user has

Returns true or false
based on whether there is
a matching chatld

A new Chat is created
with parameters chatld,
sender, receiver, and
messages

23/07/2024

23/07/2024

23/07/2024

25/07/2024

25/07/2024

09/07/2024

25/07/2024

25/07/2024

25/07/2024

services/ChatService

services/ChatService

updateChatRecords Takes in a user email and chatld to update

sendMessage

the array of chats in the user's document

Takes in a chatld, receiver, sender, and
message to be updated in the messages
field of the chat

services/ChatService markMessageAsRead Takes in a chatld and receiver to updates

services/ChatService countUnreadMessag

services/ChatService getTotalUnreadMess

services/ChatService

services/UserService

services/UserService

services/UserService

services/UserService

es

ages

retrieveChat

createUser

addNewUser

retrieveUser

updateTimetable

the messages in the chat as read by the
receiver

Takes in an array of Message objects and
the receiver's email to count the number of
messages which are unread

Takes in a user email to find the total
number of unread messages from all chats

Takes in a chatld and returns it as a Chat
object

Creates a user object given an email, first
name, lastName, userName

Creates a user object given an email, first
name, lastName, userName

Get the user's information using the email

Takes in the user's email, NUS mods url,
and timetable name to update the array of
timetables in the user's document

updateChatRecords(user The chatld is added to the 25/07/2024

Email: string, chatld:
string)

sendMessage(chatld:
string, receiver: string,
sender: string, message:
string)

markMessageAsRead(ch
atld: string, receiver:
string)

countUnreadMessages(m
essages:
MessagePropsl], receiver:
string)

getTotalUnreadMessages
(userEmail: string)

retrieveChat(chatld:
string)

createUser Function

addNewUser(user: User)

retrieveUser(email: string)

updateTimetable(email:
string, url: string, name:
string)

chat field under the User
object

The message is added to
an array of existing
messages in the chat

The unread field of the
message would be false

Returns the number of
unread messages of a
chat

Returns the number of
unread messages from all
the user's chats

Returns all fields of the
Chat object

New User created with
the details as given.

A new user document is
created in firestore, under
the "users" collection

Returns a User object

The timetable is added to
an array of existing
timetables

25/07/2024

25/07/2024

25/07/2024

25/07/2024

25/07/2024

09/07/2024

25/07/2024

25/07/2024
25/07/2024

services/UserService

services/UserService

services/UserService

services/UserService

services/UserService

services/UserService

services/UserService

services/UserService

services/UserService

services/UserService

services/UserService

updateEvents

retrieveUserTimetable
s

retrieveUserTimetable
S

retrieveUserFriends

retrieveUserFriends

retrieveFriendRequest
s

retrieveFriendRequest
sCount

retrieveUserEvents

userHasTimetables

updateUserData

retrieveUserFromUse
rname

Takes in the user's email and an Event

object to update the array of events in the

user's document

Takes in a user's email and returns the
timetable field

Takes in a user's username and returns the

timetable field

Takes in a user's email and returns the
user's friends

Takes in a user's email and returns the
user's friends

Takes in a user's email and returns the
users with pending friend requests

Takes in a user's email and returns the
number of pending friend requests

Takes in a user's email and returns the
user's events

Takes in a user's email and checks if the
user has timetables

Takes in a User object and updates the
fields of the user

Takes in a username and retrives all the
information of the user as a User object

updateEvents(email:
string, event: Event)

retrieveUserTimetables(e
mail: string)

retrieveUserTimetablesFr
omUsername(username:
string)

retrieveUserFriends(email:
string)

retrieveUserFriends(email:
string)

retrieveFriendRequests(e
mail: string)

retrieveFriendRequestsCo
unt(email:string)

retrieveUserEvents(email:
string)

userHasTimetables(email:
string)

updateUserData(user:
User)

retrieveUserFromUserna
me(user: string)

The event is added to an
array of existing events

Returns an array of
UserDataTimetable
objects

Returns an array of
UserDataTimetable
objects

Returns an array of the
usernames of the user's
friends

Returns an array of User
objects

Returns an array of User
objects with pending
friend requests

Returns the number of
friend requests

Returns an array of Event
objects

Returns true or false
based on whether the
user has a timetable

Updates the fields in the
user's document

Returns a User object

25/07/2024

25/07/2024

25/07/2024

25/07/2024

25/07/2024

25/07/2024

25/07/2024

25/07/2024

25/07/2024

25/07/2024

25/07/2024

services/UserService

services/UserService

services/UserService

services/UserService

services/UserService

services/CourseServi
ce

services/CourseServi
ce

checkEmailExists

checkUsernamekExist

S

checkRelationship

sendFriendRequest

acceptFriendRequest

getCourse

convertToCourse

Checks if there is an existing email that is
the same

Checks if there is an existing email that is
the same

Checks the type of relationship between
the currentUser and otherUser

Sends a friend request from the current
user to the other user if the current
relationship is "None"; updates the status

for both as "Friend" if current relationship is

"Pending"

Updates the relationship status between
both users as friends

Returns a Course given a Course Code

Takes in the data from NUSmods and
converts it into a course as defined in the
type system

checkEmailExists(email:
string)

checkUsernameExists(us
ername: string)

checkRelationship(current
User: string, otherUser:
string)

sendFriendRequest(curre
ntUser: string, otherUser:
string)

acceptFriendRequest(curr
entUser: string,
otherUser: string)

Get a course

convertToCourse(testCou
rse)

JSON data copied from
modulelnfo

Returns true if the same
email already exists in
firestore

Returns true if the same
username already exists in
firestore

Returns the status of the
relationship: None, Friend,
Requested or Pending

updates the "friends"
fields in each user's
document

updates the "friends"
fields in each user's
document to be "Friend"

A Course object

Course created with the
information

25/07/2024

25/07/2024

25/07/2024

25/07/2024

25/07/2024

23/07/2024

23/07/2024

[studybuddy |

Integration testing

Navigation Bar Navigation Bar componentrendersthe LightDarkMode
component

Shows the number of friend requests under the Friend Requests item
using the function retrieveFriendRequestsCount

Shows the total number of unread messages under the Messages item
using the function getTotalUnreadMessages

Uses the CloseSidebar function to be closed when being toggled in a
smaller page width

Dashboard Dashboard component renders the Navigation Bar, Header, and
Schedule components

Header To ensure that the Heade r component renders correctly, clicking the
menu button should trigger the toggleSidebar function

Schedule Schedule component renders the TimetableSelect,
AddEventDialog, ScheduleView and TodayEvents components

View Timetable Page renders the Navigation Bar, Header, and TimetableHome
page components

Timetable User ~ Page renders the AddTimetableDialog, TimetableSelect,
View TimetableBasicInfo, TimetableView, and
TimetableUserClasses components

Compare Page renders the Navigation Bar,Header, NonAuthHeader,

Timetable page TimetableComparison, and TimetableComparisonNoAuth
components

Timetable Rendersthe TimetableInput, TimetableView,

Comparison Cell TimetableAccordion, TimetableSelect, and
TimetableOtherUserSelect components

Usesthe getClassesForUserFromTimetableDataand
getCoursesForUserFromTimetableData functions to display the
user's timetable

TimetableOther Uses the

UserSelect retrieveUserTimetablesFromUsername, getCoursesForUser
FromTimetableDataand
getClassesForUserFromTimetableData functions to show the
selected timetable of the user’s friend

page 44

Study Plan page

Study Plan

AddModuleSele
ctor

User Search
page

Search

User page

Messages page

AllChats

CreateChat

Conversation

Documentation
page

Page renders the Navigation Bar,Header,and StudyPlan
components

Uses the

convertStudyPlanSemesterToString, createDefaultStudyP
lan, getUserStudyPlan, and updateUserStudyPlan

functions to add and update the user’s study plan

Uses the getListOfModules and getCourse functionstoadd
courses to the user’s study plan

Page renders the Navigation Bar,Header,and Search
components

Renders the UsernameSearch and UserDisplay components

Uses the getAllUsers function to search for all users for the user to
send a friend request

Page renders the Navigation Bar,Header,and AddFriendButton
components

Uses the checkRelationship and retrieveUserFromUsername
functions to show the user's status with the other user, as well as the
other user’s profile information

Page renders the Navigation Bar, Al1Chats,and Conversation
components

Usesthe retrieveAllReceivers function to search for the list of
existing chats the user has

Usesthe getTotalUnreadMessages function to show the number of
unread messages in the chatList

Uses the createNewChat function to create a new chat

Usesthe retrieveUserFriendsUsers function for the user to
select a friend to chat with

Renders the TextBubble and ChattingUser components to show
the text messages and who the user is chatting with

Uses the markMessageAsRead function to update that the message
has been read when the user opens the chat

Uses the getAllUsersTextBubble componentand sendMessage
for the user to type a message and send it

Page renders the Navigation Bar, Al1Chats,and Documentation
components

Documentation Renders the DocumentationSelect and MarkdownlLoader
components for the user to choose the topic

Settings page Page renders the Navigation Bar,AllChats,and Profile

components

Profile Rendersthe ProfilePicture componentand retrieveUser,and
updateUserData functions to display and update the user’s
information

Regression testing

Automated e Before a successful push to a branch or merge with the main

testing using branch, Github actions will run the Jest tests

Jest and Github e The Jest test results (whether the tests pass or fail) are printed in

actions a Common Test Report Format so that the summary results can

be shown in Github actions
Vercel's Git e Whenever there is a push to a branch or merge with the main
Integration branch, Vercel will automatically try the run and build the web

application

e Preview Deployments allows testing of new features and changes
before merging to the main branch, with automatic production
deployment afterward.

Example of a job that will automatically be run on Github Actions whenever there are new
changes to the code:

€ Workflow file for Jest Report
@ chat service test #33 Re-run all jobs

(@ Summary

Jobs

I @ testing

Run details

& Usage

&3 Workflow file

Example of failed tests:

Some checks were not successful

1 failing and 2 successful checks

X Workflow file for Jest Report [testing (push) Failing after 1m
v u Vercel - Deployment has completed

v u Vercel Preview Comments - 4 No unresolved feedback

Run tests and generate JSON report
startTime: '1600',
endTime: '1800°',
location: 'COM1-0210'

}

... 70 more items

at Object.log (src/tests/CourseService.test.tsx:5:17)

Test Suites: 1 failed, 11 passed, 12 total

Tests: 18 passed, 18 total

Snapshots: 2 passed, 2 total

Time: 4.731 s

Ran all test suites.

Test results written to: reports/jest-report.json

jest-ctrf-json-reporter: successfully written ctrf json to ctrf/ctrf-report.json

Erro Process completed with exit code 1.

Details

Details

Details

[studybuddy |

Summary of automated test results:

 Workflow file for Jest Report
@ chat service test #33

I (A Summary

Jobs

@ testing

Run details
& Usage
&9 Workflow file

I () Summary

Jobs

@ testing

Run details

9 Usage
&Y Workflow file

Triggered via push 1 hour ago Status Total duration Billable time Artifacts
rxchell pushed -o-5a8ebfo jest Success 1m12s 2m -
main.yaml
on: push

@ testing 1m3s

testing summary

Test Summary
Tests » Passed Failed X Skipped @ Pending I Other ? Flaky a Duration &
13 13) 0 0 0 0 00:46:54
A ctrf plugin

Detailed Test Results

Name
get string from NUSmods URL should return the correct CPS
get string from NUSmods URL should return the correct semester
get timetable from CPS should return the correct answer
get class from timetable should return the correct answer
get events for user should return without error
get events for user should return without error
convert JSON response to course should convert as expected
Convert JSON of a course into events should work as intended
ChatService creates a new chat and matches snapshot
Convert a course class into an array of events should work on classes with weeks
Convert a course class into an array of events should work on classes without weeks
renders homepage unchanged

Get a course should work as intended

A ctrf plugin

Failed Test Summary

No failed tests

Flaky Test Summary

No flaky tests detected.

page 48

Status
passed
passed
passed
passed
passed
passed
passed
passed
passed
passed
passed
passed

passed

Re-run all jobs

ms Flaky “a

25

134

[studybuddy |

Example of a successful automated deployment:

All checks have passed

2 successful checks
v u Vercel - Deployment has completed Details
v u Vercel Preview Comments - 4 No unresolved feedback Details

Deployment Logs Functions Source Open Graph

Status Environment Duration
Ready Preview 2m 12s (2h ago)

study ,
buddy Domains
A 4

&8 nus-studybuddy-git-jest-mzai i.vercel.app
O nus-: ly-6re7uy573-1 i li.vercel.app
The coaborative NUS moduie panner.
L~ 1 -] Source
L jest

-0- ¢73e55d firebase setup and signin (to review)

Deployment Details

> Build Logs
> Deployment Summary

> Assigning Custom Domains

Example of a failed automated deployment:

Some checks were not successful

1 failing and 1 successful checks

X u Vercel - Deployment has failed

v u Vercel Preview Comments - (4 No unresolved feedback
Deployment Details

v Build Logs

All Logs (37) \ Warnings (0)

C Expand 27 Lines

13:46:02.497 Failed to compile.
13:46:02.497
13:46:02.498 ./src/app/layout.tsx:2:1

@ Share :

Expand All

2m2s °

AL D73 @1 (13 8s @

Skipped @
X
Details
Details
Collapse All
m30s @
Q Find in logs ®F [

13:46:02.498 Syntax error: "next/font" requires SWC although Babel is being used due to a custom babel config being present.

13:46:02.498 Read more: https://nextjs.org/docs/messages/babel-font-loader-conflict
13:46:02.498

13:46:02.504

13:46:02.505 > Build failed because of webpack errors

13:46:02.637 Error: Command "npm run build" exited with 1

13:46:05.317

page 49

User testing

We created and sent a Google Forms survey to our friends, for them to try out our web
application and give feedback.

The survey results are summarised in the “User Testing” tab of & studyBuddy: Testing .

Methodology

We wanted a mixture of quantitative and qualitative feedback - qualitative feedback would be
easy to measure, and quantitative feedback would allow us to get more depth with regards to
understanding the issues/qualms our users faced.

Questions

User Interface

The Ul was intuitive to use.

It was easy to find the function | wanted to use.

The Ul was pleasant to the eyes. (design, layout, colour scheme)
The Ul was not cluttered.

| am satisfied with the interface.

How quickly were you able to find what you were looking for?
How easy was it to fill out information and forms on the website?
How clearly were error messages communicated to you?

What other features would you like to see for the UI?

Any feedback on the UI?

Functionality

Do the functions work as intended?

If you answered 1 or 2 to the previous question, which functions do not work as
intended?

Do you understand how to use the functions in the website?

If you answered 1or 2 to the previous question, which functions do you not understand?
Which feature did you feel satisfied with? (Multiple select)

Do you have any recommendations for any of the features?

Timetables

Chat

How easy is it to add a timetable?

How easy is it to compare timetables?

How clear and useful are the timetable visualisations?

How well does the compare timetable feature meet your needs?
Features to add / Bugs found

How easy was it to use the chat feature?

https://docs.google.com/spreadsheets/d/14X8v7BSrFVuYmNI5Z9-DIClOUkUMqaSW43wIS-wyvB8/edit?gid=2014142305#gid=2014142305
https://forms.gle/MRgvzxgMbbPVNYzCA

[studybuddy |

e How intuitive is the chat interface?
e Features to add /Bugs found

Social Network
e How effective is the search function for finding friends?
e How easy is it to add friends?
e How clear are the notifications for friend requests and confirmations?
e Features to add / Bugs found

Documentation

e How clear and understandable is the documentation?
How easy is it to navigate through the documentation?
How effective is the search function in finding the information you need?
How comprehensive is the documentation in covering all necessary topics?
Features to add / Bugs found

General Feedback
e If you had to describe your experience with the website, what would you say? (3 lines
maximum)
e Do you have any feedback you would like to give that did not fit in the sections abov?
How much would you rate your overall experience?
If the website was polished (and your feedback was taken into consideration and
implemented), would you use it?

Results

The comprehensive results can be seen in the user testing link, and the following is a curated
set of results found most important to us.

How much would you rate your overall experience?

4
20.0%

80.0%

page 51

[studybuddy |

If the website was polished (and your feedback was taken into
consideration and implemented), would you use it?

40.0%

60.0%

page 52

Beta testing

In the context of users planning their modules with NUSMods and using the StudyBuddy
website, beta testing involves users from the target audience who will use these tools in their
actual study planning environment. This means these users will interact with both NUSMods
and StudyBuddy in the way they would normally plan their modules, providing real-world
feedback on the usability, functionality, and overall effectiveness of the tools. The goal of this
beta testing phase is to identify any issues, gather insights, and make improvements based on
how users engage with the tools in their everyday study planning activities.

General Problems Encountered

Time Constraints

As both of us have outside commitments where we are not able to access our laptop/device, as
well as collaborate for meetings, we were unable to have meetings as we would have preferred.
This also meant that we did most of our work at night.

We circumvented this issue by practicing good software engineering practices - the
branching/pull request strategy allowed us to work concurrently on different features.

We also practiced constant communication and checked up on each other, allowing each other
to make up for each others’ deficiencies.

Lack of Experience

While Rachel has had software engineering practice, Zaidan has not touched full-stack
development formally and had to learn a lot of terms specific to the technology he was using,
React.

Through the resources provided, constant research, and asking each other, the team was able
to learn and figure out their way through problems, such as:
1. Unexpected Firestore quota bursting due to code bug repeating the query constantly

Feature Complexity

The features ended up being more complex to implement than we expected. Thus, in order to
have a better and more stable website, we decided to implement less depth into the
functionalities and instead focus on having a more complete and robust codebase for the
existing features as well as an intuitive UI.

Limitations

Username and email lock-in

Instead of using the UID provided by Firestore, the current linking between the users in Firestore
and in Firebase Authentication is by the email, meaning that we have to disable email. This is
due to an early mistake where we did not account for the possible change in email, as well as
display name. To minimise issues, we did not want to implement a change as it would possibly
break all functionality for not much gain.

Username limitation

As we are using Firestore, and the username is used as a key for the friends, it cannot contain
dots, as we are using dot notation in our code to push the usernames in. At this point, there
seems to be no way to escape the dots, thus we have decided to disallow dots in the username.

[studybuddy |

Appendix

Features (as from Milestone 1)

Timetable Comparison

Feature Description
Core features
Ability to create Users can manually create their own timetables by selecting courses
timetables and scheduling time slots.

Add other events like Users can add co-curricular activities (CCA) and other non-academic
CCA events to their timetable.

Ability toimport from | Users can import their timetable data from NUSmods for a seamless
NUSmods transition.

Ability to compare with | Users can compare their timetable with another user's timetable to find
someone else common free slots.

Extension features

Compare with more Users can compare timetables with multiple users simultaneously to find
people common free slots for group activities.

Provide users with summary statistics of their timetable, such as total

Summary statistics hours per week, busiest days, and free time slots.
e Show statistics on how many users have selected particular time slots,
Statistics on slots - o b
helping users understand the demand for specific times.
Suggest courses based on users' interests, schedule gaps, and
Course recommender

popularity among peers.

Module planner Provide a module planning tool to help users plan their modules across

different semesters.
Live sync to Google Allow users to sync their timetable with Google Calendar for real-time
Calendar updates and reminders.

Social Network

Feature Description

Core features

page 56

[studybuddy |

User profiles

Users can create and customize their profiles, including adding a profile
picture, biography, and academic details.

User authentication

Secure login and authentication process to ensure user data privacy and
security.

Store mods for
matching algorithms

Store information about the modules users are taking to facilitate
matching with like-minded students.

Ability to add others
into the social network

Users can add friends or connect with other students within the
platform.

Chat

Simple matching
algorithm

There is a messaging function for users to communicate with each other
directly through the platform.

Extension features

Implement a basic algorithm to match users with similar academic
interests, schedules, or module choices for study groups or project
teams.

Better matching
algorithm

Build on the above matching algorithm to make the friend matching a
better experience.

Quality of Life (QoL) Improvements

Feature

Extension features

Light or dark mode

Description

Users can switch between light and dark mode for a more comfortable
user experience.

Email notifications

Send email notifications to users for important updates, deadlines, and
reminders.

Data export

Users can export their timetable and other data in various formats for
backup or further use.

iCal

Enable users to export their timetable to iCal format for integration with
other calendar applications.

Sharing image

There is an option to generate an image of the timetable that can be
easily shared on social media or with friends.

page 57

[studybuddy |

Links

Google Forms for User Testing:

https://forms.qle/t2iQs1d870ncXSKw9

Testing: & studyBuddy: Testing
https://docs.google.com/spreadsheets/d/14X8v7BSrFVuYmNI5Z9-DICIOUKUMgaSW43wIS-wy

vB8/edit?usp=sharing

Project Log: £& studybuddy: Project Log
https: . le.com/spr: heets/d/1CZ0O1xjuq? LBalpi B8sFt7 imMORORQNSBE
w/edit?usp=sharing

Poster: B 6448.jpg
https://drive.google.com/file/d/14TcOtLrbGxMJvHUICvBIyU9DxXaywSX/view

Video: wi 6448.mp4
https://drive.goodle.com/file/d/14UrZimWLVUEQTrAB7pmIGzyZdEOWcnY 8/view

page 58

https://docs.google.com/spreadsheets/d/14X8v7BSrFVuYmNI5Z9-DIClOUkUMqaSW43wIS-wyvB8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1CZO1xjuq7CSyLBqIpibbCB8sFt7CoUim0RORQhSBF9w/edit?usp=sharing
https://drive.google.com/file/d/14TcOtLrbGxMJvHUIjCv6IyU9DxXayw5X/view
https://drive.google.com/file/d/14Ur7jmWLVuE9TrAB7pmlGzyZdEOWcnY8/view
https://forms.gle/t2iQs1d87oncXSKw9
https://docs.google.com/spreadsheets/d/14X8v7BSrFVuYmNI5Z9-DIClOUkUMqaSW43wIS-wyvB8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/14X8v7BSrFVuYmNI5Z9-DIClOUkUMqaSW43wIS-wyvB8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1CZO1xjuq7CSyLBqIpibbCB8sFt7CoUim0RORQhSBF9w/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1CZO1xjuq7CSyLBqIpibbCB8sFt7CoUim0RORQhSBF9w/edit?usp=sharing
https://drive.google.com/file/d/14TcOtLrbGxMJvHUIjCv6IyU9DxXayw5X/view
https://drive.google.com/file/d/14Ur7jmWLVuE9TrAB7pmlGzyZdEOWcnY8/view

dddddddddddd

pppppp

	NUS Orbital 2024
	Milestone 3
	Contents
	Project Summary
	Proposed Level of Achievement
	Motivation
	Aim
	Scope
	User Stories

	Features
	Timetable
	Timetable addition
	Philosophy

	Timetable comparison
	Philosophy

	Adding other non-timetable events
	Philosophy

	Booking meetings
	Philosophy

	Timetable summary statistics
	Philosophy

	Slot statistics
	Philosophy

	Course recommender
	Philosophy

	Module planner
	Philosophy

	Live sync to Google Calendar

	Social Network
	User authentication
	Philosophy

	User profiles
	Philosophy

	
	Addition of friends
	Philosophy

	Chat
	Philosophy
	Alternative

	Mod storage
	Philosophy
	Alternative Plan (Original)

	Matching algorithms
	Philosophy

	QoL Extensions
	Light and Dark Mode
	Philosophy

	Email notifications
	Data export
	Philosophy

	
	Timetable comparison for non-authenticated users
	Philosophy

	System Design
	Tech Stack
	Diagrams
	Class Diagrams
	Activity Diagram
	Use-Case Diagram

	Wireframes
	Landing Page
	Sign in/sign up
	
	Timetable Views
	
	Social Network
	
	

	
	Software Engineering Practices
	Component-Based Architecture
	N-Tier Architecture
	
	Version Control
	Branching
	Pull Requests

	Testing
	Unit Testing
	User Testing
	Integration Testing
	Regression Testing

	Bug Fixing
	Bugs Found and Solutions

	Development Plan
	Testing Plan
	Unit testing of components
	
	Unit testing of functions
	Integration testing
	Regression testing
	User testing
	Methodology
	Questions
	Results

	Beta testing

	General Problems Encountered
	Time Constraints
	Lack of Experience
	Feature Complexity

	
	Limitations
	Username and email lock-in
	Username limitation

	
	Appendix
	Features (as from Milestone 1)
	Timetable Comparison
	Social Network
	Quality of Life (QoL) Improvements

	Links

