

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

THEORY COURSE FILE CONTENTS

Check list Course Outcomes Attainment

S. No.	Contents	Available (Y/N/NA)	Date of Submission	Signature of HOD
1.	Authenticated Syllabus Copy	Y	01.09.2020	
2.	Individual Time Table	Y		
3.	Students' Name List (Approved Copy)	Y		
4.	Course Plan, PO, PSO, COs, CO-PO Mapping, COA Plan, Session Plan and Periodic Monitoring	Y		
5.	Previous Year End Semester Question Papers	Y		
6.	Question Bank (All Units - Part A, Part B & C)	Y		
7.	Dissemination of Syllabus and Course Plan to Students	Y		
8.	Lecture Notes - Unit I, II	Y		
9.	Sample Documents and Evaluation Sheet for Internal Assessment – Tutorials / Assignments / Class Test / Open Book Test / Quiz / Project / Seminar / Role Play if any (Before Mid Term)	Y	18.01.2021	
10.	Mid Term Examination A. Question Paper / Any Other Assessment Tools Used B. Sample Answer Scripts (Best, Average, Poor) if required C. Evaluation Sheet D. Slow Learners List and Remedial Measures	Y	26.03.2021	
11.	Lecture Notes – Unit III	Y		
12.	Sample Documents and Evaluation Sheet for Internal Assessment – Tutorials / Assignments / Class Test / Open Book Test / Quiz / Project / Seminar / Role Play if any (After Mid Term)	Y		
13.	Course End Survey (Indirect Assessment) & Consolidation	Y		
14.	End Term Examination A. Question Paper & Answer Key B. Sample Answer Scripts (Best, Average, Poor) if required C. Evaluation Sheet	Y		

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

	D. Slow Learners List and Remedial Measures.			
15.	Content Beyond the Syllabus (Proof)	Y		
16.	Innovative Teaching Tools Used for TLP	Y		
17.	Details of Visiting Faculty Session / Industry Expert / Guest Lecture / Seminar / Field Visit / Webinars / Flipped Class Room / Blended Learning / Online Resources etc.	Y		
18.	Consolidated Mark Statement	Y		
19.	CO Attainment (Mid Term + Internal Assessment + End Term)	Y	07.04.2021	
20.	Gap Analysis & Remedial Measures	Y		
21.	CO - PO Attainment	Y		
22.	Class Record (Faculty Logbook)	Y		

Signature of HOD/ Dean

Date:

Signature of Faculty

Date: 07.04.2021

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

MTH11501	Engineering Mathematics I	L	T	P	C
Version 1.0	Contact Hours - 60	3	1	0	4
Pre-requisites/Exposure	12 th level Mathematics				
Co-requisites	--				
Academic year	2020-21				

Syllabus Copy

Course Objectives

1. To help the student to understand basic concept of abstract and vector algebra with its uses in engineering science.
2. To give emphasis about concepts of differential calculus and enable students to apply these topics in real life problems.
3. To give the students a perspective to learn integral calculus and its importance in advanced study in engineering science.
4. To enable students, acquire fundamental concept of ordinary differential equation and its applications in engineering science.

Course Content

Unit- I

[20L]

Group Theory: Review of concept of set theory, Binary operations, group, abelian group, subgroups, necessary and sufficient condition for a subset of group to be a subgroup, ring, field, examples.

Sequences and Series: Sequences and their limits, convergence of series, comparison test, Ratio test, Root test, Absolute and conditional convergence, alternating series, Power series.

Vector Algebra: Scalar and vector fields, Vector product, Scalar triple product and their interpretation, directional derivative, gradient, Curl, divergence.

Unit- II

[15L]

Differential Calculus (Functions of one Variable): Limit, continuity, differentiability of functions of single variable, successive differentiation, Leibnitz's theorem, Rolle's Theorem, Cauchy's mean value theorem, Taylor's and Maclaurin's theorems with remainders, indeterminate forms, concavity and convexity of a curve, points of inflexion, asymptotes and curvature.

Differential Calculus (Functions of several variables): Limit, continuity, Differentiability of functions of several variables, partial derivatives and their geometrical interpretation, differentials, derivatives of composite and implicit functions, Euler's theorem on homogeneous functions, harmonic functions, maxima and minima of functions of several variables, Lagrange's method of multipliers.

6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course	: Engineering Mathematics I	L: 3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target	: 60%	P: 0 C: 4

Unit- III

[15L]

Integral Calculus: Fundamental theorem of integral calculus, mean value theorems, evaluation of definite integrals, reduction formulae. Convergence of improper integrals, tests of convergence, Beta and Gamma functions, elementary properties, Differentiation under integral sign, differentiation of integrals with variable limits, Leibnitz rule. Rectification, double and triple integrals, computations of area, surfaces and volumes, change of variables in double integrals, Jacobian's of transformations, integrals dependent on parameters, applications.

Unit-IV

[10L]

Ordinary Differential Equations: First order differential equations, exact, linear and Bernoulli's form, second order differential equations with constant coefficients, method of variation of parameters, general linear differential equations with constant coefficients, Euler's equations, Cauchy-Legendre's equation system of differential equations.

References:

1. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons
2. B.V. Ramana, Higher Engineering Mathematics Tata McGraw-Hill.
3. B.S. Grewal, Higher Engineering Mathematics, Khanna Publications
4. C. B. Gupta, S. R. Singh, Mukesh Kumar, Engineering Mathematics, McGraw Hill Publication.
5. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publishing House, 2002

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

Faculty Individual Time Table

ADAMAS UNIVERSITY, KOLKATA								
SCHOOL OF ENGINEERING & TECHNOLOGY (SOET)								
ALL ENGINEERING DEPARTMENT								
PROGRAMME: B.TECH (BIOMED/CSE/EE/ECE/CE/ME)								
Course Code & Course: MTH11501 & Engineering Mathematics I Faculty Coordinator: Dr. Avik Pradhan (AP) & Dr. Sudip Jana (SJ)								
Day & Time	09.30 - 10.25	10.30 - 11.25	11.30 - 12.25	12.30 - 13.25	13.30 - 14.25	14.30 - 15.25	15.30 - 16.25	16.30 - 17.25
Monday		<u>EM I</u> (SJ)						
Tuesday	<u>EM I</u> (AP)							
Wednesday								
Thursday	<u>EM I</u> (SJ)							
Friday					<u>EM I</u> (AP)			
LU NC H								

Signature of HOD

Date: 01.09.2020

Signature of Class Coordinator

Date: 01.09.2020

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

Students Name List

Registration Number	Roll Number	Name of the Student
AU/2020/0004250	UG/02/BTCSE/2020/001	ALOK DUTTA
AU/2020/0004275	UG/02/BTCSE/2020/002	SUNANDA JANA
AU/2020/0004276	UG/02/BTCSE/2020/003	SUPRATIM TARUN NATH
AU/2020/0004451	UG/02/BTCSE/2020/004	ABHIPSIT BHATTACHARJEE
AU/2020/0004452	UG/02/BTCSE/2020/005	TIRUPATI SANYAL
AU/2020/0004462	UG/02/BTCSE/2020/007	SURAJ MAJUMDER
AU/2020/0004463	UG/02/BTCE/2020/002	ROHIT KUMAR SHIT
AU/2020/0004464	UG/02/BTCSE/2020/008	ARKADEEP CHATTERJEE
AU/2020/0004465	UG/02/BTECE/2020/001	ARYA PAUL
AU/2020/0004466	UG/02/BTCSE/2020/009	RITUSHNA ROY
AU/2020/0004467	UG/02/BTCSE/2020/010	NIRVIK SARKAR
AU/2020/0004468	UG/02/BTCSE/2020/011	PRIMA GIRI
AU/2020/0004471	UG/02/BTME/2020/001	SUMAN HAIT
AU/2020/0004472	UG/02/BTCSE/2020/012	SOUGATA DUTT
AU/2020/0004479	UG/02/BTCSE/2020/018	PROTYUSH KR CHATTERJEE
AU/2020/0004481	UG/02/BTEE/2020/001	SAPTARSHI BHATTACHARJEE
AU/2020/0004484	UG/02/BTME/2020/002	KOUSHIK GHOSH
AU/2020/0004486	UG/02/BTECE/2020/002	UTSAB BOSE
AU/2020/0004494	UG/02/BTCSE/2020/022	INDRANIL DAS
AU/2020/0004495	UG/02/BTME/2020/004	RAKESH KUMAR MOZUMDER
AU/2020/0004523	UG/02/BTCSE/2020/026	SAYAN DAS
AU/2020/0004529	UG/02/BTCSE/2020/027	ATANU PRAMANICK
AU/2020/0004530	UG/02/BTCSE/2020/028	AYAN KUMAR DAS
AU/2020/0004536	UG/02/BTCE/2020/003	ARJYA DAS
AU/2020/0004540	UG/02/BTCSE/2020/032	MD ALNAS HOSSAIN
AU/2020/0004549	UG/02/BTCSE/2020/033	VIVEK RAJ
AU/2020/0004555	UG/02/BTME/2020/005	REETAM MONDAL
AU/2020/0004557	UG/02/BTCSEAIML/2020/006	SOUMYADWIP MAITY
AU/2020/0004560	UG/02/BTEE/2020/002	ARKA JYOTI DAS
AU/2020/0004562	UG/02/BTCSE/2020/034	SOYATA SAHA
AU/2020/0004563	UG/02/BTCSEAIML/2020/009	ROHIT KUMAR ROY
AU/2020/0004565	UG/02/BTCSE/2020/035	NIKHIL KUMAR JHA
AU/2020/0004566	UG/02/BTECE/2020/004	ROHIT RAJ HALDER

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

AU/2020/0004569	UG/02/BTCSE/2020/036	NANDINI ROY
AU/2020/0004572	UG/02/BTCSEAIML/2020/011	SUBARNA BHOWMIK
AU/2020/0004578	UG/02/BTCSEAIML/2020/013	MD SOHAIL IRFAN
AU/2020/0004580	UG/02/BTCSE/2020/041	RAJA BANIK
AU/2020/0004583	UG/02/BTCSE/2020/042	ARSHAD RAJA
AU/2020/0004587	UG/02/BTCSECSF/2020/006	SABYASACHI PAUL
AU/2020/0004588	UG/02/BTCSEAIML/2020/015	CHANDRACHUR MAJHI
AU/2020/0004593	UG/02/BTCSE/2020/046	HRITIK KUMAR DUTTA
AU/2020/0004596	UG/02/BTCSE/2020/047	SHIULI MAHATA
AU/2020/0004600	UG/02/BTBIOME/2020/002	RAVI LAL
AU/2020/0005281	UG/02/BTBIOME/2020/008	GAURAV GAIN
AU/2020/0005498	UG/02/BTBIOME/2020/003	SOUMYADEEP SAMADDAR
AU/2020/0005499	UG/02/BTBIOME/2020/004	SPANDAN BHATTACHAARYA
AU/2020/0005541	UG/02/BTCSE/2020/051	ANANYA MONDAL
AU/2020/0005542	UG/02/BTCSE/2020/052	ANIRBAN ROY

Signature of HOD/Dean

Date: 01.09.2020

Signature of Class Coordinator

Date: 01.09.2020

Year: I
Semester: I

6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course	: Engineering Mathematics I	L: 3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target	: 60%	P: 0
		C: 4

6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course	: Engineering Mathematics I	L: 3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target	: 60%	P: 0 C: 4

COURSE PLAN

Target	60% (marks)
Level-1	50% (population)
Level-2	60% (population)
Level-3	70% (population)

1. Method of Evaluation

UG

Internal Assessment (30%)
(Quizzes/Tests, Assignments & Seminars etc.)
Mid Semester Examination (20%)
End Semester Examination (50%)

2. Passing Criteria

Scale	UG
Out of 10 Point Scale	CGPA – “5.00” Min. Individual Course Grade – “C” Passing Minimum – 35

3. Pedagogy

- **Direct Instruction**
- Kinesthetic Learning
- **Flipped Classroom**
- Differentiated Instruction
- Expeditionary Learning
- Inquiry Based Learning
- Game Based Learning
- Personalized Learning

4. Topics introduced for the first time in the program through this course

5. References:

Text Books	Web Resources	Journals	Reference Books
-	-	-	5

Signature of HOD/Dean

Date: 01.09.2020

Signature of Faculty

Date: 01.09.2020

Year: I
Semester: I

6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code:	MTH11501
7. Course	: Engineering Mathematics I	L:	3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T:	1
9. Target	: 60%	P:	0
		C:	4

GUIDELINES TO STUDY THE SUBJECT

Instructions to Students:

1. Go through the 'Syllabus' in the LMS in order to find out the Reading List.
2. Get your schedule and try to pace your studies as close to the timeline as possible.
3. Get your on-line lecture notes (Content, videos) at Lecture Notes section. These are our lecture notes. Make sure you use them during this course.
4. check your LMS regularly
5. go through study material
6. check mails and announcements on blackboard
7. keep updated with the posts, assignments and examinations which shall be conducted on the blackboard
8. Be regular, so that you do not suffer in any way
9. **Cell Phones and other Electronic Communication Devices:** Cell phones and other electronic communication devices (such as Blackberries/Laptops) are not permitted in classes during Tests or the Mid/Final Examination. Such devices MUST be turned off in the class room.
10. **E-Mail and online learning tool:** Each student in the class should have an e-mail id and a pass word to access the LMS system regularly. Regularly, important information – Date of conducting class tests, guest lectures, via online learning tool. The best way to arrange meetings with us or ask specific questions is by email and prior appointment. All the assignments preferably should be uploaded on online learning tool. Various research papers/reference material will be mailed/uploaded on online learning platform time to time.
11. **Attendance:** Students are required to have minimum attendance of 75% in each subject. Students with less than said percentage shall NOT be allowed to appear in the end semester examination.

This much should be enough to get you organized and on your way to having a great semester! If you need us for anything, send your feedback through e-mail avik.pradhan@adamasuniversity.ac.in and sudip.jana@adamasuniversity.ac.in. Please use an appropriate subject line to indicate your message details.

There will no doubt be many more activities in the coming weeks. So, to keep up to date with all the latest developments, please keep visiting this website regularly.

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

RELATED OUTCOMES

1. The expected outcomes of the Program are:

PO1	Engineering Knowledge
PO2	Problem analysis
PO3	Design/development of solutions
PO4	Conduct investigations of complex problems
PO5	Modern tool usage
PO6	The engineer and society
PO7	Environment and sustainability
PO8	Ethics
PO9	Individual and team work
PO10	Communication
PO11	Project management and finance
PO12	Life-long Learning

2. The expected outcomes of the Course are: (minimum 4 and maximum 6)

CO1 **Relate** the idea of basic concepts of abstract algebra and geometrical idea of vector analysis with real world applications.

CO2 **Extend** the fundamental concepts of differential calculus to apply in real life problems.

CO3 **Make use of** the fundamental concepts of Integral Calculus and apply these topics in real life problems.

CO4 **Apply** various solution procedures of Ordinary Differential equations in engineering problems.

3. Co-Relationship Matrix

Indicate the relationships by 1- Slight (Low) 2- Moderate (Medium) 3-Substantial (High)

Program Outcomes \ Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	3	-	-	-	-	-	-	-
CO2	3	3	-	-	3	-	-	-	-	-	-	-
CO3	3	3	-	-	3	-	-	-	-	-	-	-

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

CO4	3	3	-	-	3	-	-	-	-	-	-	-	-	-
Average	3	3	-	-	3	-	-	-	-	-	-	-	-	-

4. Course Outcomes Assessment Plan (COA):

Course Outcomes	Internal Assessment* (30 Marks)		Mid Term Exam (20 Marks)	End Term Exam (50 Marks)	Total (100 Marks)
	Before Mid Term	After Mid Term			
CO1	5	NA	11	8	24
CO2	5	NA	9	15	29
CO3	NA	10	NA	13	23
CO4	NA	10	NA	14	24
Total	10	20	20	50	100

* Internal Assessment – Tools Used: Assignment & Class Test

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

OVERVIEW OF COURSE PLAN OF COURSE COVERAGE

Course Activities:

S. No .	Description	Planned			Actual			Remarks
		From	To	No. of Session	From	To	No. of Session	
1.	Basic algebra & Vector Calculus	03.09.2020	14.12.2020	20	03.09.2020	14.12.2020	20	Completed As per Plan
2.	Differential Calculus	01.09.2020	24.11.2020	15	01.09.2020	24.11.2020	15	Completed As per Plan
3.	Integral Calculus	01.12.2020	26.02.2021	15	01.12.2020	26.02.2021	15	Completed As per Plan
4.	Ordinary differential equations	21.12.2020	26.02.2021	10	21.12.2020	26.02.2021	10	Completed As per Plan

Total No. of Instructional periods available for the course: 60 Sessions (including tutorials)

Signature of HOD/Dean

Date: 01.09.2020

Signature of Faculty

Date: 01.09.2020

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana

Course Code: MTH11501

7. Course : Engineering Mathematics I

L: 3

8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)

T: 1

9. Target : 60%

P: 0

C: 4

SESSION PLAN UNIT-I

Session Plan				Actual Delivery			
Lect .	Date	Topics to be Covered	CO Mapped	Lect .	Date	Topics Covered	CO Achieved
1	3.9.2020	Review of concept of set theory.	CO1	1	3.9.2020	Review of concept of set theory.	CO1
2	7/9/2020	Idea of relations and functions.	CO1	2	7/9/2020	Idea of relations and functions.	CO1
3	10/9/2020	Idea of binary operations and examples.	CO1	3	10/9/2020	Idea of binary operations and examples.	CO1
4	14/9/2020	Definition of group, examples, abelian group.	CO1	4	14/9/2020	Definition of group, examples, abelian group.	CO1
5	17/9/2020	Definition of subgroup, Examples,	CO1	5	17/9/2020	Definition of subgroup, Examples,	CO1
6	24/9/2020	Condition of a subset for a group to be a subgroup	CO1	6	24/9/2020	Condition of a subset for a group to be a subgroup	CO1
7	28/9/2020	Introduction to ring theory.	CO1	7	28/9/2020	Introduction to ring theory.	CO1
8	1/10/2020	Preliminary properties of Ring Theory.	CO1	8	1/10/2020	Preliminary properties of Ring Theory.	CO1
9	5/10/2020	Idea of Integral Domain and examples.	CO1	9	5/10/2020	Idea of Integral Domain and examples.	CO1

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana

Course Code: MTH11501

7. Course : Engineering Mathematics I

L: 3

8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)

T: 1

9. Target : 60%

P: 0

C: 4

10	8/10/2020	Idea of Skew field along with examples.	CO1	10	8/10/2020	Idea of Skew field along with examples.	CO1
11	15/10/2020	Introduction to field theory and its properties.	CO1	11	15/10/2020	Introduction to field theory and its properties.	CO1
12	19/10/2020	Different aspects of Rings and Fields	CO1	12	19/10/2020	Different aspects of Rings and Fields	CO1
13	2/11/2020	Problem session on ring and field.	CO1	13	2/11/2020	Problem session on ring and field.	CO1
14	9/11/2020	Scalar field, definitions	CO1	14	9/11/2020	Scalar field, definitions	CO1
15	12/11/2020	Vector field, definitions	CO1	15	12/11/2020	Vector field, definitions	CO1
16	19/11/2020	Vector product and their properties	CO1	16	19/11/2020	Vector product and their properties	CO1
17	26/11/2020	Definition and properties of Scalar triple product.	CO1	17	26/11/2020	Definition and properties of Scalar triple product.	CO1
18	3/12/2020	Directional derivative and related problems.	CO1	18	3/12/2020	Directional derivative and related problems.	CO1
19	7/12/2020	Definition of gradient, Curl, divergence and its geometric interpretation	CO1	19	7/12/2020	Definition of gradient, Curl, divergence and its geometric interpretation	CO1
20	14/12/2020	Problems on gradient, Curl, divergence.	CO1	20	14/12/2020	Problems on gradient, Curl, divergence.	CO1

Remarks: NA

Signature of Faculty

Date: 30.09.2020

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana

Course Code: MTH11501

7. Course : Engineering Mathematics I

L: 3

8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)

T: 1

9. Target : 60%

P: 0

C: 4

SESSION PLAN UNIT-II

Session Plan				Actual Delivery			
Lec t.	Date	Topics to be Covered	CO Mapped	Lect .	Date	Topics Covered	CO Achieved
1	01.09.2020	Idea of Limit and continuity	CO2	1	01.09.2020	Idea of Limit and continuity	CO2
2	04.09.2020	Idea of Derivative of a function and Successive derivative	CO2	2	04.09.2020	Idea of Derivative of a function and Successive derivative	CO2
3	11.09.2020	Problems on Successive Derivatives.	CO2	3	11.09.2020	Problems on Successive Derivatives.	CO2
4	15.09.2020	Leibnitz theorem with applications	CO2	4	15.09.2020	Leibnitz theorem with applications	CO2
5	22.09.2020	Problems on Leibnitz theorem.	CO2	5	22.09.2020	Problems on Leibnitz theorem.	CO2
6	25.09.2020	Rolle's theorem and Cauchy's Mean value theorem	CO2	6	25.09.2020	Rolle's theorem and Cauchy's Mean value theorem	CO2
7	29.09.2020	Taylor and Maclaurin's theorems with remainders	CO2	7	29.09.2020	Taylor and Maclaurin's theorems with remainders	CO2
8	06.10.2020	Idea of sequences and series along with convergence tests	CO2	8	06.10.2020	Idea of sequences and series along with convergence tests	CO2
9	13.10.2020	Idea of indeterminate forms, concavity and convexity of a curve, points of inflexion	CO2	9	13.10.2020	Idea of indeterminate forms, concavity and convexity of a curve, points of inflexion	CO2

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana

Course Code: MTH11501

7. Course : Engineering Mathematics I

L: 3

8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)

T: 1

9. Target : 60%

P: 0

C: 4

10	20.10.2020	Preliminary idea of Asymptotes.	CO2	10	20.10.2020	Preliminary idea of Asymptotes.	CO2
11	27.10.2020	Preliminary idea of Curvature.	CO2	11	27.10.2020	Preliminary idea of Curvature.	CO2
12	03.11.2020	Limit, continuity, Differentiability of functions of several variables,	CO2	12	03.11.2020	Limit, continuity, Differentiability of functions of several variables,	CO2
13	10.11.2020	Partial derivatives and their geometrical interpretation, differentials, derivatives of composite and implicit functions,	CO2	13	10.11.2020	Partial derivatives and their geometrical interpretation, differentials, derivatives of composite and implicit functions,	CO2
14	17.11.2020	Euler's theorem on homogeneous functions, harmonic functions,	CO2	14	17.11.2020	Euler's theorem on homogeneous functions, harmonic functions,	CO2
15	24.11.2020	maxima and minima of functions of several variables, Lagrange's method of multipliers	CO2	15	24.11.2020	maxima and minima of functions of several variables, Lagrange's method of multipliers	CO2

Remarks: NA

Signature of Faculty

Date: 27.11.2021

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana

Course Code: MTH11501

7. Course : Engineering Mathematics I

L: 3

8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)

T: 1

9. Target : 60%

P: 0

C: 4

SESSION PLAN UNIT-III

Session Plan				Actual Delivery			
Le ct.	Date	Topics to be Covered	CO Mapped	Lect .	Date	Topics Covered	CO Achieved
1	01/12/2020	Fundamental theorem of integral calculus, mean value theorems	CO3	1	01/12/2020	Fundamental theorem of integral calculus, mean value theorems	CO3
2	04/12/2020	Evaluation of definite integrals, reduction formulae	CO3	2	04/12/2020	Evaluation of definite integrals, reduction formulae	CO3
3	08/12/2020	Different kind of reduction formulas.	CO3	3	08/12/2020	Different kind of reduction formulas.	CO3
4	11/12/2020	Convergence of improper integrals, tests of convergence	CO3	4	11/12/2020	Convergence of improper integrals, tests of convergence	CO3
5	15/12/2020	Beta and Gamma functions, elementary properties	CO3	5	15/12/2020	Beta and Gamma functions, elementary properties	CO3
6	22/12/2020	Problems on Beta Gamma functions.	CO3	6	22/12/2020	Problems on Beta Gamma functions.	CO3
7	05/01/2021	Differentiation under integral sign.	CO3	7	05/01/2021	Differentiation under integral sign.	CO3
8	08/01/2021	Differentiation of integrals with variable limits.	CO3	8	08/01/2021	Differentiation of integrals with variable limits.	CO3

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana

Course Code: MTH11501

7. Course : Engineering Mathematics I

L: 3

8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)

T: 1

9. Target : 60%

P: 0

C: 4

9	19/01/2021	Leibnitz rule.	CO3	9	19/01/2021	Leibnitz rule.	CO3
10	22/01/2021	Rectification, double and triple integrals	CO3	10	22/01/2021	Rectification, double and triple integrals	CO3
11	02/02/2021	Change of variables in double integrals.	CO3	11	02/02/2021	Change of variables in double integrals.	CO3
12	05/02/2021	Computations of area.	CO3	12	05/02/2021	Computations of area.	CO3
13	09/02/2021	Computations of surface and volume.	CO3	13	09/02/2021	Computations of surface and volume.	CO3
14	23/02/2021	Jacobian's of transformations.	CO3	14	23/02/2021	Jacobian's of transformations.	CO3
15	26/02/2021	Integrals dependent on parameters, applications.	CO3	15	26/02/2021	Integrals dependent on parameters, applications.	CO3

Remarks: NA

Signature of Faculty

Date: 26.02.2021

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana

Course Code: MTH11501

7. Course : Engineering Mathematics I

L: 3

8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)

T: 1

9. Target : 60%

P: 0

C: 4

SESSION PLAN UNIT-IV

Session Plan				Actual Delivery			
Lect .	Date	Topics to be Covered	CO Mapped	Lect .	Date	Topics Covered	CO Achieved
1	21/12/2020	Differential Equations: Basic definitions, Formation, Type of Solutions of a differential equation, Illustrative examples	CO4	1	21/12/2020	Differential Equations: Basic definitions, Formation, Type of Solutions of a differential equation, Illustrative examples	CO4
2	4/1/2021	Differential equation of First order and first degree: Exact equations, Necessary and sufficient condition of exactness of a first order and first degree ODE (statement only), Illustrative examples	CO4	2	4/1/2021	Differential equation of First order and first degree: Exact equations, Necessary and sufficient condition of exactness of a first order and first degree ODE (statement only), Illustrative examples	CO4
3	7/1/2021	Rules for finding Integrating factors, Illustrative examples	CO4	3	7/1/2021	Rules for finding Integrating factors, Illustrative examples	CO4
4	21/1/2021	Linear equation, Bernoulli's equation, Illustrative examples	CO4	4	21/1/2021	Linear equation, Bernoulli's equation, Illustrative examples	CO4
5	25/1/2021	ODE- Higher order and first degree: General linear ODE of order two with constant coefficients, C.F. & P.I. Illustrative examples	CO4	5	25/1/2021	ODE- Higher order and first degree: General linear ODE of order two with constant coefficients, C.F. & P.I. Illustrative examples	CO4

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana

Course Code: MTH11501

7. Course : Engineering Mathematics I

L: 3

8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)

T: 1

9. Target : 60%

P: 0

C: 4

6	1/2/2021	D-operator methods for finding P.I., Illustrative examples	CO4	6	1/2/2021	D-operator methods for finding P.I., Illustrative examples	CO4
7	4/2/2021	Method of variation of parameters, Illustrative examples	CO4	7	4/2/2021	Method of variation of parameters, Illustrative examples	CO4
8	11/2/2021	Cauchy-Euler equations, Illustrative examples	CO4	8	11/2/2021	Cauchy-Euler equations, Illustrative examples	CO4
9	15/2/2021	Solution of simultaneous linear differential equations, Illustrative examples	CO4	9	15/2/2021	Solution of simultaneous linear differential equations, Illustrative examples	CO4
10	25/02/2021	Geometrical and physical applications	CO4	10	25/02/2021	Geometrical and physical applications	CO4

Remarks: NA

Signature of Faculty

Date: 26.02.2021

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

PERIODIC MONITORING

Actual date of completion and remarks, if any

Components	From	To	From	To
Duration (Mention from and to Dates)	01.09.2020	16.01.2021	18.01.2021	24.03.2021
Percentage of Syllabus covered	50%		50%	
Lectures	Planned	1	30	31
	Taken	1	30	31
Tutorials	Planned	NA		
	Taken			
Test/Quizzes/ Mid Semester/ End Semester	Planned	1	1 (Mid)	1 (End)
	Taken	1	1	1
	CO's Addressed	CO1, CO2	CO1, CO2	CO1, CO2, CO3, CO4
	CO's Achieved	CO1, CO2	CO1, CO2	CO1, CO2, CO3, CO4
Assignments	Planned	1		
	Taken	1		
	CO's Addressed	CO3, CO4		
	CO's Achieved	CO3, CO4		
Signature of Faculty				
Head of the Department				
OBE Coordinator				

Signature of HOD/ Dean

Date: 26.03.2021

Signature of Faculty

Date: 26.03.2021

Year: I
Semester: I

6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course	: Engineering Mathematics I	L: 3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target	: 60%	P: 0 C: 4

PERIODIC MONITORING

Attainment of the Course (Learning) Outcomes:

Components	Attainment level	Action Plan	Remarks
Assignment	CO1:		
	CO2:		
	CO3:	Submission Target	Covered most of the syllabus
	CO4:	28.02.2021	
Quiz/Test etc.	CO1:	Conducted on 22.12.2020	Covered First two units
	CO2:		
	CO3:		
	CO4:		
Mid Semester	CO1:	Scheduled on 12.01.2021	Previous year questions are provided to give an idea about the examination pattern
	CO2:		
	CO3:		
	CO4:		
End Semester	CO1:	Scheduled on 22.03.2021	Previous year questions are provided to give an idea about the examination pattern
	CO2:		
	CO3:		
	CO4:		
Any Other	CO1:		
	CO2:	NA	
	CO3:		
	CO4:		

Signature of HOD/ Dean

Date: 26.03.2021

Signature of Faculty

Date: 26.03.2021

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

Previous Year Question Papers – Set 1

PAPER NAME: Engineering Mathematics-I

PAPER CODE: SMA41101

Maximum Marks: 40

Time: 3 hours

Total No of questions: 12

Total No of Pages: 02

General Instructions to Candidates:

1. Please follow all the Instructions given on the cover page of the answer book.
2. Assumptions /abbreviation made if any should be stated clearly at the beginning of your answer.
3. Questions should be answered sequentially.
4. Start answering each section (sections A, B &C) from a new page.

Section-A (Answer ANY FIVE from the following):

$$[1 \times 5=5]$$

1. The differential equation of the family of curves $y = Ae^{2x} + Be^{-2x}$ after eliminating A and B is

(a) $y_2 = 4y$ (b) $yy'' = (y')^2$ (c) $2yy'' = y' + y$ (d) none of these.

2. An integrating factor of $\frac{dy}{dx} + y = \frac{1+y}{x}, x > 0$ is

(a) $\frac{x}{e^x}$ (b) $\frac{e^x}{x}$ (c) xe^{-x} (d) e^x .

3. $\beta(3,2)$ is equal to

(a) $\frac{3}{2}$ (b) $\frac{1}{12}$ (c) $\frac{5}{8}$ (d) $\frac{3}{4}$.

4. The series $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots$ is

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

Section-B (Answer ANY THREE Questions): [5 x 3=15]

7. Discuss the convergence of the following series:

a)
$$\sum_{n=1}^{\infty} \frac{\cos \cos(nx)}{n^2}$$

b)
$$\sum_{n=1}^{\infty} \frac{u_n}{u_{n+1}}, \text{ if } \sum_{n=1}^{\infty} u_n \text{ is divergent.}$$

c)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

8. Find $f_{xx}(0,0)$, $f_{xy}(0,0)$, $f_{yx}(0,0)$, $f_{yy}(0,0)$ if

$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & , \text{ for } (x,y) \neq (0,0) \\ 0 & , \text{ for } (x,y) = (0,0) \end{cases}$$

9. Define “Bernoulli’s equation”. Hence solve: $2x^2 \frac{dy}{dx} = xy + y^2$

10. Solve by the method of variation of parameters:

Section-C (Answer ALL Questions): [2x10=20]

11. (a) If the perimeter of a triangle is constant, prove that the area of the triangle is maximum if the triangle is equilateral.

(a) If $f(v^2 - x^2, v^2 - y^2, v^2 - z^2) = 0$ prove that $\frac{1}{x} \frac{\partial V}{\partial x} + \frac{1}{y} \frac{\partial V}{\partial y} + \frac{1}{z} \frac{\partial V}{\partial z} = \frac{1}{v}$.

(b) Find $\int_0^{\frac{\pi}{2}} (\tan x)^p dx$.

(c) Prove that the sequence u_n defined by $u_1 = \sqrt{7}$ and $u_{n+1} = \sqrt{7u_n}$ for all $n \geq 1$ is convergent.

12. (a) Solve the following ODE $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 4y = 10(x + \frac{1}{x})$

(b) Solve the following system of simultaneous linear differential equations:

$$\frac{dx}{dt} + 5x + y = e^t, \quad \frac{dy}{dt} + 3y - x = e^{2t}.$$

Year: I
Semester: I

6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course	: Engineering Mathematics I	L: 3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target	: 60%	P: 0
		C: 4

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

Previous Year Question Papers – Set 2

ADAMAS UNIVERSITY
END -TERM EXAMINATIONS (January, 2018)
Name of the Program: B.Tech. SEMESTER-I
PAPER CODE: SMA41101
Time: 3 hours

General Instructions to Candidates:

5. Please follow all the Instructions given on the cover page of the answer book.
6. Assumptions /abbreviation made if any should be stated clearly at the beginning of your answer.
7. Questions should be answered sequentially.
8. Start answering each section (sections A, B &C) from a new page.

Section-A (Answer ANY FIVE from the following) [1 x 5=5]

1. The differential equation of the family of curves $y = x(A+B)^2$ after eliminating A and B is
 (b) $2yy'' = (y')^2$ (b) $yy'' = (y')^2$ (c) $2yy'' = y' + y$ (d)
 $2yy'' = y' - y$

2. The Wronskian of the independent solutions of $(D^2 - 2D)y = 0$ is
 (a) e^{2x} (b) $2e^{2x}$ (c) $2e^x$ (d) None of these.

3. $\beta(3, 2)$ is equal to
 (b) $\frac{3}{2}$ (b) $\frac{1}{12}$ (c) $\frac{5}{8}$ (d) $\frac{3}{4}$.

4. The series $\sum \frac{1}{n^p}$ is convergent if

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

Section-B (Answer ANY THREE Questions): **[5 x 3=15]**

7. Discuss the convergence of the following series:

d)
$$\sum_{n=1}^{\infty} \frac{\sin \sin(nx)}{n^2}$$

e)
$$\sum_{n=1}^{\infty} \frac{u_n}{u_{n+1}}, \text{ if } \sum_{n=1}^{\infty} u_n \text{ is convergent.}$$

f)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

8. Find $f_{xx}(0, 0)$, $f_{xy}(0, 0)$, $f_{yx}(0, 0)$, $f_{yy}(0, 0)$ if

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{(x^2 + y^2)} & , \text{ for } (x, y) \neq (0, 0) \\ 0 & , \text{ for } (x, y) = (0, 0) \end{cases}$$

9. Define “Linear differential equation”. Hence solve: $(x^2 y^3 + 2xy)dy = dx$

Section-C (Answer ALL Questions): [2x10=20]

11. (a) Find the dimension of a rectangular box of maximum capacity whose surface area is given when the box is open at the top.

(e) If $V = f\left(\frac{x}{z}, \frac{y}{z}\right)$, prove that $x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} + z \frac{\partial V}{\partial z} = 0$.

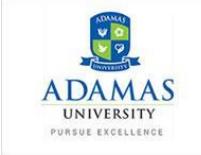
(f) Find $\int_0^{\frac{\pi}{2}} (\cot x)^p dx$.

(g) Prove that the sequence u_n defined by $u_1 = \sqrt{2}$ and $u_{n+1} = \sqrt{2u_n}$ for all $n \geq 1$ is convergent.

12. (a) Reduce the following differential equation to a homogeneous differential equation and hence solve it. $(x + 2)^2 \frac{d^2y}{dx^2} - 4(x + 2) \frac{dy}{dx} + 4y = 2 \sin \sin \{2 \log \log (2 + x)\}$

(b) Solve the following system of simultaneous linear differential equations:

Year: I
Semester: I


6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course	: Engineering Mathematics I	L: 3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target	: 60%	P: 0 C: 4

$$\frac{dx}{dt} - 7x + y = 0, \quad \frac{dy}{dt} - 2x - 5y = 0.$$

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

Question Bank Sample

<p>School: School of Engineering and Technology Course Code: MTH11501 Program: B.Tech Department: Computer Science and Engineering Course Name: Engineering Mathematics-I Semester: I</p>				
Sl. No .	Question	Level of Difficulty (Easy/ Medium/ Difficult)	Knowledge Level (Bloom's Taxonomy)	Course Outcome (CO)
UNIT-I				
Part A (Multiple Choice Questions) (1 mark each)				
1.	If $\vec{r} = \hat{x}i + \hat{y}j + \hat{z}k$ then $\vec{div}r$ is i) 0 ii) 3 iii) -3 iv) 1	Easy	Remembering	CO1
2.	If \vec{c} is a constant vector and $\vec{r} = \hat{x}i + \hat{y}j + \hat{z}k$ then $grad(c. \vec{r})$ is i) \vec{c} ii) $2\vec{c}$ iii) \vec{r} iv) $2\vec{r}$	Medium	Remembering	CO1
3.	The series $\sum \frac{1}{n^p}$ is convergent if i) $p \geq 1$ ii) $p > 1$ iii) $p < 1$ iv) $p \leq 1$.	Difficult	Remembering	CO1
Part B (Definition/Naming Questions) (2 marks each)				
1.	Show that intersection of two subgroup of a group is also a subgroup of that group.	Easy	Remembering	CO1
2.	Let G be a commutative group. Show that the subset $S = \{p \in G : p = p^{-1}\}$ forms a subgroup of G.	Medium	Remembering	CO1
3.	Show that in a group a left identity is also a right identity.	Difficult	Understanding	CO1
Part C (Short Questions) (3-4 marks each)				

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

1.	A relation ρ is defined on the set Z by " $a \rho b$ if and only if $a - b$ is divisible by 5". Then check whether ρ is an equivalence relation.	Easy	Understanding	CO1
2.	Test the convergence of the following series: $\sum_{n=1}^{\infty} \frac{n! 2^n}{n^n}$	Medium	Understanding	CO1
3.	Show that $\operatorname{div}(\vec{A} + \vec{B}) = \operatorname{div}\vec{A} + \operatorname{div}\vec{B}$.	Difficult	Remembering	CO1

Part D (Explanation Based Questions) (5 marks each)

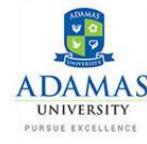
1.	If $\vec{r} = (a \cos t)\hat{i} + (a \sin t)\hat{j} + (a t \tan \alpha)\hat{k}$, then show that $\left[\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3} \right] = a^3 \tan \tan \alpha$.	Easy	Remembering	CO1
2.	Show that a proper vector \vec{r} has constant length if $\vec{r} \cdot \frac{d\vec{r}}{dt} = 0$.	Medium	Remembering	CO1
3.	Examine the convergence of the following series, $\sum_{n=1}^{\infty} \frac{n+2}{2(n+1)^2}$	Difficult	Understanding	CO1

Part E (Questions Based on Reasoning) (5 marks each)

1.	If $\vec{r} = \hat{x}\hat{i} + \hat{y}\hat{j} + \hat{z}\hat{k}$ and $r = \vec{r} $, show that $\operatorname{grad}f(r) \times \vec{r} = \vec{0}$.	Easy	Remembering	CO1
2.	Find $\operatorname{div}\vec{F}$ and $\operatorname{curl}\vec{F}$, where $\vec{F} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$	Medium	Understanding	CO1
3.	Consider two sets A and B, with $\eta(A) = 20$, $\eta(B) = 30$ and $\eta(A \cap B) = 10$, where η (A) represents number of elements of a set A. Then find $\eta(A \cup B)$.	Difficult	Remembering	CO1

Part F (Application Based Questions) (5-10 marks each)

1.	Examine the convergence of the following series,	Easy	Applying	CO1
----	--	------	----------	-----



6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

	(ii) $\frac{1.2}{3} + \frac{2.3}{5} + \frac{3.4}{7} + \dots$			
2.	Show that $[\vec{a} + \vec{b} \vec{b} + \vec{c} \vec{c} + \vec{a}] = 2[\vec{a} \vec{b} \vec{c}]$, where $\vec{a}, \vec{b}, \vec{c}$ are any three vectors.	Medium	Understanding	CO1
3.	Consider the mapping $f: Z \rightarrow Z$ defined by $f(x) = x + 1, x \in Z$. Then check whether f is a bijective mapping.	Difficult	Remembering	CO1

Part G (Short Notes) (5 marks each)

1.	If $\vec{r} = (\hat{x}\vec{i} + \hat{y}\vec{j} + \hat{z}\vec{k})$ then find $\operatorname{div} \vec{r}$ and $\operatorname{curl} \vec{r}$.	Easy	Understanding	CO1
2.	Show that a proper vector \vec{r} has constant magnitude if $\vec{r} \times \frac{d\vec{r}}{dt} = \vec{0}$.	Medium	Understanding	CO1
3.	Check that the following is a group or not: Consider the structure $(Q', *)$ where $Q' = Q - \{0\}$ and $* b = \frac{ab}{2}$, where $*$ is the binary operation defined on Q' .	Difficult	Applying	CO1

School: School of Engineering and Technology
Course Code: MTH11501
Program: B.Tech

Department: Computer Science and Engineering
Course Name: Engineering Mathematics-I
Semester: I

Sl. No	Question	Level of Difficulty (Easy/ Medium/ Difficult)	Knowledge Level (Bloom's Taxonomy)	Course Outcome (CO)
	UNIT-II			

Part A (Multiple Choice Questions) (1 mark each)

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

1.	The extreme value of xy when $x^2 + xy + y^2 = 1$ is: i)-1 ii) 1 iii) -2 iv) 0	Easy	Understanding	CO2
2.	The function $f(x, y) = 4x^2y - y^2 - 8x^4$ has maximum at: i)(1,1) ii) (1,-1) iii) (0,0) iv) (-1,1)	Medium	Understanding	CO2
3.	The function $f(x, y) = 3x^3 + 4x^2y - 3xy^2 - 4y$ is neither maximum nor minimum at i)(1,1) ii) (0,0) iii) (1,-1) iv) (0,1).	Difficult	Understanding	CO2

Part B (Definition/Naming Questions) (2 marks each)

1.	What is the value of y_n if $y = e^{ax}$?	Easy	Understanding	CO2
2.	Define homogeneous function.	Medium	Understanding	CO2
3.	Demonstrate Lagrange's Mean Value theorem.	Difficult	Understanding	CO2

Part C (Short Questions) (3-4 marks each)

1.	Find the value of $\frac{\sin x}{x}$ using L'Hospital rule.	Easy	Understanding	CO2
2.	Find the value of $\frac{\log x}{x}$.	Medium	Understanding	CO2
3.	Find the Jacobian $J\left(\frac{u,v}{x,y}\right)$ if $u = x - y$, $v = x^2 - y^2$.	Difficult	Understanding	CO2

Part D (Explanation Based Questions) (5 marks each)

1.	Find the value of y_n , if $y = \sin x \sin 2x$.	Easy	Understanding	CO2
2.	If $z = e^{xy}$, $x = \sin \sin t$, $y = \cos \cos t$, calculate $\frac{dz}{dt}$ at $t = \frac{\pi}{2}$.	Medium	Understanding	CO2
3.	Recall whether the function $f(x, y) = \frac{x^3 + y^3}{xy}$ is a homogeneous function or not.	Difficult	Understanding	CO2

Part E (Questions Based on Reasoning) (5 marks each)

1.	If $f(x, y) = x \cos y + y \sin x$, find $\frac{\partial^2 f}{\partial x \partial y}$.	Easy	Understanding	CO2
----	--	------	---------------	-----

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

2.	Find the value of $\frac{\partial f}{\partial x}$ at $(1, 1)$ from definition for the function $f(x, y) = \frac{x+y}{x+y+1}$.	Medium	Understanding	CO2
3.	If $u = \left(\frac{x+y}{\sqrt{x}-\sqrt{y}} \right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \frac{1}{2} \cot \cot u = 0$.	Difficult	Understanding	CO2

Part F (Application Based Questions) (5-10 marks each)

1.	Find the maximum value of $f(x) = \left(\frac{1}{x}\right)^x$.	Easy	Understanding	CO2
2.	If $y = e^{mx}$, show that $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - (n^2 + m^2)y_n = 0$.	Medium	Understanding	CO2
3.	Find maxima or minima of $f(x, y) = x^3 + y^3 - 3x - 12y + 20$.	Difficult	Understanding	CO2

Part G (Short Notes) (5 marks each)

1.	If $u = f(x, y)$, $x = r \cos \theta$, $y = r \sin \theta$, show that $u_x^2 + u_y^2 = u_r^2 + \frac{1}{r^2} u_\theta^2$.	Easy	Understanding	CO2
2.	Show that the function defined by $f(x) = x^p(1 - x)^q$, $p, q \in \mathbb{N}$ has a maximum value at $x = \frac{p}{p+q}$.	Medium	Understanding	CO2
3.	Find the value of a for which the following limit is finite: $\frac{\sin \sin 2x + a \sin \sin x}{x^3}$.	Difficult	Understanding	CO2

School: School of Engineering and Technology Course Code: MTH11501 Program: B.Tech	Department: Computer Science and Engineering Course Name: Engineering Mathematics-I Semester: I
--	---

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

Sl. No .	Question	Level of Difficulty (Easy/ Medium/ Difficult)	Knowledge Level (Bloom's Taxonomy)	Course Outcome (CO)
	UNIT-III			
Part A (Multiple Choice Questions) (1 mark each)				
1.	<p>The value of $\int_0^{\frac{\pi}{2}} x dx$ is</p> <p>i) $\frac{128}{195}$ ii) $\frac{128}{315}$ iii) $\frac{128\pi}{315}$ iv) none</p>	Easy	Understanding	CO3
2.	<p>The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x dx$ is</p> <p>i) $\frac{5}{32}$ ii) $\frac{7\pi}{16}$ iii) $\frac{5\pi}{16}$ iv) none</p>	Medium	Remembering	CO3
3.	<p>The value of $\int_0^{2\pi} x dx$ is</p> <p>i) $\frac{32}{15}$ ii) $\frac{8}{3}$ iii) $\frac{32\pi}{15}$ iv) $\frac{8\pi}{3}$</p>	Difficult	Applying	CO3
Part B (Definition/Naming Questions) (2 marks each)				
1.	Define Type I improper integral? Mention the various cases of it and ways to solve them.	Easy	Applying	CO3
2.	<p>Find: $\int \frac{x dx}{(x-a)^2 (x-b)}$</p>	Medium	Understanding	CO3
3.	<p>Find $\int_0^1 x^3 (1-x^2)^{\frac{5}{2}} dx$</p>	Difficult	Applying	CO3
Part C (Short Questions) (3-4 marks each)				
1.	Find the relation between Beta and Gamma function.	Easy	Understanding	CO3
2.	Find the volume generated by revolving the circle $x^2 + y^2 = a^2$ about X-axis .	Medium	Understanding	CO3

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

3.	Show that $B(m, n) = B(n, m)$.	Difficult	Applying	CO3
----	---------------------------------	-----------	----------	-----

Part D (Explanation Based Questions) (5 marks each)

1.	Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.	Easy	Applying	CO3
2.	Evaluate $\int_0^{\infty} \frac{dx}{1+x^4}$.	Medium	Remembering	CO3
3.	Find the dimension of a rectangular box of maximum capacity whose surface area is given when the box is open at the top.	Difficult	Understanding	CO3

Part E (Questions Based on Reasoning) (5 marks each)

1.	$\int_{-\infty}^{\infty} e^{-x^2} dx$ Evaluate: $-\infty$	Easy	Applying	CO3
2.	Using reduction formula prove that $\int_0^{\pi/2} \sin^n x dx = \begin{cases} \frac{n-1}{n} \frac{n-3}{n-2} \dots \frac{4}{5} \frac{2}{3} & \text{where } n \text{ is odd pos} \\ \frac{n-1}{n} \frac{n-3}{n-2} \dots \frac{3}{4} \frac{1}{2} \frac{\pi}{2} & \text{where } n \text{ is even pos} \end{cases}$	Medium	Understanding	CO3
3.	$\int_0^1 \int_0^1 \frac{x-y}{(x+y)^3} dy dx$ Evaluate	Difficult	Applying	CO3

Part F (Application Based Questions) (5-10 marks each)

1.	$\int_0^a \int_0^{\sqrt{a^2-y^2}} (x^2 + y^2) dx dy$ Evaluate by changing to polar coordinates.	Easy	Applying	CO3
2.	$\int_0^a \int_0^x \int_0^y x^3 y^2 z dx dy dz$ Evaluate	Medium	Understanding	CO3

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
 7. Course : Engineering Mathematics I L: 3
 8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
 9. Target : 60% P: 0
 C: 4

3.	Find the constants p, q so that the surface $px^2 - qyz = (p+2)x$ is orthogonal to the surface $4x^2y + z^3$ at the point $(1,2,-1)$.	Difficult	Remembering	CO3
----	--	-----------	-------------	-----

Part G (Short Notes) (5 marks each)

1.	Show that $\int_a^b (x-a)^m (b-x)^n dx = (b-a)^{m+n+1} B(m+1, n+1)$, $m, n > 0$.	Easy	Understanding	CO3
2.	Prove that $\Gamma(n+1) = n\Gamma(n)$ where $\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx, n > 0$. Hence evaluate $\int_0^\infty e^{-3x} x^4 dx$.	Medium	Understanding	CO3
3.	Obtain a reduction formula for $\int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx$ where $m, n > 1$ are positive integers.	Difficult	Applying	CO3

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

School: School of Engineering and Technology Course Code: MTH11501 Program: B.Tech	Department: Computer Science and Engineering Course Name: Engineering Mathematics-I Semester: I
--	---

Sl. No .	Question	Level of Difficulty (Easy/ Medium/ Difficult)	Knowledge Level (Bloom's Taxonomy)	Course Outcome (CO)
	UNIT-IV			

Part A (Multiple Choice Questions) (1 mark each)

1.	The order of the equation $\frac{dy}{dx} + 5y = 0$ is: i) 0 ii) 2 iii) 1 iv) 5.	Easy	Applying	CO4
2.	An equation is said to be exact if i) $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ ii) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ iii) $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$ iv) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$	Medium	Applying	CO4
3.	The degree of the equation $\frac{dy}{dx} + 5y = 0$ is: i) 0 ii) 2 iii) 1 iv) 5.	Difficult	Applying	CO4

Part B (Definition/Naming Questions) (2 marks each)

1.	Define order of an ordinary differential equation.	Easy	Applying	CO4
2.	What is the degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^2 + y = \frac{dy}{dx}.$	Medium	Applying	CO4
3.	Solve $(D^2 + 4)y = 0$.	Difficult	Applying	CO4

Part C (Short Questions) (3-4 marks each)

1.	Solve $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^x$.	Easy	Applying	CO4
2.	Solve by method of variation of parameters: $\frac{d^2y}{dx^2} + a^2y = \sec ax.$	Medium	Applying	CO4
3.	Solve $x\frac{dy}{dx} - 4y = x^6 e^x$	Difficult	Applying	CO4

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

Part D (Explanation Based Questions) (5 marks each)				
1.	What is the order of the differential equation $\left(\frac{d^2y}{dx^2} \right)^2 + y = \frac{dy}{dx}$	Easy	Applying	CO4
2.	Eliminate A and B to find the differential equation from the equation $y = Ae^{2x} + Be^{-2x}$.	Medium	Applying	CO4
3.	Find the integrating factor of $(x + 2y^3)\frac{dx}{dy} = y$.	Difficult	Applying	CO4
Part E (Questions Based on Reasoning) (5 marks each)				
1.	Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{3x}$.	Easy	Applying	CO4
2.	Solve $x\frac{dy}{dx} + y = y^2 \log x$.	Medium	Applying	CO4
3.	Solve by method of variation of parameters: $\frac{d^2y}{dx^2} + 9y = \sec 3x$.	Difficult	Applying	CO4
Part F (Application Based Questions) (5-10 marks each)				
1.	Solve the differential equation $\frac{dy}{dx} + \frac{1}{x}y = x^2$.	Easy	Applying	CO4
2.	Describe the general form of the Bernoulli's equation.	Medium	Applying	CO4
3.	Solve $x\frac{dy}{dx} + y = x^2 y^2$.	Difficult	Applying	CO4
Part G (Short Notes) (5 marks each)				
1.	Check whether the following differential equation is exact: $2y^2 x \, dx + 2x^2 y \, dy = 0$	Easy	Applying	CO4
2.	Solve $\frac{dy}{dx} - \frac{\tan y}{1+x} = (1+x) \sec \sec y e^x$.	Medium	Applying	CO4
3.	Check whether the following differential equation is exact and then solve it.	Difficult	Applying	CO4

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

	$(x^3 + xy^4)dx + 2y^3dy = 0$		
--	-------------------------------	--	--

Lecture Notes – Sample

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

Internal Assessment – Assignment I

Assignment Sample

6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course	: Engineering Mathematics I	L: 3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target	: 60%	P: 0 C: 4

Class Test I

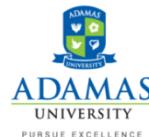
1. Show that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$ for the following function:

$$f(x, y) = \begin{cases} \frac{xy^3}{x+y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases} \quad 5$$

2. Check the continuity of the function

$$f(x, y) = \begin{cases} \frac{(x+2y)}{(2x+4y)}, & (x, y) \neq (0, 0) \\ \frac{1}{2}, & (x, y) = (0, 0) \end{cases} \quad \text{at } (0, 0) \text{ point.} \quad 2$$

3. If $z = f(x, y)$, $x = e^{2r} + e^{-2s}$, $y = e^{-2r} + e^{2s}$, then show that $\frac{\partial z}{\partial r} - \frac{\partial z}{\partial s} = 2\left(x \frac{\partial f}{\partial x} - y \frac{\partial f}{\partial y}\right)$.


3

Class Test Answer Script

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

SCHOOL OF ENGINEERING AND TECHNOLOGY MID-SEMESTER EXAMINATION (THEORY)

(Academic Session: 2020 – 21, Semester Term: Sep 2020 – Mar 2021)

Name of the Program: B.Tech.	Semester: I
Stream: CSE/ME/CE/EE/ECE/Biotech	
PAPER TITLE: Engineering Mathematics- I	PAPER CODE: MTH11501
Maximum Marks: 20	Time duration: 2
hours	
Total No of questions: 6	Total No of Pages:

Instructions:

1. At top of sheet, clearly mention Name, Roll No., Enrolment No., Paper Name & Code, and Date of Exam.
2. Assumptions made if any, should be stated clearly at the beginning of your answer.
3. All parts of a Question should be answered consecutively.

Answer all the Groups

Group A

(Answer **ALL** the questions)

$5 \times 1 = 5$

1. a) Verify whether the function $f(x) = x^2$ satisfies Rolle's Theorem on the interval $[-1, 1]$.
b) A relation ρ is defined on the set Z by " $a\rho b$ if and only if $a - b$ is divisible by 5" for, $a, b \in Z$. Examine whether ρ is reflexive and transitive relation on Z or not.
c) Find y_n , when $y = \log(x + a)$
d) Prove that $\text{curl}(\text{grad}(f)) = \vec{0}$.
e) Find the value of a for which the following limit is finite: $\lim_{x \rightarrow 0} \frac{(\sin \sin 2x + a \sin \sin x)}{x^3}$

Group B

(Answer **ANY 3** questions)

$3 \times 5 = 15$

3. If $y = \cos(\log x)$, prove that $x^2 y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - 1)y_n = 0$.
4. Test the convergence of the following series:

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

(i)
$$\sum_{n=1}^{\infty} \frac{n! 2^n}{n^n} .$$

(ii)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}} .$$
 (

2.5 + 2.5)

5. If $u = \left(\frac{x^3+y^3}{x-y}\right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin \sin 2u .$

6. Show that $\operatorname{div}(\vec{r}^n \vec{r}) = (n+3)r^n$, where $\vec{r} = \hat{x}\vec{i} + \hat{y}\vec{j} + \hat{z}\vec{k}$. Hence show that $\nabla^2(\vec{r}^n \vec{r}) = n(n+3)r^{n-2}\vec{r} .$

*****END*****

[Answer Script Sample](#)

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

Evaluation Sheet - Mid Semester

Registration Number	Roll Number	Name of the Student	Marks (20)
AU/2020/000425 0	UG/02/BTCSE/2020/001	ALOK DUTTA	14.00
AU/2020/000427 5	UG/02/BTCSE/2020/002	SUNANDA JANA	18.00
AU/2020/000427 6	UG/02/BTCSE/2020/003	SUPRATIM TARUN NATH	18.00
AU/2020/000445 1	UG/02/BTCSE/2020/004	ABHIPSIT BHATTACHARJEE	0.00
AU/2020/000445 2	UG/02/BTCSE/2020/005	TIRUPATI SANYAL	0.00
AU/2020/000446 2	UG/02/BTCSE/2020/007	SURAJ MAJUMDER	18.00
AU/2020/000446 3	UG/02/BTCE/2020/002	ROHIT KUMAR SHIT	18.50
AU/2020/000446 4	UG/02/BTCSE/2020/008	ARKADEEP CHATTERJEE	18.00
AU/2020/000446 5	UG/02/BTECE/2020/001	ARYA PAUL	16.00
AU/2020/000446 6	UG/02/BTCSE/2020/009	RITUSHNA ROY	16.50
AU/2020/000446 7	UG/02/BTCSE/2020/010	NIRVIK SARKAR	0.00
AU/2020/000446 8	UG/02/BTCSE/2020/011	PRIMA GIRI	19.00
AU/2020/000447 1	UG/02/BTME/2020/001	SUMAN HAIT	17.00
AU/2020/000447 2	UG/02/BTCSE/2020/012	SOUGATA DUTT	20.00
AU/2020/000447 9	UG/02/BTCSE/2020/018	PROTYUSH KR CHATTERJEE	18.00
AU/2020/000448 1	UG/02/BTEE/2020/001	SAPTARSHI BHATTACHARJEE	18.00
AU/2020/000448 4	UG/02/BTME/2020/002	KOUSHIK GHOSH	18.00
AU/2020/000448 6	UG/02/BTECE/2020/002	UTSAB BOSE	18.00
AU/2020/000449 4	UG/02/BTCSE/2020/022	INDRANIL DAS	12.00
AU/2020/000449 5	UG/02/BTME/2020/004	RAKESH KUMAR MOZUMDER	0.00

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

AU/2020/000452 3	UG/02/BTCSE/2020/026	SAYAN DAS	0.00
AU/2020/000452 9	UG/02/BTCSE/2020/027	ATANU PRAMANICK	7.00
AU/2020/000453 0	UG/02/BTCSE/2020/028	AYAN KUMAR DAS	12.00
AU/2020/000453 6	UG/02/BTCE/2020/003	ARJYA DAS	8.50
AU/2020/000454 0	UG/02/BTCSE/2020/032	MD ALNAS HOSSAIN	15.50
AU/2020/000454 9	UG/02/BTCSE/2020/033	VIVEK RAJ	16.00
AU/2020/000455 5	UG/02/BTME/2020/005	REETAM MONDAL	17.50
AU/2020/000455 7	UG/02/BTCSEAIML/2020/00 6	SOUMYADWIP MAITY	15.50
AU/2020/000456 0	UG/02/BTEE/2020/002	ARKA JYOTI DAS	17.50
AU/2020/000456 2	UG/02/BTCSE/2020/034	SOYATA SAHA	8.00
AU/2020/000456 3	UG/02/BTCSEAIML/2020/00 9	ROHIT KUMAR ROY	9.00
AU/2020/000456 5	UG/02/BTCSE/2020/035	NIKHIL KUMAR JHA	15.00
AU/2020/000456 6	UG/02/BTECE/2020/004	ROHIT RAJ HALDER	0.00
AU/2020/000456 9	UG/02/BTCSE/2020/036	NANDINI ROY	18.00
AU/2020/000457 2	UG/02/BTCSEAIML/2020/01 1	SUBARNA BHOWMIK	17.50
AU/2020/000457 8	UG/02/BTCSEAIML/2020/01 3	MD SOHAIL IRFAN	19.50
AU/2020/000458 0	UG/02/BTCSE/2020/041	RAJA BANIK	18.50
AU/2020/000458 3	UG/02/BTCSE/2020/042	ARSHAD RAJA	19.00
AU/2020/000458 7	UG/02/BTCSECSF/2020/006	SABYASACHI PAUL	20.00
AU/2020/000458 8	UG/02/BTCSEAIML/2020/01 5	CHANDRACHUR MAJHI	17.00
AU/2020/000459 3	UG/02/BTCSE/2020/046	HRITIK KUMAR DUTTA	16.50
AU/2020/000459 6	UG/02/BTCSE/2020/047	SHIULI MAHATA	17.00

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

AU/2020/000460 0	UG/02/BTBIOME/2020/002	RAVI LAL	15.50
AU/2020/000528 1	UG/02/BTBIOME/2020/008	GAURAV GAIN	17.00
AU/2020/000549 8	UG/02/BTBIOME/2020/003	SOUMYADEEP SAMADDAR	14.00
AU/2020/000549 9	UG/02/BTBIOME/2020/004	SPANDAN BHATTACHAARYA	15.00
AU/2020/000554 1	UG/02/BTCSE/2020/051	ANANYA MONDAL	0.00
AU/2020/000554 2	UG/02/BTCSE/2020/052	ANIRBAN ROY	19.00

Signature of HOD/Dean

Date:

Signature of Faculty

Date: 18.01.2021

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

Planning for Remedial Classes - Mid Semester

Sl. No	Name of Student	R ol l N o.	Re g. No	Mid Sem Mar ks	Remedial Classes Held			Class test on the basis of Remedial Classes	End Sem Mark s	Improve ment (Y/N)
					Date	18.01.21	19.01.21			
1.	ATANU PRAMANICK		7		P	P			48.5	Y
2.	ARJYA DAS		8.5		P	P			45.5	Y
3.	SOYATA SAHA		8		P	P			23	N
4.	ROHIT KUMAR ROY		9		P	P			45	Y

Signature of HOD/ Dean

Signature of Faculty

Date:

Date: 20.01.2021

6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course	: Engineering Mathematics I	L: 3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target	: 60%	P: 0 C: 4

Evaluation Sheet - Internal Assessment

Registration Number	Roll Number	Name of the Student	Internal Assessment (30)		
			Assignment	Class Test	Total
AU/2020/000425 0	UG/02/BTCSE/2020/001	ALOK DUTTA			28.00
AU/2020/000427 5	UG/02/BTCSE/2020/002	SUNANDA JANA			29.00
AU/2020/000427 6	UG/02/BTCSE/2020/003	SUPRATIM TARUN NATH			27.00
AU/2020/000445 1	UG/02/BTCSE/2020/004	ABHIPSIT BHATTACHARJEE			0.00
AU/2020/000445 2	UG/02/BTCSE/2020/005	TIRUPATI SANYAL			0.00
AU/2020/000446 2	UG/02/BTCSE/2020/007	SURAJ MAJUMDER			26.00
AU/2020/000446 3	UG/02/BTCE/2020/002	ROHIT KUMAR SHIT			27.00
AU/2020/000446 4	UG/02/BTCSE/2020/008	ARKADEEP CHATTERJEE			26.00
AU/2020/000446 5	UG/02/BTECE/2020/001	ARYA PAUL			29.00
AU/2020/000446 6	UG/02/BTCSE/2020/009	RITUSHNA ROY			26.00
AU/2020/000446 7	UG/02/BTCSE/2020/010	NIRVIK SARKAR			0.00
AU/2020/000446 8	UG/02/BTCSE/2020/011	PRIMA GIRI			26.00
AU/2020/000447 1	UG/02/BTME/2020/001	SUMAN HAIT			26.00
AU/2020/000447 2	UG/02/BTCSE/2020/012	SOUGATA DUTT			27.00
AU/2020/000447 9	UG/02/BTCSE/2020/018	PROTYUSH KR CHATTERJEE			27.00
AU/2020/000448 1	UG/02/BTEE/2020/001	SAPTARSHI BHATTACHARJEE			29.00
AU/2020/000448 4	UG/02/BTME/2020/002	KOUSHIK GHOSH			29.00
AU/2020/000448 6	UG/02/BTECE/2020/002	UTSAB BOSE			28.00
AU/2020/000449 4	UG/02/BTCSE/2020/022	INDRANIL DAS			29.00

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

AU/2020/000449 5	UG/02/BTME/2020/004	RAKESH KUMAR MOZUMDER			22.00
AU/2020/000452 3	UG/02/BTCSE/2020/026	SAYAN DAS			0.00
AU/2020/000452 9	UG/02/BTCSE/2020/027	ATANU PRAMANICK			26.00
AU/2020/000453 0	UG/02/BTCSE/2020/028	AYAN KUMAR DAS			27.00
AU/2020/000453 6	UG/02/BTCE/2020/003	ARJYA DAS			27.00
AU/2020/000454 0	UG/02/BTCSE/2020/032	MD ALNAS HOSSAIN			27.00
AU/2020/000454 9	UG/02/BTCSE/2020/033	VIVEK RAJ			26.00
AU/2020/000455 5	UG/02/BTME/2020/005	REETAM MONDAL			27.00
AU/2020/000455 7	UG/02/BTCSEAIML/2020/006	SOUMYADWIP MAITY			26.00
AU/2020/000456 0	UG/02/BTEE/2020/002	ARKA JYOTI DAS			28.00
AU/2020/000456 2	UG/02/BTCSE/2020/034	SOYATA SAHA			26.00
AU/2020/000456 3	UG/02/BTCSEAIML/2020/009	ROHIT KUMAR ROY			24.00
AU/2020/000456 5	UG/02/BTCSE/2020/035	NIKHIL KUMAR JHA			26.00
AU/2020/000456 6	UG/02/BTECE/2020/004	ROHIT RAJ HALDER			24.00
AU/2020/000456 9	UG/02/BTCSE/2020/036	NANDINI ROY			28.00
AU/2020/000457 2	UG/02/BTCSEAIML/2020/011	SUBARNA BHOWMIK			27.00
AU/2020/000457 8	UG/02/BTCSEAIML/2020/013	MD SOHAIL IRFAN			27.00
AU/2020/000458 0	UG/02/BTCSE/2020/041	RAJA BANIK			26.00
AU/2020/000458 3	UG/02/BTCSE/2020/042	ARSHAD RAJA			26.00
AU/2020/000458 7	UG/02/BTCSECSF/2020/006	SABYASACHI PAUL			27.00
AU/2020/000458 8	UG/02/BTCSEAIML/2020/015	CHANDRACHUR MAJHI			26.00
AU/2020/000459 3	UG/02/BTCSE/2020/046	HRITIK KUMAR DUTTA			27.00

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

AU/2020/000459 6	UG/02/BTCSE/2020/047	SHIULI MAHATA			26.00
AU/2020/000460 0	UG/02/BTBIOME/2020/002	RAVI LAL			26.00
AU/2020/000528 1	UG/02/BTBIOME/2020/008	GAURAV GAIN			27.00
AU/2020/000549 8	UG/02/BTBIOME/2020/003	SOUMYADEEP SAMADDAR			28.00
AU/2020/000549 9	UG/02/BTBIOME/2020/004	SPANDAN BHATTACHAARYA			27.00
AU/2020/000554 1	UG/02/BTCSE/2020/051	ANANYA MONDAL			0.00
AU/2020/000554 2	UG/02/BTCSE/2020/052	ANIRBAN ROY			27.00

Signature of HOD/Dean

Date:

Signature of Faculty

Date: 01.03.2021

Year: I
Semester: I

6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course	: Engineering Mathematics I	L: 3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target	: 60%	P: 0 C: 4

COURSE END SURVEY

INDIRECT ASSESSMENT

Sample format for Indirect Assessment of Course outcomes:

NAME: ARYA PAUL
ROLL NO.: UG/02/BTECE/2020/001
REG. NO.: AU/2020/0004465
COURSE: Engineering Mathematics I
PROGRAM: B.Tech CSE

Please rate the following aspects of course outcomes of **Engineering Mathematics I**

Use the scale 1-5 (Poor – Excellent)

Course Outcome	Statement	1	2	3	4	5
S						
CO1	Can you relate the concept of basic algebra and vector calculus in engineering science?					5
CO2	What is the basic concept of successive and partial derivative?					5
CO3	Can you apply fundamental concept of integral calculus in real life?					5
CO4	How you can apply the concept of ordinary differential equation in solving engineering problems?					5

Year: I
Semester: I

6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course	: Engineering Mathematics I	L: 3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target	: 60%	P: 0 C: 4

INDIRECT ASSESSMENT CONSOLIDATION

<p style="text-align: center;">ADAMAS UNIVERSITY, KOLKATA SCHOOL OF ENGINEERING & TECHNOLOGY ALL ENGINEERING DEPARTMENT CO Indirect Assessment</p>		
Programme: B.Tech		Academic Year:2020-21
Batch: 2020-22		
Course Code & Name:	MTH11501	Engineering Mathematics I
Course Outcome	Students Feed Back (5)	Attainment (100)
CO1	5	100
CO2	5	100
CO3	5	100
CO4	5	100
Signature of HOD/Dean Date:	Signature of Faculty Date: 01.03.2021	

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

End Semester Question Papers – Set 1

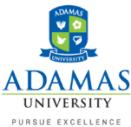
ADAMAS UNIVERSITY END SEMESTER EXAMINATION (Academic Session: 2020 – 21)			
Name of the Program:	B.Tech. (BME/CSE/ ECE/EE/ME/CE/Biotech)	Semester:	I
Paper Title:	Engineering Mathematics-I	Paper Code:	SMA41101
Maximum Marks:	50	Time Duration:	3 Hrs
Total No. of Questions:	17	Total No of Pages:	02
(Any other information for the student may be mentioned here)	1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. 2. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. 3. Assumptions made if any, should be stated clearly at the beginning of your answer.		

Group A Answer All the Questions (5 x 1 = 5)			
1	Define monotonic increasing sequence.	R	CO1
2	What is the order of homogeneity for $f(x, y) = \frac{xy}{x+y}$	U	CO2
3	Find the value of $\int_0^{\frac{\pi}{4}} x \sin \sin x dx$.	AP	CO3
4	Define order of an ordinary differential equation.	AP	CO4
5	What is the degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^2 + y = \frac{dy}{dx}$.	AP	CO4
Group B Answer All the Questions (5 x 2 = 10)			
6 a)	Show that $\text{grad}(\varphi_1 + \varphi_2) = \text{grad}\varphi_1 + \text{grad}\varphi_2$.	R	CO1
(OR)			
6 b)	Show that $\text{div}(\vec{A} + \vec{B}) = \text{div}\vec{A} + \text{div}\vec{B}$.	R	CO1
7 a)	Find whether the following limit exist or not: $\lim_{(x,y) \rightarrow (0,0)} \frac{xy}{x^2+y^2}$	U	CO2
(OR)			
7 b)	Determine $\frac{\partial^2 z}{\partial x \partial y}$ for the function $z = xy^2 - x^2y$.	U	CO2

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana
 7. Course : Engineering Mathematics I
 8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)
 9. Target : 60%

Course Code: MTH11501
 L: 3
 T: 1
 P: 0
 C: 4

8 a)	Define the reduction formula of $\int \sin^n x dx$	AP	CO3
(OR)			
8 b)	Find the value of $\int_0^{\frac{\pi}{4}} \tan^n x dx$	AP	CO3
9 a)	Solve $(e^x \sin y + e^{-y})dx + (e^x \cos y - xe^{-y})dy = 0$	AP	CO4
(OR)			
9 b)	Solve $(D^2 + 4)y = 0$.	AP	CO4
10 a)	Demonstrate Rolle's theorem.	U	CO2
(OR)			
10 b)	Find the Jacobian $J\left(\frac{u,v}{x,y}\right)$ if $u = x - y$, $v = x^2 - y^2$.	U	CO2
Group C			
Answer All the Questions (7 x 5 = 35)			
11 a)	If $\vec{r} = (a \cos t)\hat{i} + (a \sin t)\hat{j} + (a \tan \alpha)\hat{k}$, then show that $\left[\frac{d\vec{r}}{dt} \frac{d^2\vec{r}}{dt^2} \frac{d^3\vec{r}}{dt^3} \right] = a^3 \tan \tan \alpha$.	R	CO1
(OR)			
11 b)	Show that a proper vector \vec{r} has constant length if $\vec{r} \cdot \frac{d\vec{r}}{dt} = 0$.	R	CO1
12 a)	Find the value of y_n , if $y = \sin x \sin 2x$	U	CO2
(OR)			
12 b)	Find the value of $\frac{e^{x-2}-1}{x-2}$ using L'Hospital rule.	U	CO2
13 a)	Evaluate $\int_0^{\frac{\pi}{2}} x dx$	AP	CO3
(OR)			
13 b)	Evaluate $\int_0^1 \frac{x^7}{\sqrt{1-x^4}} dx$	AP	CO3
14 a)	Solve $\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = e^x$.	AP	CO4
(OR)			
14 b)	Solve by method of variation of parameters: $\frac{d^2y}{dx^2} + a^2 y = \sec ax$.	AP	CO4
15 a)	If $u = \left(\frac{x+y}{\sqrt{x-y}}\right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \frac{1}{2} \cot \cot u = 0$	U	CO2
(OR)			
15 b)	Find the extreme values of $f(x, y) = x^3 + y^3 - 6xy$.	U	CO2
16 a)	Find the area of the surface generated by revolving the parabola $y^2 = 4ax$ about X-axis bounded by $x = a$.	AP	CO3
(OR)			



Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
 7. Course : Engineering Mathematics I L: 3
 8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
 9. Target : 60% P: 0
 C: 4

16 b)	Find the volume generated by revolving the parabola $y^2 = 4ax$ about X-axis bounded by $x = a$.	AP	CO3
17 a)	Solve $x \frac{dy}{dx} - 4y = x^6 e^x$	AP	CO4
(OR)			
17 b)	Solve $x \frac{dy}{dx} + y = y^2 \log x$.	AP	CO4

End Semester Question Papers - Set 2

 ADAMAS UNIVERSITY <small>PURSUE EXCELLENCE</small>	ADAMAS UNIVERSITY END SEMESTER EXAMINATION <small>(Academic Session: 2020 – 21)</small>		
Name of the Program:	B.Tech. (BME/CSE/ ECE/EE/ME/CE/Biotech)	Semester:	I
Paper Title:	Engineering Mathematics-I	Paper Code:	SMA41101
Maximum Marks:	50	Time Duration:	3 Hrs
Total No. of Questions:	17	Total No of Pages:	02
(Any other information for the student may be mentioned here)	4. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. 5. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. 6. Assumptions made if any, should be stated clearly at the beginning of your answer.		

Group A Answer All the Questions (5 x 1 = 5)			
1	What is the value of y_n if $y = e^{ax}$	U	CO2
2	What is the value of $\lim (x, y) \rightarrow (2, 3) (x^2 + 2y)$	U	CO2
3	Find the value of $\int_0^5 xe^x dx$	AP	CO3

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana
 7. Course : Engineering Mathematics I
 8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)
 9. Target : 60%

Course Code: MTH11501
 L: 3
 T: 1
 P: 0
 C: 4

4	What is the order of the differential equation $\left(\frac{d^2y}{d^2x}\right)^2 + y = \frac{dy}{dx}$	AP	CO4
5	Define monotonic decreasing sequence.	R	CO1

Group B

Answer All the Questions (5 x 2 = 10)

6 a)	Show that $\text{curl}(\vec{A} + \vec{B}) = \text{curl}\vec{A} + \text{curl}\vec{B}$.	R	CO1
(OR)			
6 b)	Show that $\text{div}(\vec{\varphi}\vec{A}) = (\text{grad } \varphi) \cdot \vec{A} + \varphi \text{div} \vec{A}$.	R	CO1
7 a)	Find whether the following limit exist or not: $\lim_{x \rightarrow y} \frac{y}{x+y}$	U	CO2
(OR)			
7 b)	Determine $\frac{\partial^2 z}{\partial x \partial y}$ for the function $z = x^2 y - 2xy$.	U	CO2
8 a)	Define the reduction formula of $\int \cos^n x dx$	AP	CO3
(OR)			
8 b)	Find the value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^7 x dx$	AP	CO3
9 a)	Eliminate A and B to find the differential equation from the equation $y = Ae^{2x} + Be^{-2x}$.	AP	CO4
(OR)			
9 b)	Find the integrating factor of $(x + 2y^3) \frac{dx}{dy} = y$.	AP	CO4
10 a)	Demonstrate Lagrange's mean value theorem.	U	CO2
(OR)			
10 b)	Find the Jacobian $J\left(\frac{u,v}{x,y}\right)$ if $u = 2x - y$, $v = x^2 - xy$.	U	CO2

Group C

Answer All the Questions (7 x 5 = 35)

11 a)	If $\vec{r} = \hat{x}i + \hat{y}j + \hat{z}k$ and $r = \vec{r} $, show that $\text{grad}f(r) \times \vec{r} = \vec{0}$.	R	CO1
(OR)			
11 b)	Show that a proper vector \vec{r} has constant magnitude if $\vec{r} \times \frac{d\vec{r}}{dt} = \vec{0}$.	R	CO1
12 a)	If $y = e^{m \sin^{-1} x}$, show that $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - (n^2 + m^2)y_n = 0$	U	CO2
(OR)			
12 b)	Find the value of $\frac{\partial f}{\partial x}$ at (1,1) from definition for the function $f(x, y) = x + yx + y + 1$	U	CO2
13 a)	Evaluate $\int_0^1 \frac{x^7}{\sqrt[4]{1-x^4}} dx$	AP	CO3
(OR)			

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
 7. Course : Engineering Mathematics I L: 3
 8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
 9. Target : 60% P: 0
 C: 4

13 b)	Find the volume generated by revolving the parabola $y^2 = 4ax$ about X-axis bounded by $x = a$.	AP	CO3
14 a)	Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{3x}$.	AP	CO4
(OR)			
14 b)	Solve by method of variation of parameters: $\frac{d^2y}{dx^2} + 9y = \sec 3x$.	AP	CO4
15 a)	If $u = \left(\frac{x+y}{\sqrt{x-y}}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot\cot u = 0$	U	CO2
(OR)			
15 b)	Find maxima or minima of $f(x, y) = x^3 + y^3 - 3x - 12y + 20$	U	CO2
16 a)	Evaluate $\int_0^{\frac{\pi}{2}} x \, dx$	AP	CO3
(OR)			
16 b)	Find the surface area generated by revolving the parabola $y^2 = 4ax$ about X-axis bounded by $x = a$.	AP	CO3
17 a)	Solve $x\frac{dy}{dx} + y = x^2y^2$.	AP	CO4
(OR)			
17 b)	Solve $\frac{dy}{dx} - \frac{\tan \tan y}{1+x} = (1+x) \sec \sec y e^x$.	AP	CO4

[Answer Script \(Sample\)](#)

6. Name of the Faculty:	Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course	: Engineering Mathematics I	L: 3
8. Program	: B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target	: 60%	P: 0 C: 4

Evaluation Sheet (End Semester)

Registration Number	Roll Number	Name of the Student	Marks (50)
AU/2020/000425 0	UG/02/BTCSE/2020/001	ALOK DUTTA	48.00
AU/2020/000427 5	UG/02/BTCSE/2020/002	SUNANDA JANA	46.00
AU/2020/000427 6	UG/02/BTCSE/2020/003	SUPRATIM TARUN NATH	45.50
AU/2020/000445 1	UG/02/BTCSE/2020/004	ABHIPSIT BHATTACHARJEE	0.00
AU/2020/000445 2	UG/02/BTCSE/2020/005	TIRUPATI SANYAL	0.00
AU/2020/000446 2	UG/02/BTCSE/2020/007	SURAJ MAJUMDER	44.00
AU/2020/000446 3	UG/02/BTCE/2020/002	ROHIT KUMAR SHIT	48.50
AU/2020/000446 4	UG/02/BTCSE/2020/008	ARKADEEP CHATTERJEE	38.50
AU/2020/000446 5	UG/02/BTECE/2020/001	ARYA PAUL	49.50
AU/2020/000446 6	UG/02/BTCSE/2020/009	RITUSHNA ROY	43.00
AU/2020/000446 7	UG/02/BTCSE/2020/010	NIRVIK SARKAR	0.00
AU/2020/000446 8	UG/02/BTCSE/2020/011	PRIMA GIRI	44.50
AU/2020/000447 1	UG/02/BTME/2020/001	SUMAN HAIT	40.00
AU/2020/000447 2	UG/02/BTCSE/2020/012	SOUGATA DUTT	45.50
AU/2020/000447 9	UG/02/BTCSE/2020/018	PROTYUSH KR CHATTERJEE	46.00
AU/2020/000448 1	UG/02/BTEE/2020/001	SAPTARSHI BHATTACHARJEE	47.00
AU/2020/000448 4	UG/02/BTME/2020/002	KOUSHIK GHOSH	49.00
AU/2020/000448 6	UG/02/BTECE/2020/002	UTSAB BOSE	44.00
AU/2020/000449 4	UG/02/BTCSE/2020/022	INDRANIL DAS	35.50
AU/2020/000449 5	UG/02/BTME/2020/004	RAKESH KUMAR MOZUMDER	2.00

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

AU/2020/000452 3	UG/02/BTCSE/2020/026	SAYAN DAS	0.00
AU/2020/000452 9	UG/02/BTCSE/2020/027	ATANU PRAMANICK	48.50
AU/2020/000453 0	UG/02/BTCSE/2020/028	AYAN KUMAR DAS	45.00
AU/2020/000453 6	UG/02/BTCE/2020/003	ARJYA DAS	45.50
AU/2020/000454 0	UG/02/BTCSE/2020/032	MD ALNAS HOSSAIN	47.00
AU/2020/000454 9	UG/02/BTCSE/2020/033	VIVEK RAJ	42.00
AU/2020/000455 5	UG/02/BTME/2020/005	REETAM MONDAL	46.50
AU/2020/000455 7	UG/02/BTCSEAIML/2020/00 6	SOUMYADWIP MAITY	33.00
AU/2020/000456 0	UG/02/BTEE/2020/002	ARKA JYOTI DAS	45.50
AU/2020/000456 2	UG/02/BTCSE/2020/034	SOYATA SAHA	23.00
AU/2020/000456 3	UG/02/BTCSEAIML/2020/00 9	ROHIT KUMAR ROY	45.00
AU/2020/000456 5	UG/02/BTCSE/2020/035	NIKHIL KUMAR JHA	47.00
AU/2020/000456 6	UG/02/BTECE/2020/004	ROHIT RAJ HALDER	33.50
AU/2020/000456 9	UG/02/BTCSE/2020/036	NANDINI ROY	48.00
AU/2020/000457 2	UG/02/BTCSEAIML/2020/01 1	SUBARNA BHOWMIK	47.00
AU/2020/000457 8	UG/02/BTCSEAIML/2020/01 3	MD SOHAIL IRFAN	46.00
AU/2020/000458 0	UG/02/BTCSE/2020/041	RAJA BANIK	46.00
AU/2020/000458 3	UG/02/BTCSE/2020/042	ARSHAD RAJA	44.50
AU/2020/000458 7	UG/02/BTCSECSF/2020/006	SABYASACHI PAUL	47.00
AU/2020/000458 8	UG/02/BTCSEAIML/2020/01 5	CHANDRACHUR MAJHI	46.00
AU/2020/000459 3	UG/02/BTCSE/2020/046	HRITIK KUMAR DUTTA	41.50
AU/2020/000459 6	UG/02/BTCSE/2020/047	SHIULI MAHATA	35.00

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

AU/2020/000460 0	UG/02/BTBIOME/2020/002	RAVI LAL	47.00
AU/2020/000528 1	UG/02/BTBIOME/2020/008	GAURAV GAIN	36.00
AU/2020/000549 8	UG/02/BTBIOME/2020/003	SOUMYADEEP SAMADDAR	44.00
AU/2020/000549 9	UG/02/BTBIOME/2020/004	SPANDAN BHATTACHAARYA	46.50
AU/2020/000554 1	UG/02/BTCSE/2020/051	ANANYA MONDAL	0.00
AU/2020/000554 2	UG/02/BTCSE/2020/052	ANIRBAN ROY	44.00

Signature of HOD/Dean

Date:

Signature of Faculty

Date: 26.03.2021

Planning for Remedial Classes – End Semester

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

Sl. N o.	Name of Student	Rol l No.	Re g. No.	End Sem Mark	Remedial Classes Held						Class test on the basis of Remedial Classes	Suppl eExa m Mark s	Improve ment (Y/N)				
					Date												
					Venu e												
					Time												
1.																	
2.																	

Signature of HOD/ Dean

Date

Signature of Faculty

Date

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501

7. Course : Engineering Mathematics I L: 3

8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1

9. Target : 60% P: 0

C: 4

Consolidated Mark Statement

Registration Number	Roll Number	Name of the Student	Total Marks			
			Mid Semester (20)	Internal Assessment (30)	End Semester (50)	Total (100)
AU/2020/0004250	UG/02/BTCSE/2020/001	ALOK DUTTA	14.00	28.00	48.00	90.00
AU/2020/0004275	UG/02/BTCSE/2020/002	SUNANDA JANA	18.00	29.00	46.00	93.00
AU/2020/0004276	UG/02/BTCSE/2020/003	SUPRATIM TARUN NATH	18.00	27.00	45.50	90.50
AU/2020/0004451	UG/02/BTCSE/2020/004	ABHIPSIT BHATTACHARJEE	0.00	0.00	0.00	0.00
AU/2020/0004452	UG/02/BTCSE/2020/005	TIRUPATI SANYAL	0.00	0.00	0.00	0.00
AU/2020/0004462	UG/02/BTCSE/2020/007	SURAJ MAJUMDER	18.00	26.00	44.00	88.00
AU/2020/0004463	UG/02/BTCE/2020/002	ROHIT KUMAR SHIT	18.50	27.00	48.50	94.00
AU/2020/0004464	UG/02/BTCSE/2020/008	ARKADEEP CHATTERJEE	18.00	26.00	38.50	82.50
AU/2020/0004465	UG/02/BTECE/2020/001	ARYA PAUL	16.00	29.00	49.50	94.50
AU/2020/0004466	UG/02/BTCSE/2020/009	RITUSHNA ROY	16.50	26.00	43.00	85.50
AU/2020/0004467	UG/02/BTCSE/2020/010	NIRVIK SARKAR	0.00	0.00	0.00	0.00
AU/2020/0004468	UG/02/BTCSE/2020/011	PRIMA GIRI	19.00	26.00	44.50	89.50
AU/2020/0004471	UG/02/BTME/2020/001	SUMAN HAIT	17.00	26.00	40.00	83.00
AU/2020/0004472	UG/02/BTCSE/2020/012	SOUGATA DUTT	20.00	27.00	45.50	92.50
AU/2020/0004479	UG/02/BTCSE/2020/018	PROTYUSH KR CHATTERJEE	18.00	27.00	46.00	91.00
AU/2020/0004481	UG/02/BTEE/2020/001	SAPTARSHI BHATTACHARJEE	18.00	29.00	47.00	94.00
AU/2020/0004484	UG/02/BTME/2020/002	KOUSHIK GHOSH	18.00	29.00	49.00	96.00
AU/2020/0004486	UG/02/BTECE/2020/002	UTSAB BOSE	18.00	28.00	44.00	90.00
AU/2020/0004494	UG/02/BTCSE/2020/022	INDRANIL DAS	12.00	29.00	35.50	76.50
AU/2020/0004495	UG/02/BTME/2020/004	RAKESH KUMAR MOZUMDER	0.00	22.00	2.00	24.00

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

AU/2020/000452 3	UG/02/BTCSE/2020/026	SAYAN DAS	0.00	0.00	0.00	0.00
AU/2020/000452 9	UG/02/BTCSE/2020/027	ATANU PRAMANICK	7.00	26.00	48.50	81.50
AU/2020/000453 0	UG/02/BTCSE/2020/028	AYAN KUMAR DAS	12.00	27.00	45.00	84.00
AU/2020/000453 6	UG/02/BTCSE/2020/003	ARJYA DAS	8.50	27.00	45.50	81.00
AU/2020/000454 0	UG/02/BTCSE/2020/032	MD ALNAS HOSSAIN	15.50	27.00	47.00	89.50
AU/2020/000454 9	UG/02/BTCSE/2020/033	VIVEK RAJ	16.00	26.00	42.00	84.00
AU/2020/000455 5	UG/02/BTCSE/2020/005	REETAM MONDAL	17.50	27.00	46.50	91.00
AU/2020/000455 7	UG/02/BTCSE/2020/006	SOUMYADWIP MAITY	15.50	26.00	33.00	74.50
AU/2020/000456 0	UG/02/BTEE/2020/002	ARKA JYOTI DAS	17.50	28.00	45.50	91.00
AU/2020/000456 2	UG/02/BTCSE/2020/034	SOYATA SAHA	8.00	26.00	23.00	57.00
AU/2020/000456 3	UG/02/BTCSE/2020/009	ROHIT KUMAR ROY	9.00	24.00	45.00	78.00
AU/2020/000456 5	UG/02/BTCSE/2020/035	NIKHIL KUMAR JHA	15.00	26.00	47.00	88.00
AU/2020/000456 6	UG/02/BTECE/2020/004	ROHIT RAJ HALDER	0.00	24.00	33.50	57.50
AU/2020/000456 9	UG/02/BTCSE/2020/036	NANDINI ROY	18.00	28.00	48.00	94.00
AU/2020/000457 2	UG/02/BTCSE/2020/011	SUBARNA BHOWMIK	17.50	27.00	47.00	91.50
AU/2020/000457 8	UG/02/BTCSE/2020/013	MD SOHAIL IRFAN	19.50	27.00	46.00	92.50
AU/2020/000458 0	UG/02/BTCSE/2020/041	RAJA BANIK	18.50	26.00	46.00	90.50
AU/2020/000458 3	UG/02/BTCSE/2020/042	ARSHAD RAJA	19.00	26.00	44.50	89.50
AU/2020/000458 7	UG/02/BTCSECSF/2020/006	SABYASACHI PAUL	20.00	27.00	47.00	94.00
AU/2020/000458 8	UG/02/BTCSE/2020/015	CHANDRACHUR MAJHI	17.00	26.00	46.00	89.00
AU/2020/000459 3	UG/02/BTCSE/2020/046	HRITIK KUMAR DUTTA	16.50	27.00	41.50	85.00
AU/2020/000459 6	UG/02/BTCSE/2020/047	SHIULI MAHATA	17.00	26.00	35.00	78.00
AU/2020/000460 0	UG/02/BTCSE/2020/002	RAVI LAL	15.50	26.00	47.00	88.50
AU/2020/000528 1	UG/02/BTCSE/2020/008	GAURAV GAIN	17.00	27.00	36.00	80.00

Year: I
Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

AU/2020/000549 8	UG/02/BTBIOME/2020/003	SOUMYADEEP SAMADDAR	14.00	28.00	44.00	86.00
AU/2020/000549 9	UG/02/BTBIOME/2020/004	SPANDAN BHATTACHARYA	15.00	27.00	46.50	88.50
AU/2020/000554 1	UG/02/BTCSE/2020/051	ANANYA MONDAL	0.00	0.00	0.00	0.00
AU/2020/000554 2	UG/02/BTCSE/2020/052	ANIRBAN ROY	19.00	27.00	44.00	90.00

Signature of Dean/HOD

Date:

Signature of Faculty

Date: 26.03.2021

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501

7. Course : Engineering Mathematics I L: 3

8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1

9. Target : 60% P: 0

C: 4

CO ATTAINMENT - GAP ANALYSIS & REMEDIAL MEASURES

ADAMAS UNIVERSITY, KOLKATA SCHOOL OF ENGINEERING & TECHNOLOGY ALL ENGINEERING DEPARTMENT CO ATTAINMENT - GAP ANALYSIS & REMEDIAL MEASURES								
Batch:	2020-22						Academic Year:	2020-21
Course Code & Name			Name of the Coordinator			Year & Semester		
MTH11501 & Engineering Mathematics I			Dr. Avik Pradhan & Dr. Sudip Jana			I & I		
CO	Direct Assessment	Indirect Assessment	CO Attainment	Target	CO Attainment Gaps*	Action for Bridge the Gap	Target Modification	
CO1	83.33333333	100	86.66666667	70	-16.66666667		80	
CO2	83.33333333	100	86.66666667	70	-16.66666667		80	
CO3	87.5	100	90	70	-20		80	
CO4	87.5	100	90	70	-20		80	

Signature of HOD/Dean

Date:

Signature of Faculty

Date: 07.04.2021

Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana Course Code: MTH11501
7. Course : Engineering Mathematics I L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME) T: 1
9. Target : 60% P: 0
C: 4

CO-PO ATTAINMENT

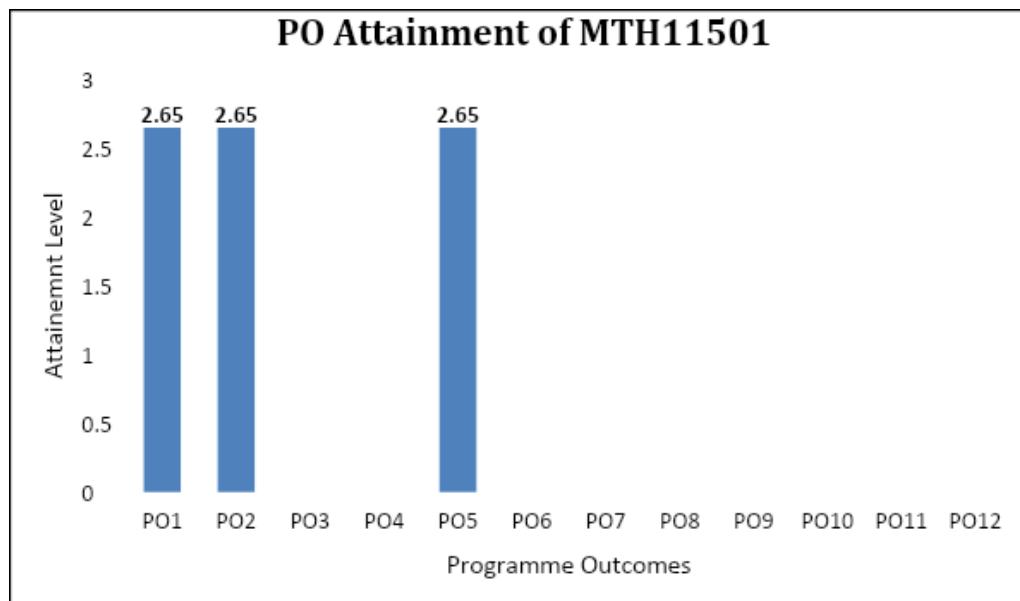
ADAMAS UNIVERSITY, KOLKATA														
SCHOOL OF ENGINEERING & TECHNOLOGY														
ALL ENGINEERING DEPARTMENT														
CO-PO ATTAINMENT														
Programme:	B.Tech	Year & Sem:	I & I	Academic Year:		2020-21			Batch:		2020-22			
Course Code	Course Title	CO-PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MTH21517	Quantitative Techniques for Management	Relationship	CO1,CO2, CO3, CO4	CO1, CO2, CO3, CO4	NA	NA	CO1, CO2, CO3, CO4	NA	NA	NA	NA	NA	NA	NA
		Mapping Value	3	3	NA	NA	3	NA	NA	NA	NA	NA	NA	NA
		Attainment	2.65	2.65	*	*	2.65	*	*	*	*	*	*	*

Signature of HOD/Dean

Date:

Signature of Faculty

Date: 07.04.2021



Year: I

Semester: I

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

PO ATTAINMENT OF THE COURSE

Signature of HOD/Dean

Date:

Signature of Faculty

Date: 07.04.2021

6. Name of the Faculty: Dr. Avik Pradhan & Dr. Sudip Jana	Course Code: MTH11501
7. Course : Engineering Mathematics I	L: 3
8. Program : B.Tech (BioMed/CSE/EE/ECE/CE/ME)	T: 1
9. Target : 60%	P: 0 C: 4

INSTRUCTIONS FOR FACULTY

Instructions for Faculty

- Faculty should keep track of the students with low attendance and counsel them regularly.
- Course coordinator will arrange to communicate the short attendance (as per University policy) cases to the students and their parents monthly.
- Topics covered in each class should be recorded in the table of RECORD OF CLASS TEACHING (Suggested Format).
- Internal assessment marks should be communicated to the students twice in a semester.
- The file will be audited by respective Academic Monitoring and Review Committee (AMRC) members for theory as well as for lab as per AMRC schedule.
- The faculty is required to maintain these files for a period of at least three years.
- This register should be handed over to the head of department, whenever the faculty member goes on long leave or leaves the Colleges/University.
- For labs, continuous evaluation format (break-up given in the guidelines for result preparation in the same file) should be followed.
- Department should monitor the actual execution of the components of continuous lab evaluation regularly.
- Instructor should maintain record of experiments conducted by the students in the lab weekly.
- Instructor should promote students for self-study and to make concept diary, due weightage in the internal should be given under faculty assessment for the same.
- Course outcome assessment: To assess the fulfilment of course outcomes two different approaches have been decided. Degree of fulfillment of course outcomes will be assessed in different ways through direct assessment and indirect assessment. In Direct Assessment, it is measured through quizzes, tests, assignment, Mid-term and/or End-term examinations. It is suggested that each examination is designed in such a way that it can address one or two outcomes (depending upon the course completion). Indirect assessment is done through the student survey which needs to be designed by the faculty (sample format is given below) and it shall be conducted towards the end of course completion. The evaluation of the achievement of the Course Outcomes shall be done by analyzing the inputs received through Direct and Indirect Assessments and then corrective actions suggested for further improvement.
- Submission Targets of Course Contents:
 - o S. No. 1 to 8 : Before Starting the Course
 - o S. No. 9 & 10 : After Mid Semester Examination
 - o S. No. 11 to 18 : Immediately After End Semester Examination
 - o S. No. 19 to 22 : After Declaration of Result of the Course