CHAPTER 5

DAY 15 - LOGARITHMIC DIFFERENTIATION

In this section, we will differentiate the functions of the form $y = f(x) = [u(x)]^{v(x)}$. We differentiate such functions by taking logarithm on both sides and then applying the properties of logarithm.

Properties of log function

1.
$$\log \log pq = \log \log p + \log \log q$$

2.
$$\log \log \frac{p}{q} = \log \log p - \log \log q$$

3.
$$\log \log p^n = n \log p$$

Note:

$$e^{\log\log x} = \log\log e^x$$

Consider the function $y = \frac{(x+1)(x+2)^2}{(x+3)(x+4)}$. We differentiate the function as follows:

Taking log on both sides, we have

$$\log \log y = \log \log \left(\frac{(x+1)(x+2)^2}{(x+3)(x+4)} \right)$$

$$\log \log y = \log \log \left((x+1)(x+2)^2 \right) - \log((x+3)(x+4))$$

$$\log \log y = \log \log (x+1) + \log \log (x+2)^2 - [\log \log (x+3) + \log \log (x+4)]$$

$$\log \log y = \log \log (x+1) + 2 \log \log (x+2) - \log \log (x+3) - \log \log (x+4)$$

Differentiating with respect to x on both sides, we get

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{(x+1)} + \frac{2}{(x+2)} - \frac{1}{(x+3)} - \frac{1}{(x-4)}$$

$$\frac{dy}{dx} = y \left[\frac{1}{(x+1)} + \frac{2}{(x+2)} - \frac{1}{(x+3)} - \frac{1}{(x-4)} \right]$$

$$\frac{dy}{dx} = \left(\frac{(x+1)(x+2)^2}{(x+3)(x+4)} \right) \left[\frac{1}{(x+1)} + \frac{2}{(x+2)} - \frac{1}{(x+3)} - \frac{1}{(x+3)} - \frac{1}{(x-4)} \right]$$

Questions

Find the derivative of following functions with respect to x

1.
$$\frac{(x-2)}{(x+4)}$$

2.
$$\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

3.
$$(x-1)(x+2)^3$$

4.
$$\log \log x^{\cos \cos x}$$

5.
$$x^x$$

6.
$$x^{\sin \sin x} + x$$
) $\cos \cos x$

7. If
$$e^{y-x} = x^y$$
, prove that $\frac{dy}{dx} = \frac{\log \log x}{[\log \log ex]^2}$

8. Find $\frac{dy}{dx}$ for the following functions

a.
$$x^y + y^x = 1$$

$$b. \quad x)^y = (\cos\cos y)^x$$

c.
$$xy = e^{x-y}$$

If the question is $x^y = y^x$, then we can write $x^y - y^x = 0$ and proceed as (a)

More questions must be practiced.