EDITORIAL

Codeforces:-Valera and Fools(369D)

Problem Link

Prerequisite - Dfs , shortest paths.

Let's p[A] is the pA from the statement.

It's clear to understand that you can describe the state by using pair of integers (A, B), where A is a number of the fool with smallest index, B — the second fool from the left. It is clear to understand that fool with indexes $j \ge B$ will be living. After that we will use bfs on the states (A, B).

State (0, 1) is always visitable, because it is initial. We will push it in the queue. After that, there are only three transitions from current state (A, B).

- 1. (B+1, B+2) this transition is possible if and only if p[A] > 0 and there are some fool with index $j \ge B$, which has non-zero value p[j] > 0.
- 2. (A, B+1) this transition is possible if and only if p[A] > 0 и there are no fool with index $j \ge B$, which has p[j] = 100.
- 3. (B, B+1) this transition is possible if and only if $p[A] \neq 100$ and there are some fool with index $j \geq B$, which has non-zero value p[j] > 0.

After that you are to determine number of states, which has distance from state (0, 1) less or equal to $k(as\ this\ state\ can\ be\ achievable\ in\ k\ round\ or\ not)$. Also you should be careful, that if there are only one fool, that he doesn't shot.

Author's Code:- Coded by Enigma27