Гайд для студентов по поиску и анализу научной информации

Подписывайтесь на наш телеграм-канал [https://t.me/selfmadeLibrary] и поддержите нас на Бусти [https://boosty.to/newsinserity/donate]

МОЙ КАРЬЕРНЫЙ РОСТ:

- 1. БАКАЛАВРИАТ
- 2. МАГИСТРАТУРА
- 3. АСПИРАНТУРА

4.

РЕГИСТРАТУРА

Психоневрологического диспансера

Оглавление

Оглавление	2
Введение	3
Зачем нужна научная литература? Почему надо читать чужие статьи? Про целеполагание поиска и чтения	3
Как целеполагание помогает структурировать процесс поиска и чтения:	4
Из чего стоит научная публикация	4
Что такое DOI и зачем он научной статье?	6
Поиск информации для научной работы	7
Вариант 0: Обратиться к коллегам, преподавателям и экспертам	7
Вариант 1: Поиск по ключевым словам	7
1. Базовые операторы поиска	7
2. Расширенные команды	7
3. Использование фильтров	8
4. Paбота с Google Scholar	8
5. Пример пошагового поиска	8
6. Советы для более эффективного поиска	8
Вариант 2: Поиск по сетям цитирования	9
1. Что такое сеть цитирования?	9
2. Инструменты для поиска по сетям цитирования	9
3. Алгоритм поиска	9
4. Преимущества метода	10
5. Пример использования	10
6. Полезные советы	
Вариант 3: Поиск "похожих" статей (семантический и ИИ-поиск)	
1. Что такое семантический и ИИ-поиск?	11
2. Инструменты для поиска «похожих» статей	
3. Как искать «похожие» статьи?	12
4. Преимущества метода	
Научные базы данных	
1. Типы научных баз данных	12
2. Как использовать научные базы данных	
Международные базы данных (кроме Scopus, Web of Science)	
Тематические базы данных	14
1. Естественные науки	14
2. Инженерные и технические науки	15
3. Гуманитарные и социальные науки	15
4. Экономика и управление	16
5. Физика и смежные дисциплины	
Российские базы научных публикаций	
1. Российский индекс научного цитирования (РИНЦ через eLibrary)	16
2. КиберЛенинка	17

3. Национальная электронная библиотека (НЭБ)	17
5. Фонды научной информации и статей	17
Доступ к научной информации	18
1. Пиратские ресурсы	18
2. Легальные альтернативы платным базам данныхданых	18
3. Личные контакты	19
Как не утонуть в море информации: отбор релевантного массива для чтения	19
Что вы ищете?	19
1. Определите тему и запрос	19
2. Актуальность публикаций	20
3. Типы документов	20
Где опубликован документ?	20
1. Профильность издания	20
2. Качество журнала	20
3. Конференции	20
Кто пишет статью?	21
1. Экспертиза автора	21
2. Инструменты для анализа авторов	21
Цитирования	21
1. Количество цитирований	21
2. Анализ контекста цитирования	21
3. Упоминания в силлабусах	21
Оценка содержания	21
На что обратить внимание:	21
Библиографические менеджеры	22
Функции библиографических менеджеров	22
Использование для работы с научной литературой	22
Получаем новости и свежие статьи по своей научной области	23
Литература по теме	24

Введение

Зачем нужна научная литература? Почему надо читать чужие статьи? Про целеполагание поиска и чтения

Научная литература играет ключевую роль в образовательной, исследовательской и профессиональной деятельности, и вот почему:

- 1. **Актуализация знаний и трендов в области**: Научные статьи представляют собой основные источники современных достижений и тенденций в вашей дисциплине. Это помогает быть в курсе новых исследований, методов и технологий, например, последних подходов в палинологии для анализа климата.
- 2. **Критическое мышление и анализ**: Чтение научных публикаций развивает способность анализировать данные, выявлять слабые места аргументов и формулировать собственные выводы, опираясь на доказательства. Это особенно важно в эпоху избыточной информации, где не все источники одинаково надежны.
- 3. **Развитие навыков научного письма и структурирования мыслей**: Изучение научных текстов помогает лучше понимать, как строится логика исследования, как формируются аргументы и оформляются выводы.
- 4. **Источники вдохновения для новых идей**: Исследования других ученых могут подсказывать новые гипотезы, подходы или даже целые направления работы. Например, чтение статей по цифровым гуманитарным наукам открывает перед исследователями новые методы анализа текстов или сетевых данных.

Как целеполагание помогает структурировать процесс поиска и чтения

Перед началом изучения литературы важно четко определить свои цели. Например, вы можете искать новейшие данные по определенной теме или разрабатывать теоретическую основу для проекта.

- 1. Определение ключевых вопросов: Четкое понимание того, на какой вопрос вы хотите ответить, упрощает отбор релевантных материалов. Например, интересуясь методами контент-анализа, вы сможете сосредоточиться на статьях по социологическим исследованиям или медиааналитике.
- 2. **Фокус на временных рамках**: Для анализа текущих тенденций актуальны последние публикации, а для исторического контекста подойдут более старые работы.
- 3. **Определение языковых и географических предпочтений**: Если вас интересует международный опыт, важно искать публикации на английском, а для анализа российского контекста на русском.
- 4. **Систематизация и управление источниками**: Использование библиографических менеджеров упрощает сбор, организацию и использование данных, снижая риск повторной работы и дублирования.

Таким образом, чтение научной литературы — это не только метод получения информации, но и мощный инструмент развития аналитических, писательских и исследовательских навыков.

Из чего стоит научная публикация

Научная публикация состоит из ряда стандартных структурных элементов, которые обеспечивают полноту и логичность изложения исследования. Это позволяет другим ученым воспроизвести эксперимент, оценить результаты и использовать данные в своих работах.

Заголовок (Title):

• Должен быть точным и информативным, чтобы отражать суть исследования. Например: «Влияние климатических изменений на биоразнообразие».

Аннотация (Abstract):

• Краткое резюме исследования (150—300 слов). Она содержит цель, методы, основные результаты и выводы. Аннотация помогает читателю быстро понять, стоит ли читать всю статью.

Ключевые слова (Keywords):

• Несколько терминов, которые помогают индексировать статью и делают её доступной для поиска.

Введение (Introduction):

• Обоснование темы, обзор актуальных исследований, формулировка цели работы. Это вводит читателя в контекст исследования.

Методология (Methods):

• Подробное описание методов исследования. Например, используемые инструменты, выборка, эксперименты. Раздел должен быть достаточно полным, чтобы другие могли воспроизвести исследование.

Результаты (Results):

• Представление данных, полученных в результате исследования. Это могут быть графики, таблицы, статистика. Важно, чтобы данные были представлены ясно и без интерпретации.

Обсуждение (Discussion):

• Анализ полученных результатов в контексте существующих исследований. Здесь авторы указывают на новизну своих выводов и объясняют их значение.

Заключение (Conclusion):

• Суммирует основные выводы и указывает на их важность. Может содержать рекомендации для будущих исследований.

Список литературы (References):

• Полный перечень использованных источников в формате, соответствующем стандартам (APA, MLA, Chicago и др.). Это помогает подтвердить достоверность данных и уважение авторских прав.

Дополнительные материалы:

• Таблицы, диаграммы, приложения, которые содержат дополнительные данные или более детализированные результаты.

Что такое DOI и зачем он научной статье?

DOI (Digital Object Identifier) — это уникальный цифровой идентификатор, присваиваемый каждой научной статье или другому цифровому объекту для обеспечения её удобного поиска и долгосрочной доступности в интернете.

 DOI — это строка уникального кода (например, 10.1000/xyz123), которая привязана к метаданным научного материала. Код регистрируется через специализированные организации, такие как CrossRef, и обеспечивает стабильную ссылку на публикацию независимо от её расположения в интернете.

2. Где используется DOI:

• DOI используется для научных статей, книг, глав, диссертаций, отчетов и других научных материалов, публикуемых в цифровой форме.

3. Зачем нужен DOI:

- **Удобный поиск и доступность:** DOI позволяет быстро находить публикации в интернете. Ввод DOI в поисковую строку, например, на сайте https://doi.org, направит вас на страницу документа.
- Постоянная ссылка: В отличие от обычных URL-адресов, которые могут изменяться или становиться недоступными, DOI остаётся неизменным, что делает его надежным для цитирования.
- **Автоматизация:** DOI упрощает интеграцию научных работ в библиографические менеджеры (Mendeley, Zotero), что облегчает работу с источниками и генерацию ссылок.
- Поддержка цитируемости: DOI позволяет отслеживать, сколько раз публикация была процитирована, что важно для оценки её влияния и значимости.

4. Как DOI помогает научной статье:

- Он подтверждает её подлинность и делает её легко доступной для глобального научного сообщества.
- Упрощает включение статьи в базы данных (Scopus, Web of Science), увеличивая видимость работы.
- Делает её более профессиональной и надежной для использования в исследованиях.

Пример: DOI статьи может выглядеть так: 10.1038/nature12345. Если вы введёте этот код на сайте https://doi.org, вас перенаправят на страницу публикации в журнале Nature.

Итог: DOI делает научные публикации более доступными, защищёнными от «интернет-утрат» и удобными для использования в исследовательской работе.

Поиск информации для научной работы

Перед началом поиска четко сформулируйте тему работы и определите ключевые вопросы, на которые вы хотите ответить. Это поможет сфокусировать ваш поиск. Затем пользуйтесь стратегиями поиска, которые я описала ниже.

Вариант 0: Обратиться к коллегам, преподавателям и экспертам

Перед началом самостоятельного поиска полезно задать вопросы коллегам, преподавателям или экспертам в вашей области: что они могут порекомендовать?

«Всегда помните ещё одну вещь: прежде чем нырнуть в поиск, задайтесь вопросом: не делал ли кто-то эту работу до меня?» (+Fravia, 2019, p. 6)

Вариант 1: Поиск по ключевым словам

Эффективный поиск по ключевым словам требует использования продвинутых инструментов, таких как операторы поиска и фильтры. Это позволяет сузить результаты и найти наиболее релевантные материалы.

1. Базовые операторы поиска

- Кавычки (" "): Используйте для поиска точного совпадения фразы.
 - Пример: "социальная ответственность бизнеса"
- Минус (-): Исключение ненужных слов из результатов.
 - о Пример: менеджмент -маркетинг
- **OR**: Логический оператор, позволяющий искать несколько вариантов.
 - о Пример: инновации OR стартапы
- site:: Поиск по конкретному сайту.
 - о Пример: образование site:edu.ru
- **filetype:**: Поиск по типу файла (например, PDF, DOCX).
 - Пример: искусственный интеллект filetype:pdf

2. Расширенные команды

- intitle:: Поиск ключевых слов только в заголовках страниц.
 - о Пример: intitle:анализ данных
- inurl:: Поиск страниц, где ключевое слово содержится в URL.
 - о Пример: inurl:научные статьи
- related:: Поиск похожих сайтов.
 - о Пример: related:www.sciencedirect.com

3. Использование фильтров

Большинство поисковых систем позволяют уточнять результаты с помощью фильтров:

- Дата: Фильтруйте результаты по времени (например, публикации за последний год).
- Язык: Укажите язык документа.
- Расположение: Сужайте поиск по региону.

Пример настройки фильтров в Google:

- 1. Выполните поиск.
- 2. Нажмите "Инструменты" под строкой поиска.
- 3. Установите нужные параметры (например, "за последний год", "русский язык").

4. Работа с Google Scholar

Google Scholar предоставляет дополнительные возможности:

- Цитирование: Просмотр публикаций, которые ссылаются на выбранную статью.
- "Похожие статьи": Рекомендации материалов на схожую тему.
- Сохранение результатов: Используйте функцию "Моя библиотека" для организации найденных документов.

5. Пример пошагового поиска

Задача: Найти научные статьи о влиянии искусственного интеллекта на образование, опубликованные за последние 5 лет.

- 1. Запрос: "искусственный интеллект" AND образование
- 2. Используйте оператор filetype:pdf для поиска статей в формате PDF.
- 3. Включите фильтр "за последние 5 лет".
- 4. Уточните запрос, добавив: site:edu для поиска на образовательных сайтах.

6. Советы для более эффективного поиска

- Записывайте ключевые слова, найденные в релевантных статьях, чтобы использовать их в дальнейшем.
- Постепенно уточняйте запрос, добавляя или исключая термины.
- Используйте синонимы и родственные термины для расширения поиска.

Эти техники позволят вам находить наиболее точную и релевантную информацию, сокращая время на обработку результатов.

Вариант 2: Поиск по сетям цитирования

Поиск по сетям цитирования — это метод, который позволяет найти дополнительные материалы, анализируя список источников в найденной статье или список статей, ссылающихся на неё. Этот подход помогает выявить ключевые работы в области, проследить развитие научной дискуссии и понять структуру знаний в выбранной теме.

1. Что такое сеть цитирования?

Сеть цитирования строится на двух ключевых принципах:

- Список литературы: Все работы, упомянутые в исследовании (вниз по сети).
- Цитирующие работы: Все исследования, которые сослались на данную статью (вверх по сети).

2. Инструменты для поиска по сетям цитирования

1. Google Scholar:

- Найдите интересующую статью.
- Используйте опцию "Цитируется в..." для просмотра всех работ, ссылающихся на статью.
- Опция "Связанные статьи" покажет материалы с похожими темами.

2. Scopus:

- Просмотр цитирующих документов в разделе "Cited by".
- Фильтрация по году, типу публикации, языку и другим параметрам.

3. Web of Science:

- о Анализирует "Citing Articles" и "Cited References".
- Построение визуальных сетей цитирования для анализа взаимосвязей.

4. Inciteful (ссылка):

• Специализированный инструмент для анализа цитирования и построения связей между статьями.

3. Алгоритм поиска

1. Найдите исходную статью:

• Выберите ключевую статью по теме вашего исследования.

2. Изучите список литературы:

• Просмотрите упомянутые источники, чтобы найти основные работы в теме.

3. Исследуйте цитирующие работы:

• Посмотрите, кто ссылается на выбранную статью. Это позволяет понять, как тема развивалась и какие новые подходы использовались.

4. Анализируйте взаимосвязи:

о Постройте карту цитирований, чтобы визуализировать, как знания распространяются внутри области.

4. Преимущества метода

- Глубина анализа: Вы получаете доступ как к основополагающим, так и к современным исследованиям.
- **Актуальность**: Позволяет отследить новые тенденции и актуальные разработки.
- **Междисциплинарность**: Выявляет неожиданные связи между различными областями знаний.

5. Пример использования

Задача: Найти статьи о влиянии цифровых технологий на образование.

- 1. Найдите базовую статью по теме в Google Scholar.
- 2. Перейдите в раздел "Цитируется в...", чтобы просмотреть статьи, которые ссылаются на неё.
- 3. Используйте Scopus для фильтрации по году публикации и анализируйте работы, появившиеся за последние 5 лет.
- 4. Изучите список литературы выбранной статьи, чтобы понять её научную базу.

6. Полезные советы

- Обратите внимание на частоту цитирования статьи: статьи с большим числом ссылок обычно являются ключевыми в теме.
- Используйте несколько платформ для поиска, чтобы получить наиболее полное представление.
- Систематизируйте найденные работы с помощью библиографических менеджеров, таких как Zotero или Mendeley.

Этот метод особенно эффективен для углубленного исследования, систематизации знаний и подготовки литературного обзора.

Вариант 3: Поиск "похожих" статей (семантический и ИИ-поиск)

Современные технологии позволяют находить статьи, связанные с вашей темой, не только по ключевым словам, но и по семантическому смыслу. Это значительно облегчает процесс поиска и помогает обнаружить релевантные материалы, которые могли бы быть пропущены при традиционных методах.

1. Что такое семантический и ИИ-поиск?

- Семантический поиск: анализирует контекст и смысл текста, а не просто совпадение ключевых слов.
- ИИ-поиск: использует алгоритмы машинного обучения для выявления скрытых связей между статьями.

Эти методы позволяют находить статьи:

- с похожими темами;
- с использованием схожих методов;
- из смежных дисциплин.

2. Инструменты для поиска «похожих» статей

1. Google Scholar:

- Функция «Похожие статьи» под каждым результатом.
- Использует контекстный анализ ключевых слов, аннотаций и текста статьи.

2. Semantic Scholar (ссылка):

- Основан на ИИ-алгоритмах для поиска статей с похожей темой.
- Отображает ключевые слова и концепции, связанные с вашей темой.

3. Connected Papers (ссылка):

- Построение графа взаимосвязанных работ на основе выбранной статьи.
- Помогает исследовать научные связи и находить работы, близкие по тематике.

4. Inciteful (<u>ссылка</u>):

• Использует анализ цитирования и семантические алгоритмы для выявления связанных работ.

5. ResearchGate:

• Рекомендует статьи на основе профиля исследователя и его библиотеки.

3. Как искать «похожие» статьи?

1. Выберите ключевую статью:

• Найдите статью, наиболее релевантную вашей теме, например, в Google Scholar.

2. Используйте функцию «Похожие статьи»:

Щелкните на эту опцию, чтобы увидеть список связанных публикаций.

3. Семантические платформы:

• Загрузите PDF файла или вставьте название статьи в инструменты вроде Semantic Scholar или Connected Papers.

4. Анализируйте результаты:

• Сравните ключевые слова, концепции и список литературы найденных статей.

4. Преимущества метода

- Широкий охват: Вы находите материалы, которые традиционные методы могли упустить.
- Экономия времени: Автоматическое предложение релевантных материалов.
- Междисциплинарность: Обнаружение статей из смежных областей.

Семантический и ИИ-поиск — мощные инструменты, которые помогут вам не только сэкономить время, но и углубить понимание вашей темы.

Научные базы данных

Научные базы данных — это ключевые ресурсы для поиска, организации и использования научной информации. Они обеспечивают доступ к статьям, монографиям, конференционным материалам и другим академическим публикациям.

1. Типы научных баз данных

1. Международные мультидисциплинарные базы:

- o Scopus:
 - Обширная база данных с обзором литературы по всем областям науки.
 - Включает статьи, журналы и конференционные материалы.
 - Возможности: поиск по цитированиям, анализ авторов и журналов.
- Web of Science:

- Фокусируется на высокоимпактных журналах и включает данные о цитируемости.
- Подходит для анализа научного вклада автора или организации.

2. Специализированные базы:

- **PubMed**:
 - Биомедицинские и биологические науки.
 - Основной источник для исследователей в медицине.
- IEEE Xplore:
 - Электротехника, вычислительная техника и смежные области.
- o **ISTOR**:
 - Социальные науки, гуманитарные исследования и искусство.

3. Открытые базы данных:

- o Google Scholar:
 - Бесплатный поиск научной литературы.
 - Включает академические статьи, тезисы и книги.
- DOAJ (Directory of Open Access Journals):
 - Качественные журналы открытого доступа.
- BASE (Bielefeld Academic Search Engine):
 - Мультидисциплинарная база с доступом к открытым источникам.
- 4. Национальные базы данных:
 - РИНЦ (Российский индекс научного цитирования):
 - Российские научные журналы, книги и конференции.
 - eLibrary:
 - Универсальная платформа для поиска научных публикаций в России.
- 5. Платформы для совместной работы:
 - ResearchGate:
 - Социальная сеть для исследователей.
 - Доступ к статьям, возможность задавать вопросы авторам.
 - Academia.edu:
 - Публикации, обсуждения и взаимодействие между учёными.

2. Как использовать научные базы данных

1. Поиск по ключевым словам:

- Используйте точные термины и операторы для уточнения результатов.
- о Пример для PubMed: "artificial intelligence" AND "healthcare"
- 2. Анализ цитирования:
 - B Scopus и Web of Science отслеживайте, кто ссылается на выбранные статьи.
- 3. Фильтрация результатов:
 - Настраивайте поиск по году публикации, типу материалов, языку и другим параметрам.
- 4. Создание профилей:

• Зарегистрируйтесь в базах, чтобы сохранять результаты, настраивать оповещения и использовать персонализированные функции.

Международные базы данных (кроме Scopus, Web of Science)

Помимо Scopus и Web of Science, существует множество других международных баз данных, которые предоставляют доступ к научным публикациям. Они охватывают различные дисциплины и обеспечивают широкий спектр инструментов для исследования.

1. SpringerLink:

- Широкий спектр дисциплин: от медицины до гуманитарных наук.
- Доступ к статьям, книгам, конференционным материалам.
- Возможность поиска по ключевым словам, авторам и тематике.

2. Taylor & Francis Online:

- Публикации в социальных науках, гуманитарных дисциплинах, науке и технике.
- Удобные инструменты фильтрации по дате и типу документа.

3. EBSCOhost:

- Коллекция научных и образовательных баз данных.
- О Доступ к журнальным статьям, тезисам и другим материалам.
- Поддерживает поиск по метаданным и полнотекстовым документам.

4. ProQuest:

- Мультидисциплинарная платформа с фокусом на гуманитарные и социальные науки.
- Возможности: доступ к диссертациям, книгам, периодическим изданиям.

Тематические базы данных

Тематические базы данных сосредоточены на определённых дисциплинах, что позволяет исследователям быстро находить материалы в своей области. Вот подборка популярных баз данных по основным направлениям.

1. Естественные науки

1. PubMed:

- о Медицина, биология, здравоохранение.
- Особенности:
 - Бесплатный доступ.
 - Инструменты для поиска через MeSH (Medical Subject Headings).

2. ChemSpider:

- Химия, молекулярные исследования.
- Особенности:
 - Бесплатный доступ к информации о веществах.
 - Подробные данные о свойствах и реакциях.

3. **Biological Abstracts**:

- Биология и смежные области.
- Особенности:
 - Покрывает множество журналов в биологических науках.

4. GeoRef:

- Геология и геофизика.
- Особенности:
 - Доступ к статьям, картам и геологическим отчетам.

2. Инженерные и технические науки

1. IEEE Xplore:

- Электротехника, электроника, информатика.
- Особенности:
 - Высокая концентрация материалов по инженерным наукам.
 - Журналы, конференции, стандарты.

2. ACM Digital Library:

- Информатика, программирование, искусственный интеллект.
- Особенности:
 - Доступ к статьям, конференционным материалам, книгам.

3. Materials Science Database:

- Материаловедение.
- Особенности:
 - Информация о свойствах материалов, новых разработках.

3. Гуманитарные и социальные науки

1. ERIC (Education Resources Information Center):

- Образование, педагогика.
- о Особенности:
 - Доступ к статьям, исследованиям, отчетам.

2. JSTOR:

- о История, социология, искусство.
- Особенности:
 - Широкий охват дисциплин гуманитарного профиля.
 - Возможность скачивания статей.

3. AnthroSource:

- Антропология.
- Особенности:
 - Подходит для изучения этнографии, культурной антропологии.

4. Экономика и управление

- 1. EconLit:
 - Экономика.
 - Особенности:
 - Доступ к статьям, книгам, диссертациям.
 - Темы: макроэкономика, финансовая аналитика.
- 2. RePEc (Research Papers in Economics):
 - Экономика, управление.
 - Особенности:
 - Бесплатный доступ к статьям, препринтам.
- 3. Business Source Complete:
 - Менеджмент, маркетинг, бизнес-аналитика.
 - Особенности:
 - Полнотекстовый доступ к статьям, отчетам.

5. Физика и смежные дисциплины

- 1. ArXiv:
 - Физика, математика, информатика.
 - о Особенности:
 - Препринты статей, доступные бесплатно.
- 2. CERN Document Server:
 - Высокоэнергетическая физика.
 - Особенности:
 - Публикации, отчёты, презентации.
- 3. INSPIRE-HEP:
 - Высокоэнергетическая физика.
 - Особенности:
 - Связан с ArXiv, предоставляет доступ к цитированию.

Российские базы научных публикаций

Российские базы данных являются важными ресурсами для поиска научных публикаций, особенно если ваша работа связана с российскими исследованиями, языковыми особенностями или специфическими областями знаний.

1. Российский индекс научного цитирования (РИНЦ через eLibrary)

- Описание:
 - о Платформа для доступа к научным публикациям, включая материалы РИНЦ.
 - о Содержит международные и российские издания.

• Преимущества:

- Удобный интерфейс для поиска по ключевым словам, авторам, тематикам.
- Возможность фильтровать результаты по дате, типу публикации и языку.

• Особенности:

• Некоторые материалы доступны только по подписке.

Перейти на сайт eLibrary

2. КиберЛенинка

• Описание:

- Библиотека открытого доступа.
- Сосредоточена на российских научных статьях и материалах.

• Преимущества:

- Бесплатный доступ ко всем публикациям.
- о Простой поиск и поддержка ИИ для рекомендаций похожих материалов.

• Особенности:

о Преимущественно гуманитарные и социальные науки.

Перейти на сайт КиберЛенинка

3. Национальная электронная библиотека (НЭБ)

• Описание:

- Национальный проект, объединяющий доступ к библиотечным фондам России.
- Содержит книги, статьи, архивные материалы.

• Преимущества:

- Доступ к редким и уникальным источникам.
- Возможность поиска по тематике и жанру.

• Особенности:

• Требуется регистрация для полного доступа.

Перейти на сайт НЭБ

5. Фонды научной информации и статей

- 1. Государственная публичная научно-техническая библиотека России (ГПНТБ):
 - База данных научно-технической информации.
 - Удобна для технических и инженерных исследований.
 - о Сайт ГПНТБ
- 2. Архивы диссертаций РГБ (Российской государственной библиотеки):

- Содержит диссертации и авторефераты.
- ∘ Сайт РГБ

Доступ к научной информации

Доступ к научной информации можно разделить на несколько направлений, включая пиратские ресурсы, легальные альтернативы и использование личных контактов.

1. Пиратские ресурсы

Пиратские ресурсы, такие как **Sci-Hub** и **Library Genesis** (**LibGen**), предоставляют бесплатный доступ к научным статьям и книгам, которые обычно доступны только через платные базы данных. Однако важно учитывать следующие аспекты:

- Этические вопросы: Использование пиратских ресурсов нарушает авторские права и может противоречить законодательству.
- Риски: Загрузка материалов с подобных сайтов может быть сопряжена с угрозой заражения вредоносным ПО.

2. Легальные альтернативы платным базам данных

Существует несколько способов получить доступ к научной информации легально и бесплатно:

• Препринты:

- Научные работы в препринт-серверах доступны до публикации в журналах.
- о Примеры: arXiv, bioRxiv, medRxiv.
- Полезны для ознакомления с самыми актуальными исследованиями.

• ResearchGate и Academia.edu:

- Социальные сети для ученых, где исследователи делятся своими статьями.
- Можно запросить у автора копию статьи, если она недоступна в открытом доступе.

• Открытые базы данных:

- DOAJ (Directory of Open Access Journals):
 - Коллекция журналов с открытым доступом высокого качества.
 - Все статьи доступны бесплатно.

BASE (Bielefeld Academic Search Engine):

- Более 240 миллионов документов из академических репозиториев.
- Мультидисциплинарная база с поддержкой поиска по метаданным.

OpenAIRE:

- Европейская инициатива по предоставлению доступа к научным публикациям.
- Открытые данные и статьи, финансируемые за счёт грантов.

• Национальные ресурсы:

 Российские научные базы, такие как eLibrary, предоставляют доступ к публикациям на русском языке.

3. Личные контакты

• Общение с авторами:

- Большинство ученых охотно делятся своими статьями, если им написать напрямую (например, через электронную почту или ResearchGate).
- Вежливое письмо с просьбой прислать копию статьи часто оказывается успешным.

• Академические сообщества:

• Участие в конференциях, семинарах и вебинарах помогает установить связи с авторами и получить доступ к их работам.

• Коллеги и университеты:

 Университетские библиотеки часто имеют подписку на платные базы данных, и сотрудники или студенты могут воспользоваться этим доступом.

Легальные альтернативы и личные контакты позволяют получить доступ к качественным научным материалам, избегая этических и правовых проблем. Использование таких подходов помогает оставаться в рамках закона и сохранять научную репутацию.

Как не утонуть в море информации: отбор релевантного массива для чтения

Что вы ищете?

1. Определите тему и запрос

Держите перед глазами исследовательский вопрос или тему. Соотносите заголовки найденных документов с вашей задачей. Это поможет быстро отсеивать нерелевантные материалы.

2. Актуальность публикаций

• Для большинства тем важны **свежие работы**, отражающие современные данные и критику.

• Исключение: если вы ищете «классику», дата публикации менее критична.

3. Типы документов

- **Первичные источники**: карты, дата-сеты, художественные тексты, правовые акты материалы, которые служат данными для анализа.
- Исследовательские статьи: содержат результаты и анализ исследований.
- Конференционные тезисы: дают оперативную информацию, но могут быть менее подробными.
- Обзорные статьи: агрегируют результаты множества исследований, помогают картировать область знаний.

Где опубликован документ?

1. Профильность издания

Публикация в профильном журнале указывает на её релевантность. Например, статья о солнечных батареях в журнале по менеджменту выглядит подозрительно, если она не касается вопросов управления.

2. Качество журнала

Ищите журналы из международных рейтингов (Q1 или Q2 в SJR). Проверьте:

- РИНЦ для российских изданий.
- Scopus Journal Metrics для международных.

3. Конференции

Знайте свои ключевые конференции. Оцените их по репутации:

- Важные конференции место для представления новейших данных.
- «Хищнические» конференции часто публикуют низкокачественные материалы.

Пример: В математике конференционные сборники ценны, в других дисциплинах их значимость может быть сомнительной.

Кто пишет статью?

1. Экспертиза автора

- Автор с несколькими работами в области более компетентен, чем новичок.
- Обращайте внимание на академические степени и место работы (престижные университеты и исследовательские центры).

2. Инструменты для анализа авторов

Используйте профили в:

- Scopus
- Google Scholar
- РИНЦ
- ORCID

Цитирования

1. Количество цитирований

Высокое количество цитирований — знак влияния работы. Однако:

- Недавние статьи могут ещё не набрать цитирования.
- Высокое цитирование может быть связано с критикой статьи.

2. Анализ контекста цитирования

Используйте расширения:

- Altmetric: показывает популярность и охват статьи.
- Scite: анализирует, в каком контексте статья цитируется (положительно, отрицательно, нейтрально).

3. Упоминания в силлабусах

Публикации, упоминаемые в университетских силлабусах, прошли экспертную оценку. Проверьте их через Open Syllabus.

Оценка содержания

На что обратить внимание:

- 1. Соответствие теме: наличие ключевых слов, фраз.
- 2. Качество аннотации: она должна чётко отражать содержание статьи.
- 3. Объём и структура: соответствует ли статья вашим ожиданиям.
- 4. Методология: адекватна ли она вашему исследованию.
- 5. Список литературы: обширный и релевантный список говорит о качестве работы.

Библиографические менеджеры

Библиографические менеджеры — это программы, которые помогают исследователям организовать и упорядочить источники, упрощая процесс цитирования и написания научных работ. К популярным программам относятся:

1. **Zotero**:

- о Бесплатный инструмент для управления ссылками.
- о Интегрируется с браузерами и текстовыми редакторами.
- Удобен для хранения и аннотирования PDF-документов.

2. Mendeley:

- Бесплатная программа с возможностями облачного хранения.
- Обеспечивает автоматическое извлечение метаданных из PDF-документов.
- о Имеет социальную сеть для общения исследователей.

3. EndNote:

- Платный менеджер с обширными функциями.
- Используется для сложных проектов с большим количеством источников.

4. Citavi:

- Интеграция с проектным управлением.
- Подходит для систематизации заметок и анализа литературы.

Функции библиографических менеджеров

Библиографические менеджеры предоставляют:

- Сохранение и сортировка: Организация источников по категориям, тегам или проектам.
- **Автоматизация ссылок**: Автоматическое создание библиографий в стиле АРА, MLA и других.
- **Аннотация документов**: Возможность добавлять заметки к PDF.
- Совместная работа: Обмен библиотеками или документами с коллегами.
- Поиск и импорт: Поддержка импорта из научных баз данных, таких как PubMed, Web of Science, Scopus.

Использование для работы с научной литературой

Для эффективной работы с научной литературой с помощью библиографических менеджеров:

- 1. Импортируйте источники из научных баз данных или вручную.
- 2. Организуйте материалы по тематическим папкам или проектам.
- 3. Добавляйте аннотации и пометки, чтобы упрощать последующую работу.
- 4. **Синхронизируйте данные** между устройствами через облачные сервисы (например, Zotero или Mendeley).
- 5. **Используйте автоматическое цитирование** при написании текста, что экономит время на ручную проверку форматов.

Эти инструменты значительно упрощают работу исследователей, особенно при работе с большими объемами источников.

Получаем новости и свежие статьи по своей научной области

Зачем надо следить за новыми статьями, которые выходят в вашей научной области?

- 1. Быть в курсе последних научных исследований. Получение уведомлений о новых научных статьях позволяет ученым быть в курсе последних научных исследований в своей области.
- 2. Следить за работами других ученых. Уведомления о новых научных статьях позволяют ученым следить за работами других ученых в своей области и быть в курсе последних научных достижений.
- 3. Сокращать время на поиск новых научных статей. Получение уведомлений о новых научных статьях позволяет ученым сократить время на поиск новых научных статей, так как они могут получать информацию о новых исследованиях без необходимости проводить поиск самостоятельно.

Как оставаться в курсе и получать уведомления о новых работах? Рассказываю об этом в новом видео на Ютубе какой-то библиотеки.

https://youtu.be/YmDxCzma9SY?si=nJUjN8RrO9g2VqtH

- 1. Инструменты Google Scholar
- 2. Умные рекомендации на почте от Semantic Scholar
- 3. Подписки на журналы
- 4. Твиттер, ТГ-каналы и прочие блоги
- 5. Подключение RSS-ленты в Zotero: звучит жутко, а на деле два клика.

Подписывайтесь на наш телеграм-канал [https://t.me/selfmadeLibrary] и поддержите нас на Бусти [https://boosty.to/newsinserity/donate].

Литература по теме

- 1. +Fravia. 2019. ФРАВИЯ: искусство поиска. Под редакцией В А. Переведено Wegwarte. http://archive.org/details/20191001_20191001_1815.
- 2. Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. *Research Synthesis Methods*, *11*(2), 181–217. https://doi.org/10.1002/jrsm.1378

- 3. Добров, Б. В., Н. В. Лукашевич, Г. Б. Добров, Я. Г. Резников, и С. В. Штернов. 2005. «Исследование методов трансформации запросов в первом туре Кубка Яндекса».
- 4. Machi, L. A., & McEvoy, B. T. (2022). The Literature Review: Six Steps to Success.