
[README]

https://nusstudybuddy.vercel.app/

NUS Orbital 2024
Milestone 3

Accidental Study Buddies

Zaidan Sani
Rachel Tai

https://nusstudybuddy.vercel.app/

[studybuddy]

Contents

Project Summary​ 4

Proposed Level of Achievement​ 4
Motivation​ 4
Aim​ 4
Scope​ 5
User Stories​ 5

Features​ 6
Timetable​ 6

Timetable addition​ 6
Timetable comparison​ 7
Adding other non-timetable events​ 7
Booking meetings​ 8
Timetable summary statistics​ 9
Slot statistics​ 9
Course recommender​ 10
Module planner​ 10
Live sync to Google Calendar​ 10

Social Network​ 11
User authentication​ 11
User profiles​ 11
Addition of friends​ 12
Chat​ 12

Alternative​ 12
Mod storage​ 13

Alternative Plan (Original)​ 13
Matching algorithms​ 13

QoL Extensions​ 14
Light and Dark Mode​ 14
Email notifications​ 14
Data export​ 14
Timetable comparison for non-authenticated users​ 16

System Design​ 17
Tech Stack​ 17
Diagrams​ 18

Class Diagrams​ 18
Activity Diagram​ 19
Use-Case Diagram​ 19

Wireframes​ 20
Landing Page​ 20

page 2

[studybuddy]

Sign in/sign up​ 20
Timetable Views​ 21
Social Network​ 23

Software Engineering Practices​ 25
Component-Based Architecture​ 25
N-Tier Architecture​ 25
Version Control​ 26

Branching​ 26
Pull Requests​ 27

Testing​ 27
Unit Testing​ 27
User Testing​ 28
Integration Testing​ 28
Regression Testing​ 28

Bug Fixing​ 29
Bugs Found and Solutions​ 29

Development Plan​ 30
Testing Plan​ 32

Unit testing of components​ 32
Unit testing of functions​ 38
Integration testing​ 44
Regression testing​ 46
User testing​ 50

Methodology​ 50
Questions​ 50
Results​ 51

Beta testing​ 53
General Problems Encountered​ 54

Time Constraints​ 54
Lack of Experience​ 54
Feature Complexity​ 54

Limitations​ 55
Username and email lock-in​ 55
Username limitation​ 55

Appendix​ 56
Features (as from Milestone 1)​ 56

Timetable Comparison​ 56
Social Network​ 56
Quality of Life (QoL) Improvements​ 57

Links​ 58

page 3

[studybuddy]

Project Summary

Proposed Level of Achievement
Apollo 11

Motivation
A common challenge that everyone faces in NUS is module planning. The large amount of
concerns when it comes to this makes it a more complex issue than expected, due to how much
the concerns can vary, and how deceptively difficult it can be to fulfil all the wants that a student
needs.

We have seen a lot of attempts to solve some of the problems. A lot of them aim to solve the
module planning issue, such as https://nusplanner.com/ which aims to help students craft their
academic plan, and the ever-prominent https://nusmods.com which not only lets students see
their course information, but also plan out a timetable.

However, a commonality between students is that they would like to take subjects with their
friends, or at least find people that they can befriend within their tutorial slots, so that they have
some form of support, be it academically or morally, during these sessions. Within our anecdotal
experiences, we find that this is a very common problem, and we have had trouble coordinating
our timetables with our friends, which can be a slight demotivator for certain students with
different comfort zone tolerances.

In addition, when it comes to group work, there is a high chance paired students come from
different courses, and may have extremely varied timetables, meaning that there is a difficulty to
synchronise timings for meetings.

We believe that collaborative learning is extremely helpful in navigating the complexity of the
modules here and believe that solving this issue will be a boon to the students that do utilise the
proposed service.

Aim
We first hope to facilitate this coordination by allowing an easy platform for students to share
their timetables, and communicate with their friends in order to plan better. This would come in
the form of visualisations of overlapping timetables slots, the ability to account for other things
such as CCAs, or outside commitments. We also hope to solve some unseen problems, such as
distributing the demand away from popular timeslots, by allowing students to see predicted
demand and for them to plan for it.

page 4

https://nusplanner.com/
https://nusmods.com

[studybuddy]

Scope

Summary StudyBuddy is a module planning platform for students to compare their
timetables and find friends to take their courses with.

StudyBuddy is a platform designed to tackle the challenges faced by students at NUS in
collaborating module planning with friends. It enhances coordination and promotes collaborative
module planning among peers.

StudyBuddy will offer comprehensive timetable comparison features, allowing students to
create and manage their timetables, including adding other events. In addition to timetable
comparison, StudyBuddy will incorporate social networking features. Students will have user
profiles and secure authentication, storing module information for matching algorithms. They
can add friends and engage in chats, with a simple matching algorithm extension to help find
like-minded peers.

To further enhance the user experience, StudyBuddy will include several quality of life
improvements. These will offer a choice between light and dark modes, email notifications, data
export options, iCal integration, and the ability to share timetable images.

StudyBuddy facilitates better timetable coordination and communication among students,
promoting collaborative learning and addressing the complexities of module planning. By
providing visualizations of overlapping slots, incorporating non-academic commitments, and
offering predictive insights to distribute demand away from popular timeslots, StudyBuddy
seeks to create a supportive and efficient environment for academic planning.

User Stories
1.​ I want to plan my timetable with my friends.
2.​ I want to take the same classes with people I am comfortable with.
3.​ I want to compare my timetable with my friends' timetables easily.
4.​ I want to see the demand for each time slot, so I can adjust my schedule if needed.
5.​ I want to add my non-academic commitments to my timetable.
6.​ I want to find like-minded students who are taking the same modules or tutorial slots as

me.
7.​ I want to communicate comfortably with other students, both online and offline.
8.​ I want to coordinate meetings and discussions by finding a common free time slot.
9.​ I want to have a dashboard to view all my lectures, tutorials, meetings, and other

academically related activities in one place.

page 5

[studybuddy]

Features
The following section shows the features we have, and the general philosophy behind it.
Our original planned feature set can be seen in the appendix.

Note The terminology on courses and modules are used interchangeably in the documentation here.
The programme/degree/major is referred to as aforementioned.

Timetable

Timetable addition

Type Core

Completion Status

Projected Actual

Milestone 1 Milestone 1

This feature refers to the ability to add a timetable to the view.

Philosophy
For convenience, instead of implementing a pure timetable selector, where users would choose
their classes for each course, we decided to implement one that would be able to take
NUSmods URLs as well. This is as the NUSmods is a commonly used website for all NUS
students, as it has been made the main source of course information for all NUS students, and
the timetable function is well-refined.

As an extension, we consider implementing a manual timetable creator, given the time allows.

page 6

[studybuddy]

Timetable comparison

Type Core

Completion Status

Projected Actual

Milestone 3 Milestone 2

Remark: This was originally written as two separate features in the README for Milestone 1 - comparing with someone else
(projected Milestone 2) & comparing with multiple other people (projected MIlestone 3). Due to the component nature, this was
implemented at the same time.

This feature refers to the ability to compare timetables visually.

Philosophy
This feature was the main focus of the project, and is the highlight feature.

The comparison allows for comparison of timetables from three sources:

1.​ The saved timetables added by the user
2.​ Saved timetables added by the user’s friends
3.​ A NUSmods timetable

With this implementation, it allows for users to not only compare timetables with their friends
who use the website actively, but it also allows users to compare their timetables with their
other possible timetables, as well as a NUSmods timetable link, that could be sent by their
friends who are not using the application.

The comparison allows for up to four slots, and was limited to such as anything more would be
visual clutter. In addition, it would not be effective for the user to compare more than 4
timetables at a singular time.

Adding other non-timetable events

Type Core

Completion Status

Projected Actual

Milestone 2 Milestone 2

This refers to the ability to add events not directly correlated to the timetables.

Philosophy
This feature was implemented simply as another field in the user data, which allows for easy
query utilising Firestore.

page 7

[studybuddy]

The events are stored separately from the timetables so that they can be accessed easily when
the timetable is changed. Since the application allows for storage of multiple timetables, having
the events be separate allows for easy change when a different timetable is selected.

Booking meetings

Type Core

Completion Status

Projected Actual

Milestone 2 Moved to future plans

 shifted to Milestone 3

Reason for Change The feature is reliant on the social network. Due to time constraints, we
were only able to get the social network up pretty late.

This refers to the ability to add events not directly correlated to the timetables.

Philosophy

This feature is reliant on the Social Network feature.

Using a dropdown, the user can invite multiple of his friends, and then send them a meeting
invite. The diagram above shows a simulation of a meeting between two people.

1.​ When a meeting is created, a new record will be made in the meetings folder. The users
involved will then have the meetingID be added into their meeting field, with a status
field showing their status (approved, proposed change, rejected)

page 8

[studybuddy]

2.​ The record in the meetings folder will store these changes in status. Once the entire
meeting is approved by everyone, the meeting will be written into their events field.

Timetable summary statistics

Type Extension

Completion Status

Projected Actual

Milestone 3 Moved to future plans

This was moved to future plans due to a pivot in the project focus to focus on a more

polished project.

This feature provides users with summary statistics of their timetable, such as total hours per
week, busiest days, and free time slots.

Philosophy
For this feature, the plan is to provide

1.​ Total hours per weeks
2.​ Busiest days
3.​ Free time slots

We plan on utilising user feedback to determine which statistics should be provided.

Slot statistics

Type Extension

Completion Status

Projected Actual

Milestone 3 Moved to future plans

This was moved to future plans due to a pivot in the project focus to focus on a more

polished project.

This feature provides users with slot statistics - where the users are able to see how popular a
current slot is for the modules they picked, which may allow them to counter pick.

Philosophy
For this feature, the plan is to provide

1.​ Popularity of specific class
2.​ Popularity of timeslot (useful for when there are multiple classes for the same period)

page 9

[studybuddy]

We plan on utilising user feedback to determine which statistics should be provided.

Course recommender

Type Extension

Completion Status

Projected Actual

Milestone 3 Moved to future plans

This was moved to future plans due to a pivot in the project focus to focus on a more

polished project.

This feature provides users with courses (modules) to take based on their previous mods.

Philosophy
We plan on utilising a simple ML implementation for this.
We have yet to confirm the implementation details of this feature.

Module planner

Type Extension

Completion Status

Projected Actual

Milestone 3 Milestone 3

Philosophy
We plan on implementing a very simple module planner - more for visual purposes (no pre-req
tracking, no major requirements checking).

Live sync to Google Calendar

Type Extension

Completion Status

Projected Actual

Milestone 3 Scrapped

 Scrapped due to resource requirements.

page 10

[studybuddy]

Social Network

User authentication

Type Core

Completion Status

Projected Actual

Milestone 1 Milestone 1

Philosophy
As authentication is a very important part, we wanted to make sure we did not do it from
scratch as that could result in badly configured security.

We decided to use Firebase Authentication, as it allowed us to integrate it easily with our
Firestore database that we used to store user data. The automatic hashing of passwords,
allowed us to spend more time implementing the other features, which did not already have a
widely accessible implementation in other libraries.

User profiles

Type Core

Completion Status

Projected Actual

Milestone 2 Milestone 2

Philosophy
We utilised a non-relational database, to allow us to have a more flexible schema with regards to
the user details. The potential of the user data stored made us reconsider our original mySQL
choice because of the lack of ability to adapt to new requirements if need be.

The user profiles will be used for users to find new friends, and the details provided would be
used for the matching algorithm proposed below.

page 11

[studybuddy]

Addition of friends

Type Core

Completion Status

Projected Actual

Milestone 2 Milestone 2

Philosophy
As the addition of friends is only a two-way thing, we found it acceptable to negate the need of
an extra collection, and instead use a value in the user field.

The list of friends is stored with the other user as the key, and the status of the friendship as the
value. The value is one of “None” | “Pending” | “Requested” | “Friend”, which is
used by the application logic to process friend requests and friend approvals.

Chat

Type Core

Completion Status

Projected Actual

Milestone 2 Milestone 2

 The chat is currently working, but we may implement changes to it in the future.

Philosophy
As a user can have multiple chats, and a chat can have multiple messages, it was not feasible to
store the whole chats in the user fields, like done for the friend requests. Hence, only the
chatIDs are stored in the user fields.

Thus,

1.​ If a chat is to be created, it is given a chatID that is then added to the Chats array in both
users.

2.​ The chat object will then contain a chatID, the email / username of both users, and an
array of messages.

3.​ The complete chat object is stored in another collection called “chats”, with each
document identified by a unique chatID.

Alternative
We considered having the chat be stored twice in both the users data, which would negate the
need for a new collection, but it would result in large data duplication, and would not be good for
the queries as it would mean there would be 2 writes instead of 1 for each chat.

page 12

[studybuddy]

Mod storage

Type Extension

Completion Status

Projected Actual

Milestone 3 Milestone 3

 Merged with study plan. Mods are stored through the study plan.

Philosophy
Storing the mods would allow people to find their friends off the modules they take, allowing it to
be used for the matching algorithm.

The modules are now stored under the study plan, instead, which categorises the modules
better over the original plan which is mentioned below. This means data is non-duplicated.

Alternative Plan (Original)
The plan is to store the mods in three sections.

1.​ Past mods
2.​ Current mods
3.​ Future planned mods

Past mods will be used for the course recommender while the current and future planned mods
will be used for the matching algorithm.

In addition, the mods will also be visible when they are using the basic mod planner, and this will
be a small QoL improvement for them to visualise their plan.

Matching algorithms

Type Extension

Completion Status

Projected Actual

Milestone 3 Moved to future plans

Philosophy
Currently, we do not have an intricate or complex plan with regards to the algorithms used for
the matching. The current plan is to implement simple matching in a checklist manner, and then
just returning the results in the sorted order based on how many items they have checked off.

page 13

[studybuddy]

We do eventually plan on implementing simple machine learning through external libraries, as
well as using our user surveys to decide what features should be weighted higher.

QoL Extensions

Light and Dark Mode

Type Extension

Completion Status

Projected Actual

Milestone 2 Milestone 2

Philosophy
Due to our standardised approach to using JoyUI, light and dark mode was easy to implement
using the theming provided. We just utilised the theming provided and added a button to switch
between the modes.

Email notifications

Type Extension

Completion Status

Projected Actual

Milestone 3 Scrapped

 Scrapped due to resource requirements.

Data export

Type Extension

Completion Status

Projected Actual

Milestone 3 Milestone 3

Philosophy
Similar to NUSmods, we plan on implementing export to images (a screenshot of the timetable)
as well as export to iCal.

This was added simply using a library which targets a <div> element.

page 14

[studybuddy]

page 15

[studybuddy]

Timetable comparison for non-authenticated users

Type Extension

Completion Status

Projected Actual

Milestone 3 Milestone 3

Philosophy
Anyone can still use the Timetable Comparison function without signing up or logging in. It is
available on the landing page.

page 16

[studybuddy]

System Design

Tech Stack

Programming Language
TypeScript

Instead of using just JavaScript, we will use TypeScript, as the type-system and error-checking
allows us to create more robust and scalable code that will be vital in maintaining the code as
we implement additional features.

Front-End Libraries
React

As mentioned, we will be using React for the front-end, as it allows us to create our desired UI
efficiently and promote code reusability, allowing there to be standardisation among all the
views.

In addition, the community around React development is large and developed, allowing us to
leverage on numerous sources of documentation as well as discussion.

Front-End Libraries
JoyUI

We decided to elect for a front-end component library to help in standardisation across pages
and components.

The component library of choice was JoyUI, a variant from MaterialUI, which we chose due to
its similarity in appearance to our mockups previously made.

Next.js
React framework

page 17

[studybuddy]

Runtime Environment
NodeJS

Back-End
Firebase Cloud Firestore

We opted for a noSQL database as we wanted to be more flexible with our schema. Originally,
we had planned on using MySQL, but after discussion and further research, we realised that the
structure of our data would need to not be constrained by a pre-set schema.

Hosting
Vercel

As our app utilises Next.js, it was intuitive for us to elect for Vercel hosting.

Diagrams

Class Diagrams
Previously, in Milestone 1, we had 2 UML class diagrams. However, we rethought our approach
towards the project and ended up focusing towards a functional approach instead, making the
class diagram inaccurate, even though it did help us drive the design of the functional
programming types.

We have removed the diagram as it is now inaccurate to our current system design.

page 18

[studybuddy]

Activity Diagram

This diagram describes the activities the user can undertake.
There are more specific diagrams for each feature listed in the feature portion.

Use-Case Diagram

page 19

[studybuddy]

Wireframes
Here are the original design mockups for the UI of the website.

Landing Page

Landing page

Sign in/sign up

page 20

[studybuddy]

Log in

Sign in

Timetable Views

Timetable view

page 21

[studybuddy]

Adding an event

Timetable comparison

page 22

[studybuddy]

Social Network

Chatting

Setting profile

page 23

[studybuddy]

Finding friends

page 24

[studybuddy]

Software Engineering Practices

Component-Based Architecture
We used component-based architecture, where our React web application is built using
independent, reusable components. Each component is a self-contained unit that encapsulates
its own structure, style, and behaviour. This modular approach makes it easier for us to develop,
maintain, and scale our React web application.

N-Tier Architecture
We utilise a three-tier architecture, similar to industry practices with regards to web
development.

page 25

[studybuddy]

Version Control

Branching
We utilise branches to work on separate features without breaking each other’s work
unintentionally.

Current branches

History of branches (from WebStorm IDE)

With branches, we are also able to push changes without pushing to the main branch, which
allows us to review code better. With Vercel, we are able to deploy the branches and see if they
build correctly when hosted, which then allows us to double-check that our code runs properly
before merging into the main branch, using pull requests.

page 26

[studybuddy]

Vercel branches

Pull Requests
We use pull requests to merge the branches. Vercel helps to test if merging causes deployment
issues, allowing us to verify that our main branch works as intended even after a merger.

Example of pull request to merge branches

Testing

Unit Testing
Jest
We will write and run unit tests for components, functions, and utilities. We will be testing:

page 27

[studybuddy]

●​ Rendering: Ensure components render correctly with different props.
●​ State Management: Test state changes and updates within components.
●​ Functionality: Test various functionalities such as button clicks, form submissions, and

user interactions.

User Testing
We will gather feedback directly from users to evaluate the usability and functionality of our
product.

●​ Usability: Evaluate how easy the application is to use for its intended audience.
●​ Features: Gather suggestions and insights on what features users find useful or would

like to see improved.

Google Forms will be used to create surveys and gather structured feedback from users about
their experience with our web application.

Integration Testing
Integration testing verifies interactions between different components or systems to ensure
they work together as expected.

We will use Jest to test

●​ Component Integration: Test how different components interact and behave together.
●​ Deployment Testing: Ensure the application functions smoothly in its deployed

environment.

Regression Testing
We will use Github actions for test automation that can be used to automate regression tests.

We will also use Vercel's Git integration. The Preview Deployments allows testing of new
features and changes before merging to the main branch, with automatic production
deployment afterward. There is also Live feedback, with real-time comments on preview
environments.

Whenever new features or changes are added to the application, regression tests ensure that
existing features continue to work as expected without unintended side effects.

Thus there is continuous integration and development (CI / CD) in the development
workflow. Whenever there is a pull request or push, the CI / CD pipeline runs the automated
tests to ensure our web application can be run and built, and that all functionalities continue
working as expected.

page 28

[studybuddy]

Bug Fixing
We were able to spot bugs from multiple sources:

1.​ Ourselves (while testing and programming)
2.​ Milestone feedback by other teams
3.​ User testing forms

Bugs Found and Solutions

Bugs Solution

User is not redirected to the
dashboard upon a successful sign
up

●​ Ensure that the User object is defined and the
username property exists

Login, Signup, and Timetable
pages do not display error
messages

●​ Added the Alert Status components to show the
corresponding error messages

●​ For login and signup pages, the error messages
are based on firebase authentication errors

Profile information of receiver are
wrongly displayed as the current
user in the text bubble and
conversation display

●​ Set the receiver or sender of the text bubble /
conversation display based on whether the
receiver or sender of the chat is the current user

page 29

[studybuddy]

Development Plan
The development plan will be split into four parts:

1.​ Ideation (pre-milestone 1)
2.​ Prototype (pre-milestone 2)
3.​ Extension (pre-milestone 3)
4.​ Refinement (pre-splashdown)

Ideation 20/05 - 03/06

Category From To Task In-charge

Planning

13/05 25/05 Confirm general system design Z R

13/05 27/05 Confirm UI design Z R

25/05 28/05 Confirm database design Z R

Authentication 27/05 02/06 Authentication R

Timetable 27/05 02/06 Timetable layout Z

Prototype 04/06 - 01/07

Category From To Task In-charge

Social Network
10/06 15/06 Chat function R

15/06 20/06 Add friend R

Timetable

03/06 10/06 Add events R

03/06 10/06 Collab view for 2 users Z

10/06 17/06 Collab view for >2 users Z

QoL functions 20/06 23/06 Light & dark mode R

page 30

[studybuddy]

Extensions 03/07 - 29/07

Category From To Task In-charge

Social Network 01/07 28/07 Buddy matching Z R

QoL functions

01/07 04/07 Email notification R

01/07 14/07 Slot statistics Z

04/07 06/07 Data export R

06/07 14/07 Basic module planner Z

14/07 28/07 Mod recommenders Z

highlighted: The feature was originally planned for milestone 2, but was moved over due to complexity.

Refinement 29/07 - 28/08

Category From To Task In-charge

System testing 29/07 28/08 - Z R

page 31

[studybuddy]

Testing Plan
 Tool Test Details

Unit testing Jest Rendering: Ensure components render correctly with
different props.

State Management: Test state changes and updates within
components.

Functionality: Test various functionalities such as button
clicks, form submissions, and user interactions.

Integration
testing

Jest Component Integration: Test how different components
interact and behave together.

System Integration: Verify interactions between frontend
components and backend APIs.

Deployment Testing: Ensure the application functions
smoothly in its deployed environment.

Regression
testing

Jest and
Github
Actions

Regression testing is automated and done after each small
change. The software is tested again when there is a new
push to a branch or a new merge with the main branch.

Vercel's Git
integration

Preview Deployments allow testing of new features and
changes before merging to the main branch, with automatic
production deployment afterward.

User testing Google Forms Gather feedback on real users on the usability and features
of our product.

Unit testing of components

Test Test Details

Landing page Page renders with the buttons “Login”, “Sign Up”, and
“Compare Timetables”

●​ Snapshot testing captures the output of the Page to
ensure it renders as expected

Login page User inputs valid email and password
●​ A green “Sign in Successful!” alert appears
●​ User is redirected to the home page

User inputs invalid email
●​ A red “Please use a valid email address.” alert

appears
●​ User remains in the login page

page 32

[studybuddy]

User inputs wrong password
●​ A red “Incorrect password.” alert appears
●​ User remains in the login page

User inputs invalid username
●​ A red “User not found” alert appears
●​ User remains in the login page

User does not enter password
●​ A red “ Please enter a password.” alert appears
●​ User remains in the login page

User inputs incorrect email and / or password
●​ A red “ Invalid credential.” alert appears
●​ User remains in the login page

Sign up page User inputs valid first name, last name, username, email and
password

●​ A green “Sign up Successful!” alert appears
●​ User is redirected to the home page

User inputs weak password
●​ A red “Password should have at least 6 characters.”

alert appears
●​ User remains in the login page

User inputs invalid email
●​ A red “Please use a valid email address.” alert

appears
●​ User remains in the login page

User inputs an email which already exists
●​ A red “ Account with email already exists.” alert

appears
●​ User remains in the login page

User inputs a username which already exists
●​ A red “ Username is already taken.” alert appears
●​ User remains in the login page

AlertStatus ●​ Ensures that AlertStatus renders correctly
based on its success prop. It checks for the
presence of the correct message and icon.

●​ Uses render to mount the component, screen to
query elements, and expect with matchers to assert
conditions.

Loading page User is waiting for the page to load
●​ The page renders the logo and the “Loading…” text

Home page User is not logged in
●​ User is redirected to the landing page

page 33

[studybuddy]

User is logged in
●​ Page renders the Dashboard component

Navigation Bar When the user clicks on each item
●​ The user is redirected to the corresponding page

The user clicks on Timetable or Social item
●​ Shows the nested pages like View Timetable,

Compare Timetables

LightDarkMode Web application changes from dark / light mode to light /
dark mode when this button is clicked

NonAuth Header When the user is not logged in, the NonAuthHeader
component renders the logo and the login and sign-up
buttons correctly with the corresponding attributes present

Documentation Snapshot testing captures the output of the
Documentation component to ensure it renders as
expected

Timetable Select User wants to select a timetable and clicks the button
●​ Shows a dropdown of all the saved timetables

AddEventDialog User clicks on the “Add Event” button
●​ Opens a dialog to add a new event

User inputs all fields
●​ The event is created

Some fields are empty
●​ “Please fill in this field” notification appears

ScheduleView Renders the calendar with the corresponding lessons and
events highlighted at the particular date and time

TodayEvents Renders all the events for the day, otherwise “You have no
events today!”

AddTimetableDialog User clicks on the “Add Timetable” button
●​ Opens a dialog to add a new timetable

User enters a name and valid NUSmods url
●​ A green “Timetable added successfully” alert

appears

User does not enter name and / or description
●​ “Please fill in this field” notification appears

User does not enter a valid NUSmods url
●​ “Failed to add timetable” alert status appears

TimetableView User wants to see all days of the week

page 34

[studybuddy]

●​ Renders a column (Timetable day component) for
each day of the week

TimetableDay User wants to see the time for each day of the week
●​ Renders the text showing the day and the time slots

User wants to see when the events are
●​ Time slots are coloured if there is an event during

that particular duration

TimetableSlot User wants to see what type of event
●​ Displays the course code, lesson type, time, and

location

Timetable Comparison User clicks on the “Add Comparison” button
●​ A new column appears for the user to add a new

timetable to compare

User clicks on the “Remove Comparison” button
●​ The timetable is removed

User clicks on the “Save as image” button
●​ The timetable is downloaded as a JPEG

TimetableInput User wants to add a new timetable using the NUSmods url
and clicks the “Change” button

●​ A new timetable is displayed for comparison

TimetableOtherUserSelect User clicks the “Choose a friend” button
●​ A drop down appears for the user to choose a friend

User clicks the “Choose a timetable” button
●​ A drop down appears for the user to choose a

timetable to compare

TimetableAccordion User clicks on “Class List”
●​ A drop down appears for the user to see the list of

courses taken by the user’s friend

StudyPlan User clicks on “Save your changes” button
●​ The updated timetable is saved to the user’s

information

AddModuleSelector User clicks on the “Add” icon button
●​ The added module will be seen in the study plan

UsernameSearch User inputs a username and clicks the “Search” button
●​ A list of users with the username would appear in a

dropdown

UserDisplay User clicks on the other user’s profile
●​ Redirects the user to the other user’s profile page

page 35

[studybuddy]

AddFriendButton User is not friends with the other user
●​ There is a “Add Friend” button

User clicks on the “Add Friend” button
●​ The button changes to “Friend request sent"

User has a friend request
●​ There is a “Accept friend request" button

User clicks on the “Accept friend request” button
●​ Already added!

AllChats User inputs a username in the search bar to filter the chats
●​ A list of chats with the corresponding name appears

in the chat list

User clicks the pencil icon
●​ A new modal pops out for the user to create a new

chat with a user

User clicks on a particular chat
●​ The corresponding chat appears on the right pane

to display the conversation

CreateChat User selects a friend to chat with
●​ A dropdown of the user’s friends appears
●​ The “Start chatting” button appears

User already has an existing chat with the friend and clicks
on the “Start chatting” button

●​ A red “Chat already exists” alert appears

User has no existing chat with the friend and clicks on the
“Start chatting” button

●​ A green “Chat created successfully!” alert appears
●​ User is redirected to the messages page

ConversationDisplay User clicks on the “View profile” button
●​ User is redirected to the other user’s profile page

ChatInput User types a message in the text area and clicks the send
icon

●​ The message is sent and a text bubble with the
message appears in the conversation

Documentation User clicks on the search bar to choose a topic
●​ A drop down of a list of topics appears

User selects the topic
●​ The information regarding the topic is displayed in

the documentation page

Profile User clicks on the pencil icon

page 36

[studybuddy]

●​ User can upload a picture to be the profile picture

User clicks on the “Save profile” button and it is successful
●​ The updated user details are saved
●​ The saved user details are displayed the next time

the user goes to the settings page
●​ A green “Profile updated successfully!” alert

appears

User clicks on the “Save profile” button and it fails
●​ A red “Profile update failed!” alert appears

page 37

[studybuddy]

Unit testing of functions

Function Purpose Test Expected Date
Passed

utils/Timetable convertLessonType Takes in a LessonTypeSmall object and
converts it to the corresponding
LessonType eg Lecture, Tutorial

convertLessonType(lesso
n: LessonTypeSmall)

LEC converted to Lecture,
TUT converted to Tutorial
etc

28/06/2024

utils/Timetable convertLessonTypeS
mall

Takes in a LessonType object and converts
it to the corresponding LessonTypeSmall
object eg LEC, TUT

convertLessonTypeSmall(
lesson: LessonType)

Lecture converted to LEC,
Tutorial converted to TUT
etc

28/06/2024

utils/Timetable convertToSemester Takes in a NUSmodsSemester and
converts it to a corresponding number

convertToSemester(semI
nput:
NUSmodsSemester)

sem-1 converted to 1,
sem-2 converted to 2 etc

28/06/2024

utils/Timetable convertToCourseSlot Takes in a CourseParameterisedString and
Semester, converting it to a CourseSlot
with its parameters lessonType, classNo,
and semester

convertToCourseSlot(str:
CourseParameterisedStri
ng, sem: Semester)

A courseslot is created
with lessonType, classNo,
and semester

28/06/2024

utils/Timetable convertToCourseTim
etable

Takes in a CourseParameterisedString and
Semester, converting to a CourseTimetable
type with semester, course, and lessons

convertToCourseTimetabl
e(str:
CourseParameterisedStri
ng, sem: Semester)

A CourseTimetable is
created with Semester,
CourseCode, and
CourseSlot[]

28/06/2024

utils/Timetable convertUserCPS Takes in a user's Course Parameterised
String and semester, converting to
UserTimetable with the fields semester and
timetable

get timetable from CPS A UserTimetable is
created with the fields
semester and timetable

23/07/2024

utils/Timetable getStringfromNUSmo
ds

Ensures that the function correctly extracts
the query string from the URL

should return the correct
CPS

String format of data is
returned from a url

23/07/2024

page 38

[studybuddy]

utils/Timetable getSemesterfromNU
Smods

Returns a NUSModsSemester from the
URL

should return the correct
semester

A number representing
the corresponding
semester

23/07/2024

utils/Timetable getClassesFromTimet
able

Converts CourseTimetable and
CourseClasses objects to an array of
CourseClass objects

get class from timetable An array of CourseClass
objects

23/07/2024

utils/Timetable getEventsForUser Converts a UserCPS and Semester into an
array of events

get events for user An array of events sorted
by date

23/07/2024

utils/Timetable getClassesForUser Converts a UserCPS and Semester into an
array of CourseClass

get events for user An array of CourseClass
objects

23/07/2024

utils/Timetable convertUserCPS Takes in a user's Course Parameterised
String and semester, converting to
UserTimetable with the fields semester and
timetable

convertUserCPS(cps:
UserCPS, sem: Semester)

A UserTimetable is
created with the fields
semester and timetable

28/06/2024

utils/Timetable convertSlotToClass Takes in a CourseSlot and converts it to a
CourseClass with parameters like
lessonType, classNo, and semester

convertSlotToClass(cs:
CourseSlot)

A CourseClass is created
with parameters
lessonType, classNo, and
semester

28/06/2024

utils/parsers convertToCourse Transforms a JSON object (jsonData) into a
Course object

convert JSON response
to course

Returns a Course object
containing the code,
name, academicYear, and
the array of classes

23/07/2024

utils/parsers convertToCourse Converts a JSON object representing
course data into a Course object.

Convert JSON of a course
into events

Returns a Course object
containing the code,
name, academicYear, and
the array of classes

23/07/2024

page 39

[studybuddy]

utils/events convertCourseClassT
oEvents

For classes without weeks, assert
toHaveLength(0) to ensure the output
array is empty

should work on classes
without weeks

An empty array, as no
events should be
generated without week
information.

23/07/2024

utils/events convertCourseClassT
oEvents

Generates events for a CourseClass with
specified weeks

should work on classes
with weeks

An array of ClassEvent
objects for the specified
weeks

23/07/2024

utils/events convertCourseClassT
oEvents

To transform course data into a series of
events

Convert JSON of a course
into events

Returns the array of
ClassEvent objects

23/07/2024

services/ChatService retrieveChats Takes in a user email and returns all the
chats that the user has

retrieveChats(userEmail:
string)

Returns an array of chats
the user has, in the form
of a Chat object

25/07/2024

services/ChatService retrieveAllReceivers Takes in a user email and returns the other
users whom the user has chats with

retrieveAllReceivers(userE
mail: string)

Returns an array of user
emails

25/07/2024

services/ChatService createNewChat Takes in a sender and receiver to create a
new Chat with parameters chatId, sender,
receiver, and messages

ChatService A new Chat is created
with parameters chatId,
sender, receiver, and
messages

09/07/2024

services/ChatService getChatsLength Takes in a user email and counts the
number of chats the user has

getChatsLength(userEmai
l: string)

Returns the number of
chats the user has

25/07/2024

services/ChatService chatExists Takes in a sender and receiver to check if
there is a chat between the two users

chatExists(sender: string,
receiver: string)

Returns true or false
based on whether there is
a matching chatId

25/07/2024

services/ChatService createNewChat Takes in a sender and receiver to create a
new Chat with parameters chatId, sender,
receiver, and messages

createNewChat(sender:
string, receiver: string)

A new Chat is created
with parameters chatId,
sender, receiver, and
messages

25/07/2024

page 40

[studybuddy]

services/ChatService updateChatRecords Takes in a user email and chatId to update
the array of chats in the user's document

updateChatRecords(user
Email: string, chatId:
string)

The chatId is added to the
chat field under the User
object

25/07/2024

services/ChatService sendMessage Takes in a chatId, receiver, sender, and
message to be updated in the messages
field of the chat

sendMessage(chatId:
string, receiver: string,
sender: string, message:
string)

The message is added to
an array of existing
messages in the chat

25/07/2024

services/ChatService markMessageAsRead Takes in a chatId and receiver to updates
the messages in the chat as read by the
receiver

markMessageAsRead(ch
atId: string, receiver:
string)

The unread field of the
message would be false

25/07/2024

services/ChatService countUnreadMessag
es

Takes in an array of Message objects and
the receiver's email to count the number of
messages which are unread

countUnreadMessages(m
essages:
MessageProps[], receiver:
string)

Returns the number of
unread messages of a
chat

25/07/2024

services/ChatService getTotalUnreadMess
ages

Takes in a user email to find the total
number of unread messages from all chats

getTotalUnreadMessages
(userEmail: string)

Returns the number of
unread messages from all
the user's chats

25/07/2024

services/ChatService retrieveChat Takes in a chatId and returns it as a Chat
object

retrieveChat(chatId:
string)

Returns all fields of the
Chat object

25/07/2024

services/UserService createUser Creates a user object given an email, first
name, lastName, userName

createUser Function New User created with
the details as given.

09/07/2024

services/UserService addNewUser Creates a user object given an email, first
name, lastName, userName

addNewUser(user: User) A new user document is
created in firestore, under
the "users" collection

25/07/2024

services/UserService retrieveUser Get the user's information using the email retrieveUser(email: string) Returns a User object 25/07/2024

services/UserService updateTimetable Takes in the user's email, NUS mods url,
and timetable name to update the array of
timetables in the user's document

updateTimetable(email:
string, url: string, name:
string)

The timetable is added to
an array of existing
timetables

25/07/2024

page 41

[studybuddy]

services/UserService updateEvents Takes in the user's email and an Event
object to update the array of events in the
user's document

updateEvents(email:
string, event: Event)

The event is added to an
array of existing events

25/07/2024

services/UserService retrieveUserTimetable
s

Takes in a user's email and returns the
timetable field

retrieveUserTimetables(e
mail: string)

Returns an array of
UserDataTimetable
objects

25/07/2024

services/UserService retrieveUserTimetable
s

Takes in a user's username and returns the
timetable field

retrieveUserTimetablesFr
omUsername(username:
string)

Returns an array of
UserDataTimetable
objects

25/07/2024

services/UserService retrieveUserFriends Takes in a user's email and returns the
user's friends

retrieveUserFriends(email:
string)

Returns an array of the
usernames of the user's
friends

25/07/2024

services/UserService retrieveUserFriends Takes in a user's email and returns the
user's friends

retrieveUserFriends(email:
string)

Returns an array of User
objects

25/07/2024

services/UserService retrieveFriendRequest
s

Takes in a user's email and returns the
users with pending friend requests

retrieveFriendRequests(e
mail: string)

Returns an array of User
objects with pending
friend requests

25/07/2024

services/UserService retrieveFriendRequest
sCount

Takes in a user's email and returns the
number of pending friend requests

retrieveFriendRequestsCo
unt(email:string)

Returns the number of
friend requests

25/07/2024

services/UserService retrieveUserEvents Takes in a user's email and returns the
user's events

retrieveUserEvents(email:
string)

Returns an array of Event
objects

25/07/2024

services/UserService userHasTimetables Takes in a user's email and checks if the
user has timetables

userHasTimetables(email:
string)

Returns true or false
based on whether the
user has a timetable

25/07/2024

services/UserService updateUserData Takes in a User object and updates the
fields of the user

updateUserData(user:
User)

Updates the fields in the
user's document

25/07/2024

services/UserService retrieveUserFromUse
rname

Takes in a username and retrives all the
information of the user as a User object

retrieveUserFromUserna
me(user: string)

Returns a User object 25/07/2024

page 42

[studybuddy]

services/UserService checkEmailExists Checks if there is an existing email that is
the same

checkEmailExists(email:
string)

Returns true if the same
email already exists in
firestore

25/07/2024

services/UserService checkUsernameExist
s

Checks if there is an existing email that is
the same

checkUsernameExists(us
ername: string)

Returns true if the same
username already exists in
firestore

25/07/2024

services/UserService checkRelationship Checks the type of relationship between
the currentUser and otherUser

checkRelationship(current
User: string, otherUser:
string)

Returns the status of the
relationship: None, Friend,
Requested or Pending

25/07/2024

services/UserService sendFriendRequest Sends a friend request from the current
user to the other user if the current
relationship is "None"; updates the status
for both as "Friend" if current relationship is
"Pending"

sendFriendRequest(curre
ntUser: string, otherUser:
string)

updates the "friends"
fields in each user's
document

25/07/2024

services/UserService acceptFriendRequest Updates the relationship status between
both users as friends

acceptFriendRequest(curr
entUser: string,
otherUser: string)

updates the "friends"
fields in each user's
document to be "Friend"

25/07/2024

services/CourseServi
ce

getCourse Returns a Course given a Course Code Get a course A Course object 23/07/2024

services/CourseServi
ce

convertToCourse Takes in the data from NUSmods and
converts it into a course as defined in the
type system

convertToCourse(testCou
rse)
JSON data copied from
moduleInfo

Course created with the
information

23/07/2024

page 43

[studybuddy]

Integration testing

Test Test Details

Navigation Bar Navigation Bar component renders the LightDarkMode
component

Shows the number of friend requests under the Friend Requests item
using the function retrieveFriendRequestsCount

Shows the total number of unread messages under the Messages item
using the function getTotalUnreadMessages

Uses the CloseSidebar function to be closed when being toggled in a
smaller page width

Dashboard Dashboard component renders the Navigation Bar, Header, and
Schedule components

Header To ensure that the Header component renders correctly, clicking the
menu button should trigger the toggleSidebar function

Schedule Schedule component renders the TimetableSelect,
AddEventDialog, ScheduleView and TodayEvents components

View Timetable
page

Page renders the Navigation Bar, Header, and TimetableHome
components

Timetable User
View

Page renders the AddTimetableDialog, TimetableSelect,
TimetableBasicInfo, TimetableView, and
TimetableUserClasses components

Compare
Timetable page

Page renders the Navigation Bar, Header, NonAuthHeader,
TimetableComparison, and TimetableComparisonNoAuth
components

Timetable
Comparison Cell

Renders the TimetableInput, TimetableView,
TimetableAccordion, TimetableSelect, and
TimetableOtherUserSelect components

Uses the getClassesForUserFromTimetableData and
getCoursesForUserFromTimetableData functions to display the
user’s timetable

TimetableOther
UserSelect

Uses the
retrieveUserTimetablesFromUsername,getCoursesForUser
FromTimetableData and
getClassesForUserFromTimetableData functions to show the
selected timetable of the user’s friend

page 44

[studybuddy]

Study Plan page Page renders the Navigation Bar, Header, and StudyPlan
components

Study Plan

Uses the
convertStudyPlanSemesterToString,createDefaultStudyP
lan,getUserStudyPlan,and updateUserStudyPlan
functions to add and update the user’s study plan

AddModuleSele
ctor

Uses the getListOfModules and getCourse functions to add
courses to the user’s study plan

User Search
page

Page renders the Navigation Bar, Header, and Search
components

Search Renders the UsernameSearch and UserDisplay components

Uses the getAllUsers function to search for all users for the user to
send a friend request

User page Page renders the Navigation Bar, Header, and AddFriendButton
components

Uses the checkRelationship and retrieveUserFromUsername
functions to show the user’s status with the other user, as well as the
other user’s profile information

Messages page Page renders the Navigation Bar, AllChats, and Conversation
components

AllChats Uses the retrieveAllReceivers function to search for the list of
existing chats the user has

Uses the getTotalUnreadMessages function to show the number of
unread messages in the chatList

CreateChat Uses the createNewChat function to create a new chat

Uses the retrieveUserFriendsUsers function for the user to
select a friend to chat with

Conversation Renders the TextBubble and ChattingUser components to show
the text messages and who the user is chatting with

Uses the markMessageAsRead function to update that the message
has been read when the user opens the chat

Uses the getAllUsersTextBubble component and sendMessage
for the user to type a message and send it

Documentation
page

Page renders the Navigation Bar, AllChats, and Documentation
components

page 45

[studybuddy]

Documentation Renders the DocumentationSelect and MarkdownLoader
components for the user to choose the topic

Settings page Page renders the Navigation Bar, AllChats, and Profile
components

Profile Renders the ProfilePicture component and retrieveUser,and
updateUserData functions to display and update the user’s
information

Regression testing

Tool Test Details

Automated
testing using
Jest and Github
actions

●​ Before a successful push to a branch or merge with the main
branch, Github actions will run the Jest tests

●​ The Jest test results (whether the tests pass or fail) are printed in
a Common Test Report Format so that the summary results can
be shown in Github actions

Vercel’s Git
Integration

●​ Whenever there is a push to a branch or merge with the main
branch, Vercel will automatically try the run and build the web
application

●​ Preview Deployments allows testing of new features and changes
before merging to the main branch, with automatic production
deployment afterward.

Example of a job that will automatically be run on Github Actions whenever there are new
changes to the code:

page 46

[studybuddy]

Example of failed tests:

page 47

[studybuddy]

Summary of automated test results:

page 48

[studybuddy]

Example of a successful automated deployment:

Example of a failed automated deployment:

page 49

[studybuddy]

User testing
We created and sent a Google Forms survey to our friends, for them to try out our web
application and give feedback.

The survey results are summarised in the “User Testing” tab of . studyBuddy: Testing

Methodology
We wanted a mixture of quantitative and qualitative feedback - qualitative feedback would be
easy to measure, and quantitative feedback would allow us to get more depth with regards to
understanding the issues/qualms our users faced.

Questions

User Interface

●​ The UI was intuitive to use.​
●​ It was easy to find the function I wanted to use.​
●​ The UI was pleasant to the eyes. (design, layout, colour scheme)​
●​ The UI was not cluttered.​
●​ I am satisfied with the interface.​
●​ How quickly were you able to find what you were looking for?​
●​ How easy was it to fill out information and forms on the website?​
●​ How clearly were error messages communicated to you?​
●​ What other features would you like to see for the UI?​
●​ Any feedback on the UI?​

Functionality

●​ Do the functions work as intended?​
●​ If you answered 1 or 2 to the previous question, which functions do not work as

intended?​
●​ Do you understand how to use the functions in the website?​
●​ If you answered 1 or 2 to the previous question, which functions do you not understand?
●​ Which feature did you feel satisfied with? (Multiple select)​
●​ Do you have any recommendations for any of the features?​

Timetables

●​ How easy is it to add a timetable?​
●​ How easy is it to compare timetables?​
●​ How clear and useful are the timetable visualisations?
●​ How well does the compare timetable feature meet your needs?​
●​ Features to add / Bugs found​

Chat

●​ How easy was it to use the chat feature?​

page 50

https://docs.google.com/spreadsheets/d/14X8v7BSrFVuYmNI5Z9-DIClOUkUMqaSW43wIS-wyvB8/edit?gid=2014142305#gid=2014142305
https://forms.gle/MRgvzxgMbbPVNYzCA

[studybuddy]

●​ How intuitive is the chat interface?​
●​ Features to add / Bugs found​

Social Network

●​ How effective is the search function for finding friends?​
●​ How easy is it to add friends?​
●​ How clear are the notifications for friend requests and confirmations?​
●​ Features to add / Bugs found​

Documentation

●​ How clear and understandable is the documentation?
●​ How easy is it to navigate through the documentation?​
●​ How effective is the search function in finding the information you need?​
●​ How comprehensive is the documentation in covering all necessary topics?​
●​ Features to add / Bugs found​

General Feedback

●​ If you had to describe your experience with the website, what would you say? (3 lines
maximum)​

●​ Do you have any feedback you would like to give that did not fit in the sections abov?
●​ How much would you rate your overall experience?​
●​ If the website was polished (and your feedback was taken into consideration and

implemented), would you use it?

Results
The comprehensive results can be seen in the user testing link, and the following is a curated
set of results found most important to us.

page 51

[studybuddy]

page 52

[studybuddy]

Beta testing
In the context of users planning their modules with NUSMods and using the StudyBuddy
website, beta testing involves users from the target audience who will use these tools in their
actual study planning environment. This means these users will interact with both NUSMods
and StudyBuddy in the way they would normally plan their modules, providing real-world
feedback on the usability, functionality, and overall effectiveness of the tools. The goal of this
beta testing phase is to identify any issues, gather insights, and make improvements based on
how users engage with the tools in their everyday study planning activities.

page 53

[studybuddy]

General Problems Encountered

Time Constraints
As both of us have outside commitments where we are not able to access our laptop/device, as
well as collaborate for meetings, we were unable to have meetings as we would have preferred.
This also meant that we did most of our work at night.

We circumvented this issue by practicing good software engineering practices - the
branching/pull request strategy allowed us to work concurrently on different features.

We also practiced constant communication and checked up on each other, allowing each other
to make up for each others’ deficiencies.

Lack of Experience
While Rachel has had software engineering practice, Zaidan has not touched full-stack
development formally and had to learn a lot of terms specific to the technology he was using,
React.

Through the resources provided, constant research, and asking each other, the team was able
to learn and figure out their way through problems, such as:

1.​ Unexpected Firestore quota bursting due to code bug repeating the query constantly

Feature Complexity
The features ended up being more complex to implement than we expected. Thus, in order to
have a better and more stable website, we decided to implement less depth into the
functionalities and instead focus on having a more complete and robust codebase for the
existing features as well as an intuitive UI.

page 54

[studybuddy]

Limitations

Username and email lock-in
Instead of using the UID provided by Firestore, the current linking between the users in Firestore
and in Firebase Authentication is by the email, meaning that we have to disable email. This is
due to an early mistake where we did not account for the possible change in email, as well as
display name. To minimise issues, we did not want to implement a change as it would possibly
break all functionality for not much gain.

Username limitation
As we are using Firestore, and the username is used as a key for the friends, it cannot contain
dots, as we are using dot notation in our code to push the usernames in. At this point, there
seems to be no way to escape the dots, thus we have decided to disallow dots in the username.

page 55

[studybuddy]

Appendix

Features (as from Milestone 1)

Timetable Comparison

Feature Description

Core features

Ability to create
timetables

Users can manually create their own timetables by selecting courses
and scheduling time slots.

Add other events like
CCA

Users can add co-curricular activities (CCA) and other non-academic
events to their timetable.

Ability to import from
NUSmods

Users can import their timetable data from NUSmods for a seamless
transition.

Ability to compare with
someone else

Users can compare their timetable with another user's timetable to find
common free slots.

Extension features

Compare with more
people

Users can compare timetables with multiple users simultaneously to find
common free slots for group activities.

Summary statistics Provide users with summary statistics of their timetable, such as total
hours per week, busiest days, and free time slots.

Statistics on slots Show statistics on how many users have selected particular time slots,
helping users understand the demand for specific times.

Course recommender Suggest courses based on users' interests, schedule gaps, and
popularity among peers.

Module planner Provide a module planning tool to help users plan their modules across
different semesters.

Live sync to Google
Calendar

Allow users to sync their timetable with Google Calendar for real-time
updates and reminders.

Social Network

Feature Description

Core features

page 56

[studybuddy]

User profiles Users can create and customize their profiles, including adding a profile
picture, biography, and academic details.

User authentication Secure login and authentication process to ensure user data privacy and
security.

Store mods for
matching algorithms

Store information about the modules users are taking to facilitate
matching with like-minded students.

Ability to add others
into the social network

Users can add friends or connect with other students within the
platform.

Chat There is a messaging function for users to communicate with each other
directly through the platform.

Extension features

Simple matching
algorithm

Implement a basic algorithm to match users with similar academic
interests, schedules, or module choices for study groups or project
teams.

Better matching
algorithm

Build on the above matching algorithm to make the friend matching a
better experience.

Quality of Life (QoL) Improvements

Feature Description

Extension features

Light or dark mode Users can switch between light and dark mode for a more comfortable
user experience.

Email notifications Send email notifications to users for important updates, deadlines, and
reminders.

Data export Users can export their timetable and other data in various formats for
backup or further use.

iCal Enable users to export their timetable to iCal format for integration with
other calendar applications.

Sharing image There is an option to generate an image of the timetable that can be
easily shared on social media or with friends.

page 57

[studybuddy]

Links
Google Forms for User Testing:
https://forms.gle/t2iQs1d87oncXSKw9

Testing: studyBuddy: Testing
https://docs.google.com/spreadsheets/d/14X8v7BSrFVuYmNI5Z9-DIClOUkUMqaSW43wIS-wy
vB8/edit?usp=sharing

Project Log: studybuddy: Project Log
https://docs.google.com/spreadsheets/d/1CZO1xjuq7CSyLBqIpibbCB8sFt7CoUim0RORQhSBF9
w/edit?usp=sharing

Poster: 6448.jpg
https://drive.google.com/file/d/14TcOtLrbGxMJvHUIjCv6IyU9DxXayw5X/view

Video: 6448.mp4
https://drive.google.com/file/d/14Ur7jmWLVuE9TrAB7pmlGzyZdEOWcnY8/view

page 58

https://docs.google.com/spreadsheets/d/14X8v7BSrFVuYmNI5Z9-DIClOUkUMqaSW43wIS-wyvB8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1CZO1xjuq7CSyLBqIpibbCB8sFt7CoUim0RORQhSBF9w/edit?usp=sharing
https://drive.google.com/file/d/14TcOtLrbGxMJvHUIjCv6IyU9DxXayw5X/view
https://drive.google.com/file/d/14Ur7jmWLVuE9TrAB7pmlGzyZdEOWcnY8/view
https://forms.gle/t2iQs1d87oncXSKw9
https://docs.google.com/spreadsheets/d/14X8v7BSrFVuYmNI5Z9-DIClOUkUMqaSW43wIS-wyvB8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/14X8v7BSrFVuYmNI5Z9-DIClOUkUMqaSW43wIS-wyvB8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1CZO1xjuq7CSyLBqIpibbCB8sFt7CoUim0RORQhSBF9w/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1CZO1xjuq7CSyLBqIpibbCB8sFt7CoUim0RORQhSBF9w/edit?usp=sharing
https://drive.google.com/file/d/14TcOtLrbGxMJvHUIjCv6IyU9DxXayw5X/view
https://drive.google.com/file/d/14Ur7jmWLVuE9TrAB7pmlGzyZdEOWcnY8/view

[studybuddy]

page 59

	NUS Orbital 2024
	Milestone 3
	Contents
	Project Summary
	Proposed Level of Achievement
	Motivation
	Aim
	Scope
	User Stories

	Features
	Timetable
	Timetable addition
	Philosophy

	Timetable comparison
	Philosophy

	Adding other non-timetable events
	Philosophy

	Booking meetings
	Philosophy

	Timetable summary statistics
	Philosophy

	Slot statistics
	Philosophy

	Course recommender
	Philosophy

	Module planner
	Philosophy

	Live sync to Google Calendar

	Social Network
	User authentication
	Philosophy

	User profiles
	Philosophy

	
	Addition of friends
	Philosophy

	Chat
	Philosophy
	Alternative

	Mod storage
	Philosophy
	Alternative Plan (Original)

	Matching algorithms
	Philosophy

	QoL Extensions
	Light and Dark Mode
	Philosophy

	Email notifications
	Data export
	Philosophy

	
	Timetable comparison for non-authenticated users
	Philosophy

	System Design
	Tech Stack
	Diagrams
	Class Diagrams
	Activity Diagram
	Use-Case Diagram

	Wireframes
	Landing Page
	Sign in/sign up
	
	Timetable Views
	
	Social Network
	
	

	
	Software Engineering Practices
	Component-Based Architecture
	N-Tier Architecture
	
	Version Control
	Branching
	Pull Requests

	Testing
	Unit Testing
	User Testing
	Integration Testing
	Regression Testing

	Bug Fixing
	Bugs Found and Solutions

	Development Plan
	Testing Plan
	Unit testing of components
	
	Unit testing of functions
	Integration testing
	Regression testing
	User testing
	Methodology
	Questions
	Results

	Beta testing

	General Problems Encountered
	Time Constraints
	Lack of Experience
	Feature Complexity

	
	Limitations
	Username and email lock-in
	Username limitation

	
	Appendix
	Features (as from Milestone 1)
	Timetable Comparison
	Social Network
	Quality of Life (QoL) Improvements

	Links

