
[YUNIKORN-42] ​
High efficient scheduling events

framework phase 1

Use cases:
-​ Primary use case: Troubleshooting pending pods, why we cannot allocate it.
-​ Be able to look at queue/application/node/pod level and see: why we cannot allocate

pod X on node Y.

Requirements:
-​ Events can be retrieved from K8s events (like kubectl describe pod). (P0)
-​ Avoid too much impact on performance. (P1)
-​ Events and diagnostics can be retrieved from YuniKorn UI / REST API. (P2)
-​ Be able to filter events/diagnostics based on queue/app/node/pod. (P2)

Implementation

Architecture

-​ EventCache: event cache is a cache to store object events, for different types of objects
such as request, app, node etc. It maintains some eventStore to store these event
records.

-​ Uses an EventChannel to buffer the continuous flow of events generated by the
scheduler.

-​ Merges the events to the EventStore in every 10ms.
-​ EventStore: stores events for a certain type of object. This is an interface that can have

different implementations. The very basic one is a fixed size store, which caches a
certain number of events per object (e.g per request).

-​ The store deletes the events upon retrieve.
-​ EventPublisher: the publisher retrieves events from the eventCache and determines

how to publish these events. It leverages the scheduler plugin to publish events to the
shim side. Can have different/multiple implementations in the future.

-​ Periodically sends the event as EventRecords through the Scheduler callback
interface. More precisely, EventPlugin’s SendEvent function is called with the
EventRecords.

-​ In the Shim side a Scheduler callback is invoked that directly pushes these events to
K8s.

-​ The client can get these events through kubectl describe command.

Update of protocols

Update in SI

message EventRecord {
 enum Type {
 REQUEST = 0;
 APP = 1;
 NODE = 2;
 QUEUE = 3;
 }

 // the type of the object associated with the event
 Type type = 1;
 // ID of the object associated with the event
 string objectID = 2;
 // the group this object belongs to
 // it specifies the application ID for allocations and the queue for
applications
 string groupID = 3;
 // the reason of this event
 string reason = 4;
 // the detailed message as string

 string message = 5;
 // timestamp of the event
 int64 timestampNano = 6;
}

Update of SchedulerPlugins in Core

type EventPlugin interface {
​ // This plugin is responsible for transmitting events to the shim
​ // Events can be further exposed from the shim.
​ SendEvent(events []*si.EventRecord) error
}

	[YUNIKORN-42] ​High efficient scheduling events framework phase 1
	Use cases:
	Requirements:
	Implementation
	Architecture
	Update of protocols
	Update in SI
	Update of SchedulerPlugins in Core
	

