Use cases:

[YUNIKORN-42]
High efficient scheduling events
framework phase 1

- Primary use case: Troubleshooting pending pods, why we cannot allocate it.
- Be able to look at queue/application/node/pod level and see: why we cannot allocate

pod X on node Y.

Requirements:

- Events can be retrieved from K8s events (like kubectl describe pod). (PO)

- Avoid too much impact on performance. (P1)

- Events and diagnostics can be retrieved from YuniKorn Ul / REST API. (P2)
- Be able to filter events/diagnostics based on queue/app/node/pod. (P2)

Implementation

Architecture

//— Cora -\\-

{ i]

evant cache

event channel | byfesing
event store ring o
e

event publisher |

contin emilting events

(10 ms)

erls

EventPlugin.SendEvent

,.r"f
kBs APl sarver E\'
kubectl describe podfapp
[App
CRD
LSRR J
/ Shim \

) pariodically (2 sac) publish f
\ eveniz o shim /

‘ Scheduler callback

. >y

- EventCache: event cache is a cache to store object events, for different types of objects
such as request, app, node etc. It maintains some eventStore to store these event
records.

- Uses an EventChannel to buffer the continuous flow of events generated by the
scheduler.

- Merges the events to the EventStore in every 10ms.

- EventStore: stores events for a certain type of object. This is an interface that can have
different implementations. The very basic one is a fixed size store, which caches a
certain number of events per object (e.g per request).

- The store deletes the events upon retrieve.

- EventPublisher: the publisher retrieves events from the eventCache and determines
how to publish these events. It leverages the scheduler plugin to publish events to the
shim side. Can have different/multiple implementations in the future.

- Periodically sends the event as EventRecords through the Scheduler callback
interface. More precisely, EventPlugin’s SendEvent function is called with the
EventRecords.

- In the Shim side a Scheduler callback is invoked that directly pushes these events to
K8s.

- The client can get these events through kubectl describe command.

Update of protocols

Update in SI
message EventRecord {
enum Type {
REQUEST = 0O;
APP = 1;
NODE = 2;
QUEUE = 3;
}

// the type of the object associated with the event

Type type = 1;

// ID of the object associated with the event

string objectID = 2;

// the group this object belongs to

// it specifies the application ID for allocations and the queue for
applications

string groupID = 3;

// the reason of this event

string reason = 4;

// the detailed message as string

string message = 5;
// timestamp of the event
int64 timestampNano = 6;

Update of SchedulerPlugins in Core

type EventPlugin interface {
// This plugin is responsible for transmitting events to the shim
// Events can be further exposed from the shim.
SendEvent(events []*si.EventRecord) error

	[YUNIKORN-42] ​High efficient scheduling events framework phase 1
	Use cases:
	Requirements:
	Implementation
	Architecture
	Update of protocols
	Update in SI
	Update of SchedulerPlugins in Core
	

