
A starter guide for model evaluations 
This is a starter guide for model evaluations (evals). Our goal is to provide a general overview of 
what evals are, what skills are helpful for evaluators, potential career trajectories, and possible 
ways to start in the field of evals. ​
​
Evals is a nascent field, so many of the following recommendations might change quickly and 
should be seen as our current best guess. 

Why work on evals? 
Model evaluations increase our knowledge about the capabilities, tendencies, and flaws of AI 
systems. Evals inform the public, AI organizations, lawmakers, and others and thereby improve 
their decision-making. However, similar to testing in a pandemic or pen-testing in cybersecurity, 
evals are not sufficient, i.e. they don’t increase the safety of the model on their own but are 
needed for good decision-making and can inform other safety approaches. For example, evals 
underpin Responsible Scaling Policies and thus already influence relevant high-stakes 
decisions about the deployment of frontier AI systems. Thus, evals are a highly impactful way to 
improve the decision-making about AI systems.  
 
Evals are a nascent field and there are many fundamental techniques to be developed and 
questions to be answered. Since evals do not require as much background knowledge as many 
other fields, it is much easier to get started and possible to make meaningful contributions from 
very early on.  

What are model evaluations (evals)? 
Evals refers to a broad category of approaches that we roughly summarize as:  
 

The systematic measurement of properties in AI systems 
 
More concretely, evals typically attempt to make a quantitative or qualitative statement about the 
capabilities or propensities of an AI system. For example, we could ask if a model has the 
capability to solve a specific coding problem or the propensity to be power-seeking. In general, 
evals are not restricted to safety-related properties but often when people talk about evals, they 
mention them in a safety context. 
 
There is a difference between red-teaming and benchmarking1. Red-teaming is actively looking 
for specific capabilities or propensities while interacting with the model. It is an attempt to 
answer the question “Can we find this capability in a model when we try hard to find it?”. In other 
words, red-teaming is an attempt to show the existence of certain capabilities/properties, but it is 

1 both of which are evals 

https://www.anthropic.com/index/anthropics-responsible-scaling-policy


not trying to make a claim about how likely those are to occur under real-use conditions. 
Red-teaming typically involves interacting with the model2 and actively looking for ways to elicit 
the desired behavior, e.g. by testing many different model inputs and strategies and actively 
iterating on them.  
​
In contrast, benchmarking makes a statement about the likelihood of a model behaving in a 
specific way on a certain dataset, e.g. the likelihood of a behavior occurring under real-use 
conditions. A benchmarking effort should be designed while interacting with the model as little 
as possible in order to prevent overfitting to the capabilities or tendencies of any particular 
model.  
 
Both red-teaming and benchmarking are important and serve a purpose. Red-teaming can 
provide an estimate of the potential danger of a system, e.g. whether the model can manipulate 
its users. Benchmarking can provide an estimate of how likely an AI system would show these 
tendencies under specific conditions, e.g. how likely the model is to manipulate its users in 
realistic scenarios. Currently, evals are often a mix between red-teaming and benchmarking but 
we expect the two categories to get more and more distinct. 
 
There is a difference between capability and alignment evaluations. Capability evaluations 
measure whether the model has the capacity for specific behavior (i.e. whether the model “can” 
do it) and alignment evaluations measure whether the model has the tendency/propensity to 
show specific behavior (i.e. whether the model “wants” to do it). Capability and alignment evals 
have different implications. For example, a very powerful model might be capable of creating 
new viral pandemics but aligned enough to never do it in practice3.  
 
Currently, evals are mostly associated with behavioral measurements but they could also 
include interpretability/explainability tools. For example, once the technical tools are available, 
there could be a range of interpretability-based evals that would provide more detailed 
information than behavioral tests alone. 
 
Behavioral evals have clear limitations and it’s important to keep that in mind. Every behavioral 
test will always be spotty and cover a small slice of the potential input space. While we can use 
behavioral evals to get hints at what the internal mechanisms within an AI system might be, 
similar to how psychology can make statements about the internal mechanisms of the brain, it is 
by no means as precise as good interpretability tools would be. Thus, we think of evals as a way 
to reduce uncertainty from very uncertain to less uncertain but to make high-confidence 
statements, we should not rely on evals alone. 

3 This also applies to the misuse case where e.g. the model has the knowledge of how to build a bomb 
but is aligned enough to never reveal that knowledge to a user. 

2 This interaction can also happen automatically, e.g. in the case of automated red-teaming 



What skills are helpful for evaluators? 
The following is a list of qualities that we think are generally helpful for evaluators. Note, that 
they are by no means necessary, i.e. you can meaningfully contribute without having mastered 
these skills. Our suggestions should be seen as pointers to helpful skills rather than 
requirements.  

LLM steering 
By LLM steering4, we mean the ability to get an LLM to do specific things. In this case, LLM 
serves as a placeholder for whatever the state of the art in AI systems is. Since model 
evaluators typically make statements about the maximum capacity of a model, working with 
state-of-the-art systems is required. Currently, these are language-based models but frontier 
models are already increasingly multi-modal. Thus, the list of suggestions below should be 
extended with whatever skills are required to steer state-of-the-art models and elicit their 
properties. 

Prompting 
The most obvious form of getting a model to do what we want is by prompting it in clever ways.  
 
Thus, evaluators should know the basics of prompt design. This can include knowing a 
particular set of prompts that works well for a given model, knowing basic prompt pieces that 
can be put together to form a more efficient prompt, or even better, having a more general 
predictive theory of how “the model works”.  
 
In some cases, we want to elicit properties of models that have already been fine-tuned to not 
show these qualities, e.g. by RLHF. Therefore, the ability to break a model or do prompt 
injections seems really helpful to a) show the limitations of such fine-tuning attempts and b) get 
the model to elicit quantities that the model doesn’t show with standard prompting techniques. 
 
To get started, you can check out a prompting guide by Anthropic, Hugging Face, or 
PromptingGuide. 

Playing with LLMs 
In our experience, getting a “feeling for the model” is very important. This means refining your 
intuition for how models would typically react to many different prompts, which type of things 
they are good or bad at, what different strategies can be used to make them output certain texts, 
etc. Often, we found it hard to formalize this knowledge or transfer it between people with 
different levels of experience. A lot of this informal knowledge comes from “playing around” with 
the model, interacting with it, trying to jailbreak it, and applying new discoveries yourself (e.g. 
Chain of thought, Learning from Language Feedback, LM agents, etc.). While playing with the 

4 Not to be confused with activation steering 

https://docs.anthropic.com/claude/docs/introduction-to-prompt-design
https://huggingface.co/docs/transformers/main/tasks/prompting#best-practices-of-llm-prompting
https://www.promptingguide.ai/introduction/elements


model, you often stumble upon something curious, quickly form a hypothesis, and check it with 
a few additional examples. This is much more uncertain than rigorous scientific research but 
sharpens and refines your intuitions a lot which you can then use in your scientific endeavors.  

Supervised fine-tuning (SFT) 
If a malicious actor wanted to get a model to act in specific (bad) ways, they would likely 
fine-tune the model rather than just prompting it. The same is true for a misaligned model that 
wanted to self-improve for nefarious purposes. Therefore, model evaluators should conduct 
gain-of-function research in controlled and safe environments to elicit these behaviors. 
Fine-tuning can also be helpful in other ways, e.g. to test how easy it is to undo the guardrails of 
the model or fine-tune a specialized helper model for a more complex task. 
 
Thus, it is helpful to know how to finetune LLMs (both with API finetuning and open-source 
model finetuning). Relevant skills include how to use GPUs and parallelize your fine-tuning jobs, 
and implicit knowledge about batch sizes, learning rates, optimizers, quantization, data 
augmentation, and more. 
 
To get started, you can check out guides by Lakera, Maya Akim, Hugging Face, or the OpenAI 
finetuning API. 

RL with LLMs 
In some cases, we should aim to use RL-based finetuning to elicit a particular behavior. 
Especially in cases where the model is supposed to show agentic behavior, RL-based finetuning 
seems preferable over SFT. 
​
Therefore, it is helpful to be familiar with the combination of RL and the type of model you’re 
evaluating, e.g. LLMs. Useful knowledge includes how to set up the pipeline to build 
well-working reward models for LLMs or how to do “fake RL” that skips training a reward model 
and replaces it e.g. with a well-prompted LLM.  
 
To get started, you can check out tutorials from Hugging Face, Weights and Biases, and 
Labellerr. 

Scaffolding and LM agents 
Often, we want to understand the behavior of LLMs in more complex settings than just 
question-answering. For example, the LLM might be turned into an “LM agent” through 
scaffolding, i.e. we build software and tools around the LLM that allow it to continuously act in a 
real or simulated environment more naturally than just an LLM alone would.  
 
Scaffolding is a nascent field, so there is no well-established definition or methodology but it’s 
helpful to be good at prompt engineering and building software frameworks around your model. 
 

https://www.apolloresearch.ai/blog/security
https://www.lakera.ai/blog/llm-fine-tuning-guide
https://medium.com/@mayaakim/complete-guide-to-llm-fine-tuning-for-beginners-c2c38a3252be
https://huggingface.co/docs/transformers/training
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://huggingface.co/blog/rlhf
https://wandb.ai/ayush-thakur/RLHF/reports/Understanding-Reinforcement-Learning-from-Human-Feedback-RLHF-Part-1--VmlldzoyODk5MTIx
https://www.labellerr.com/blog/reinforcement-learning-from-human-feedback/


We expect that LM agents will become very prominent soon, so we especially recommend trying 
to understand them in detail.  
 
To get started, you can check out a blog post by Lilian Weng and METR’s paper.  

Tool use 
There are a couple of tools that might be helpful to know for evals, e.g. Langchain or the 
OpenAI evals framework. Both of these are early-stage packages and come with their own flaws 
but they might still be helpful in your workflow or inspire you to write better ones. 

Generalist 
In our experience, most evals projects iterate between two parts.  

1.​ Conceptual: This can include answering questions like: what property am I trying to 
measure? What is the best way of measuring it? What experiments would give me 
strong evidence about that property? And more.  

2.​ Execution: This can include coding up the experiments, running the evals on different 
models, evaluating the results, writing up the findings, and more.  

 
Given the early state of the field of evals, there are a lot of straightforward questions where the 
conceptual part is not very complicated and most of the project depends on execution. In these 
cases, most of the progress comes from getting simple or medium complex tasks done quickly 
and less from particularly deep/formal insights.  
 
Therefore, evaluators benefit from a generalist skillset that allows them to draw from a range 
of experiences and a “get stuff done” attitude that enables them to execute the low-hanging 
fruit experiments quickly. For example, an evaluator benefits from being willing to learn new 
LLM-related techniques quickly and applying them hands-on since the field is moving so quickly.  
 
Nevertheless, the conceptual part should not be neglected. Potentially, the most relevant 
safety-critical evidence could come from a small number of well-designed experiments that ask 
exactly the right question. Those experiments can be the result of multiple weeks or months of 
thinking about conceptual questions or tinkering with different setups before jumping to the 
execution phase. Thus, the more mature the field of evals becomes, the more specialized its 
members will be and the more they benefit from specialized skills rather than a generalist 
skillset. However, in the current state of the field, a generalist skillset is very helpful. From our 
own experience, we expect that hands-on experience will always be extremely valuable for 
evals and thus recommend against specializing entirely in conceptual work. 

Scientific mindset 
By default, most model evaluations will have multiple potential interpretations. Thus, a beneficial 
skill for model evaluators is having a scientific mindset. Concretely, this means keeping 

https://lilianweng.github.io/posts/2023-06-23-agent/
https://arxiv.org/abs/2312.11671
https://www.langchain.com/
https://github.com/openai/evals


alternative explanations for the results in mind and tracking potential confounders. Optimally, 
these plausible alternative hypotheses are then used to identify, design, and run experiments to 
test the potential confounders and identify the true effect.  
 
Evals are especially prone to Goodharting, i.e. someone designs a benchmark for a specific 
target quantity, then people use that benchmark as the sole measure for the target at which 
point it ceases to be a good benchmark. Thus, a good model evaluator should aim to red-team 
the current suite of benchmarks and look for ways in which they are measuring the wrong proxy. 
Optimally, they are then able to design a wide variety of experiments that cover many different 
angles and are sufficiently redundant to further decrease the probability of misinterpretation. 

Empirical research experience 
In practice, it is non-trivial to get this scientific mindset but in our experience, you learn how to 
science by doing science. Concretely, this means doing research projects with a more 
experienced supervisor and working on scientific projects. For example, 

●​ You can work on scientific projects in your Bachelor’s or Master’s degree. Often 
professors look for research assistant positions. If you find something you’re broadly 
interested in, a research assistant position can be very helpful. At this stage, it likely 
doesn’t matter whether the research is closely related to evals, as long as it’s broadly in 
the field of ML. 

●​ You can take thesis projects seriously and aim for a (small) publication. If you’re willing 
to put in the effort most supervisors are likely to support you in your attempt to publish 
your thesis as a workshop paper or a conference publication. This typically requires you 
to put in significantly more effort than the thesis itself but it teaches you a lot about 
scientific practices and writing. 

●​ You can do programs like MATS outside of university. Often there are great benefits from 
being in an environment where many people are working on related projects and can 
discuss their experiences and findings with each other.  

●​ Potentially it is worth attempting a PhD. While people disagree about whether a PhD is 
necessary to be a good scientist, it is true that most people are much better scientists 
after doing a PhD.  

●​ It is possible to develop a scientific mindset with little or no supervision. We suggest 
starting with a project that is well-scoped and simple, e.g. reproduce or extend existing 
work. Since evals is a nascent field, many simple questions can be attempted with little 
or no supervision. 

 
Especially valuable is research experience that involves different kinds of LLM steering, e.g. 
prompting, fine-tuning, RL with LMs, or LM agents.  

https://www.matsprogram.org/


Software engineering 
Many tasks in evals benefit from a solid software engineering background. This can include 
designing scaffolding around the model, building APIs around various tasks, basic data science, 
basic database management, basic GUI design, and more.  
 
While there is some helpful theoretical knowledge to be learned about software engineering 
(see e.g. A Philosophy of Software Design or Clean Code), we expect most benefits to come 
from practical experience. Fortunately, with modern LLMs, learning software engineering has 
become easier than ever, both because you can iterate faster and because you can use LLMs 
to provide feedback on your code and suggest general improvements. 

Potential career paths 
Most technical paths are not static. Some people who start in engineering become more and 
more focused on research over time and others who start as scientists focus more on 
engineering later. Thus, deciding in favor of one of these paths today does not mean you can’t 
switch in the future and most skilled model evaluators are decent at both. ​
​
Please note that it’s not at all necessary to be good at all of these skills before you can 
contribute. Our suggestions merely serve as a pointer for which skills are especially helpful.  

Engineering-focused 
The engineering spectrum can range from pure software engineering to research engineering. 
On the pure software side of the spectrum, the engineer would be mostly building and improving 
tools for the scientists in the team, and on the research side of the spectrum, they would also 
help design and set up experiments.  
 

●​ LLM steering: The core competency of an evals engineer is LLM steering. Depending 
on the project, this can be more focused on prompting, finetuning, or scaffolding but 
you’re almost certainly going to need all three of these skills at some point. 

●​ API building & usage: The ability to design and build APIs for your scaffolding or evals 
and to understand how APIs from various providers work and how they can be 
integrated into the current evals stack. 

●​ Basic data analysis & management: A large part of evals is the creation, curation, and 
efficient management (i.e. storage and pipelining) of data. Thus, being able to use data 
management systems and basic data analysis tools comes in handy.  

●​ Basics of experimental design: identify the target quantity, and design a setup that 
measures the target quantity while reducing the chance of measuring other proxy 
variables. 

●​ Plotting: this is just a basic tool that everyone working in research should have. 
●​ UI and tooling building: design and implement tools for technical and non-technical 

users, for example, a CLI tool with OpenAI API-like experience for finetuning custom 

https://www.amazon.co.uk/Philosophy-Software-Design-John-Ousterhout/dp/1732102201
https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882


models on internal compute, or setting up and maintaining an OpenAI Playground-like UI 
for quick model testing.  

●​ DevOps and Infrastructure: provisioning and managing compute resources for 
researchers. 

Research-focused 
Evals research scientists are likely more hands-on compared to other research scientist 
positions. Helpful skills include: 
 

●​ Competent research engineering is almost certainly necessary to be a good evals 
research scientist. Thus, the qualities of the research engineer apply. However, the focus 
on pure software design is lower than for a research engineer. 

●​ Experimental design: Similar to research engineering but with a stronger focus. 
Experience in scientific research is helpful for this skill. 

●​ Conceptual research: Beyond experimental design, it is of similar importance for a 
research scientist to have conceptual clarity and a high-level understanding about which 
experiments matter for which reasons, e.g. by having a high-level roadmap or a concrete 
agenda for their research.  

●​ Writing: Experimental results have to be communicated within the team, with external 
collaborators, and often with the wider public or regulators. Therefore, writing and 
communication skills are key for a research scientist position. 

How to start with evals work? 
There are many different ways to get started. Here, we suggest two common approaches. 

Hands-on approach 
One possible way to start with evals is to “Just measure something and iterate”. The broad 
recipe for this would be: 

1.​ Pick a quantity you find generally interesting and would want to understand more deeply.  
2.​ Play around with the model (e.g. in the OpenAI playground) to see if you can find simple 

and unprincipled ways to measure the behavior.  
3.​ Abstract and formalize your testing procedure and evaluate the model more rigorously. 
4.​ Identify the weaknesses and limitations of your current way of measuring.  
5.​ Refine and extend your evaluations. 
6.​ Iterate until you have a sound and usable evaluation.  

 
This approach may be the right choice for you if you prefer to work on concrete projects rather 
than learning general skills, like to learn things on the fly and enjoy iterating on empirical 
feedback.​
​



This approach is more likely to be successful if you have some mentorship. While it may be hard 
to get mentorship as a newcomer to the field, often researchers are responsive to a high-quality 
research proposal. Nevertheless, we want to emphasize that it is entirely possible to do good 
work entirely without mentorship and we can wholeheartedly recommend just giving it a go.  

Learning general skills approach 
Rather than working on a concrete project, you can also try to improve your basic evals skills in 
general similar to how students learn core skills in University and only apply them later.  
 
This could, for example, entail going through a general prompting tutorial, fine-tuning different 
models in a supervised or RL-based fashion, building an LLM agent with scaffolding, and 
playing around with the existing tools that are helpful for evals. In this case, you would do all of 
this without having any specific evaluation in mind.  
 
This approach may be the right choice for you if you’re very new to software or ML engineering 
or you have a general preference for learning basic skills before applying them. 
 
Marius' opinion: While there is no clearly correct way to get into evals work and it depends on 
personal preferences and the level of skills, I strongly recommend attempting a hands-on 
project. I think this is the fastest way to get good at evals, gives good evidence about where 
your skills are and whether you enjoy the process. If you realize that you lack some of the core 
skills, you can still switch to learning general skills. We made the fastest progress by interacting 
with LLMs a lot and I generally recommend this approach even if you’re fairly new to LLMs. 

Contributions 
Marius Hobbhahn led this post, drafted the first version, and edited the final version. Mikita 
Balesni, Jérémy Scheurer, Rusheb Shah, and Alex Meinke gave feedback. ​
​
We shared this post with participants of the Apart Research Evals Hackathon on 24 November 
2023 and are thankful for feedback from participants.  

https://alignmentjam.com/jam/evaluations
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