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KNOWLEDGE GRAPH FACTORY

Property Graph Factory

Extract, Transform, Resolve, Model, Predict, Explain

This document is an essay about building and using enterprise knowledge graphs in the form of property
graphs after reflecting on being CTO at three knowledge graph companies and outlines a gap in the open
source ecosystem and market where a Property Graph Factory fits to improve outcomes in risky, expensive
large knowledge graph projects. These projects can cost eight figures and fail to provide a return on
investment. An effective property graph factory can address the problems every enterprise knowledge
graph Al project encounters to cut the costs of building applications based on graph intelligence in half. This
document covers the process of building a knowledge graph using the most popular open source stack
before outlining the problems in this process that kill projects and the features in Graphlet Al that will solve

them.

| focus on process and technology rather than use cases because this essay is a net with which to gather
use cases that fit or alter the factory. | would appreciate feedback on this document in the form of
questions, comments and suggestions as | develop this idea. This is the philosophy of my new knowledge
graph consultancy Graphlet Al (website in progress). It is the driving ethos of our practice, it could be an
open-source project under Apache governance or it could be a startup that disrupts the graph database
and knowledge graph markets by unblocking their growth by offering a platform that cuts the cost of

applications driven by enterprise knowledge graphs in half. Which do you think it is?

INTRODUCTION

The workflow for the property graph factory described below defines the process that enables enterprises
to embrace and extend the data platforms they already use to build an enterprise knowledge graph with a
uniform ontology that represents the domain in which their business operates. On top of this
domain-specific graph they can then use graph intelligence to add the types of edges in the solution space
that solve their business problems. In addition to network construction, a KG factory would allow companies
to easily do graph search, graph machine learning, and the rapid development of graph neural networks


https://gradientflow.com/what-is-graph-intelligence/

(GNNSs) to build a high fidelity model of their problem domain which can drive the models that automate
their business processes under a Software 2.0 model as defined by Andrej Karpathy and Ratner, Hancock

and Ré.

Heterogeneous knowledge graphs offer a rich domain in which to model your market and its problems.
When combined with heterogenous graphlets and motifs, motif search against null models and Motif Graph
Neural Networks, they offer an efficient way to create automated solutions using representation learning
that builds on top of the domain expertise previously expressed by an organization in the form of graph
queries. These distributed representations of the problem domain of a market are the core assets that drive
FAANG companies... and is causing other enterprises to follow them in transforming their companies to be

model first, rather than code first.

Without a factory to make the workflow more efficient, innovative enterprises spend eight figure budgets on
knowledge graph projects that fail to provide a return on investment. If a property graph factory could make
the process above 25%, 50% or 75% faster it would create an enormous amount of value for its users.

Spending $5M instead of $10M to achieve an improved outcome constitutes enterprise value.

The graph database and knowledge graph markets have long been frustrated by the failure of the semantic
web and many enterprise knowledge graph factories are closed silos based on legacy technology. | believe
the market will explode once the Python open data stack is easy to apply to model a problem using graph
machine learning. It is the mission of Graphlet Al to build a Property Graph Factory that brings network

science and graph machine learning into the operations of enterprises across the globe.

PROBLEM DEFINITION

The knowledge graph and graph database markets have long asked themselves: why aren’t we larger? The
vision of the semantic web was that many datasets could be cross-referenced between independent graph
databases to map all knowledge on the web from myriad disparate datasets into one or more authoritative
ontologies which could be accessed by writing SPARQL queries to hop from one knowledge graph to

another. The reality of dirty data made this vision impossible, as Cory Doctorow outlined in his essay

Metacrap.


https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35
https://www.cidrdb.org/cidr2019/papers/p58-ratner-cidr19.pdf
https://www.cidrdb.org/cidr2019/papers/p58-ratner-cidr19.pdf
https://arxiv.org/abs/2010.14058
https://arxiv.org/abs/2112.14900
https://arxiv.org/abs/2112.14900
https://deepai.org/machine-learning-glossary-and-terms/distributed-representation#:~:text=Distributed%20representation%20describes%20the%20same,in%20a%20non%2Dlinear%20fashion.
https://handwiki.org/wiki/Metacrap

RDF Triple Stores vs Property Graphs for Heterogeneous Networks

RDF Triples —> Properties —> Objects Property Graph —> Objects

/ Repo

type: Repo type: Repo
SUB_MODULE

url: /company/graph url: /company/tools
title: Graph Project title: Tools Project

rdf:type

RDF triple stores are optimized for representing data
without a common schema rather than for -implementing

T moale > res: Repo) querigs to express busipess logic. The dowpside. of
RDF 1is the need to reify sets of properties -into
objects 1in order to understand and work with them,
which means performing ETL across different forms of
the same record at query time in SPARQL.

Property Graphs store nodes and edges
as objects that contain properties.
This makes querying, transformation and
" Developer, Tools . 7 y 5 c .
Graph Project Project visualization direct operations. While
there 1is no need to reify, ETL into a
common ontology can simplify queries.

Figure adapted”from Semantic Publication of
Agricultural Scientific Literature Using Property ._ RDF Redfication is Costly
Graphs, Abad-Navarro et al, Fig. 5, RDF and ._
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Semantic Web was a dead end. People think in terms of objects - not attributes they must reify

In reality most time is spent cleaning data - graph data isn’t in the format you need to solve your business
problems. You have multiple datasets in different formats, each with its quirks. You need to deduplicate data
using entity resolution - an unsolved problem in commercial tools for large graphs. Even once you merge
duplicate nodes and edges, you rarely have the edge types you need to think in terms of your problem
domain to make a problem easy to solve.

It turns out the most likely type of edge in a knowledge graph that solves your problem with analysis is
defined by the output of an entire program - a program in Python which employs machine learning. For
large graphs, this program needs to be run on a scalable platform based on commodity machines like

Databricks or Snowflake (which are improving using GPUs) and extend rather than rebuild and isolate within

to provide an excellent developer experience. To create new edges in the domain of your solution, you
need to compare candidate pairs nodes that are candidates for edges in an efficient manner. Google Grale
outlines a simple blocking or reduce mechanism for building a graph that solves your business problem


https://www.mdpi.com/2076-3417/10/3/861/htm#
https://databricks.com/glossary/pyspark
https://community.snowflake.com/s/article/Snowflake-External-Function
https://nvidia.github.io/spark-rapids/docs/get-started/getting-started-databricks.html
https://research.google/pubs/pub49831/

using simple graph algorithms like connected components or other types of querying or pattern matching. It

can also be the basis for graph machine learning on a more refined graph.

This document outlines the broad requirements for a property graph factory that embraces the most
popular open source technologies for machine learning, big data and information retrieval and that meets
the needs of users in enterprises by extending the data platforms they already use. This confluence of
factors are they key to unlocking the potential of the knowledge graph and graph database markets under

the auspices of graph intelligence.

PLATFORM ARCHITECTURE

The system architecture for this platform is optimized for large scale datasets and their corresponding
knowledge graphs by adopting the Delta Architecture, supported by cloud services for search, graph
retrieval and machine learning operations. The data pipeline is operated under an ingest / build / refine /
publish / query model of data processing. As much data processing as possible is performed in a
horizontally scalable, batch processing system such as Databricks (PySpark) or Snowflake. The platform
builds on top of the open Python data stack, which is utilized for the purposes of Extract Transform Load
(ETL), feature extraction or engineering, construction of a knowledge graph with a uniform ontology for a
given problem domain, graph representation learning, entity resolution and the computation of network
motifs or heterogenous graphlets which are then folded into node-level representations as heterogeneous
graphlet minors.


https://delta.io/
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KNOWLEDGE GRAPH CONSTRUCTION

This section outlines the phases of the knowledge graph construction process for large knowledge graphs
using distributed systems and deep learning. This process is echoed in Databricks marketing on using big

data for financial services. Once we outline the process, in the next section we will discuss problems one
encounters in knowledge graph construction before outlining a set of solutions to these problems Graphlet
Al will build.

Ingestion

Datasets that make up a knowledge graph are ingested onto bulk storage systems such as Amazon S3,
Google Cloud Storage (GCP) or onto parquet based tables with a version tracking component such as Delta

Tables or Apache Iceberg, which has broad language and library support. This allows version tracking of

datasets and their varying metadata along with source code and predictive models over time so the


https://databricks.com/blog/2021/07/16/aml-solutions-at-scale-using-databricks-lakehouse-platform.html
https://delta.io/
https://delta.io/
https://iceberg.apache.org/

pipeline producing the knowledge graph from scratch is always uniquely versioned from end-to-end. Nodes
and edges can be stored in their own intermediate silver tables.

Bronze Tables contain raw data for each dataset which have their own independent schemas.
The first step in adding a dataset to a knowledge graph is to load it and store it into a
Bronze Table. The next step is to ETL it into a common format for entities of that type 1in
your ontology and store it along with other sources of that type of data in a Silver Table.
A similar process occurs for edges.

Transforming data from Bronze Tables 1into a common format in Silver Tables allows a team to imple-
ment entity resolution (ER) once rather than once per dataset they ingest. This reduces cost and com-
plexity!

Raw Bronze Schemas

Github BitBucket
Repo A Repo B

Properties Properties

url: /rjurney/Agile_Data_Code_2 path: /rjurney/Agile_Data_Code_2
name: Code for Agile Data... owner: { username: rjurney }
owner: rjurney
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Entity Resolution Phase 1
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Data Cleaning and ETL

Data from different sources about the same thing often contain different schemas, and for efficiency’s sake
it is necessary to transform - rather than link - the data into a single ontology representing your problem
domain. Multiple datasets need to be transformed into a single, generic form that fits the query and access
patterns for your application - for example Github, GitLab and BitBucket repositories can become Repos
with a type field referring to the source.



Silver Tables contain intermediate datasets computed from bronze tables that are used to
build the final representation of your knowledge graph which is stored in a Gold Table and
published in a Platinum Table in your graph database and integrated search engine. In this
case separate node tables for two data sources of the same type are combined into a single
generic node table for that type: repository.

The benefit of transforming data into a common ontology up front is that entity resolution can be

implemented using a single common schema, resulting in greater efficiency in less code and less over-
all technical debt.

Uniform Silver Ontology

Github BitBucket
Repo A Repo B

Properties Properties

url: /rjurney/Agile_Data_Code_2 url: /rjurney/Agile_Data_Code_2
name: Code for Agile Data... owner: rjurney
owner: rjurney

Entity Resolution Phase 1 ETL
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Tools for building Python classes for each domain’s application ontology are required to make ETLing
multiple bronze datasets into PySpark DataFrames or tables in SnowFlake. Classes for each type in the
ontology can be created from base classes provided by the system that use Python decorator functions to
define DataFrame or table schemas in a way that encourages code reuse.

Entity Resolution

The landmark paper Deep Entity Matching with Pre-Trained Language Models defined an encoding

mechanism for semi-structured records and embedded these representations using Sentence Transformers

to create vector representations of entities for entity matching. This turns out to be an excellent starting
point as an encoding mechanism for many graph ML tasks. Matching code for entity resolution is available

as part of the papers’ authors’ implementation ditto. This sentence transformer vector encoding can be

used for blocking and even matching via semantic similarity between structured records using cosine
similarity with a threshold, although a different model is used for matching via a fine-tuned classifier in the
ditto paper.


https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.DataFrame.schema.html
https://arxiv.org/abs/2004.00584
https://www.sbert.net/
https://github.com/megagonlabs/ditto
https://www.sbert.net/

Encoding Scheme from Deep Entity Matching with Pre-Trained Language Models

Simple Encoding
[CLS] [COL] attri [VAL] vall . . . [COL] attrk [VAL] valk [SEP] .. [SEP]

Github Repo
[cLS] [cOL] url [VAL] /rjurney/Agile.. [COL] type [VAL] github [COL] [VAL] Code for.. [SEP]

Semi-Structured Date
[CLS] [cOL] date.year [VAL] 2022 [COL] date.month [VAL] 02 [COL] date.day [VAL] 01 [SEP]

Semi-Structured List
[cLs] [coL] fruit.® [VAL] apple [COL] fruit.1 [VAL] pear [COL] fruit.2 [VAL] orange [SEP]

Company and Officers Encoding

[CcLS]
[cOL] type [VAL] company
[COL] name [VAL] Apple, Inc.
[cOL] location [VAL] Sunnyvale, CA, USA
[cOL] officers.l [VAL] Arthur D. Levinson
[cOL] officers.2 [VAL] Tim Cook

[SEP]

Encoding Nodes for ER with NLP
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Blocking with Locality Sensitive Hashing (LSH): Google Grale

Google Research put out a paper in 2020 about a system called Grale - the system that drives Google’s
internal knowledge graph factory for all its web properties. Similar to the reduce phase of MapReduce,
Grale uses a relatively simple, scalable algorithm called Locality Sensitive Hashing (LSH) to perform blocking
of nodes into similar groups for comparing pairs of nodes to perform tasks such as blocking for entity
resolution or link prediction. It can be thought of as MapLSH for the big graph ML space as compared to
MapReduce for general purpose big data processing.

It is critical to ship the simplest thing that could possibly work to production before moving on to more
sophisticated methods for any machine learning problem one pursues as premature optimization can be a
terminal flight pattern for any ML project. A knowledge graph factory should support and enable this

process through tools that enable stepwise implementation of solutions to link prediction problems.

A lightweight implementation of link prediction is possible for property graph nodes using the encoding
mechanism for structured records from ditto, which can represent semi-structured data including lists, maps


https://arxiv.org/abs/2007.12002
https://research.google/pubs/pub49831/

and trees. Sentence Transformers are used to encode the data. Spark ML's Buck RandomProj
can act as the blocking mechanism for entity resolution. It offers a fuzzy join operator that can use any

vector such as a deep embedding to perform self-joins for link prediction tasks.

Spark MLs LSH self-join on node records encoded using structural hints for pre-trained language models
provide a base capability to create the edges in your enterprise knowledge graph that form part of the
solution space via graph analytics whereas the provided edges usually lie in the problem space. The job of
a data science team using enterprise knowledge graphs is to transform a graph in the problem space to

one describing the solution space.

GRAPHLET Al
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Deep Embeddings are numeric, vector
representations of records that repre-
sent data of different kinds numerical-
ly using matrices - lists in multiple
dimensions. Each dimension has meaning
and so a set of coordinates encodes the
[cLS] [cLs] meaning of a record. Pre-trained lan-

[coL] url [VAL] /rjurney/Agile_Data_... [COL] url [VAL] /rjurney/Agile_Data_... m rn from X r
[COL] type [VAL] github [COL] type [VAL] bitbucket gua%e G r:.ea tre 1[:)e t ;:o puses
[COL] name [VAL] Code for Agile Data... [COL] owner [VAL] rjurney as large as the entire web, and create

[COL] owner [VAL] rjurney [SEP] highly sophisticated representations
[SEP] of text that we can repurpose via
transfer learning to encode structured
records such as nodes and their proper-
ties.

Github Repo Properties as Text BitBucket Repo Properties as Text

Embedding Layer

Using Locality Sensitive Hashing (LSH)
to match pairs of for applying machine
learning algorithms 1is a method pio-
neered by Google Research. Google Grale
LSH Join is a system from Google Research that

drives knowledge graph construction
across Google’s many websites. It can
be dimplemented in open source using
Spark ML via BucketedRandomProjection-

Hash Buckets LSH against a text or structured embed-
[ J ding of records.

Entity Resolution Phase 2 |Blocking

Entity Matching 1.0: Cosine Similarity Thresholds

An prototype for fuzzy matching of nodes in property graphs can be created using cosine similarity between
the sentence embedding vectors and a hand-tuned threshold. This assures the practitioner of the

technique’s capabilities before investing more time and resources in a full implementation.


https://www.sbert.net/
http://bucketedrandomprojectionlsh

Matching Sentence Embeddings via Cosine Simlarity

Hash Buckets Nearby Pairs
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Clusters of nodes appear near one
another 1in the hashing space and
are likely match candidates,
therefore they form our blocks.
We emit all possible pairs of
nodes from each block and compare
their embedding vectors with
cosine similarity to get a dis-
tance between each pair. LSH
parameters are tuned to keep
these block sizes manageable. A
threshold +is chosen by examining
cos(0) . the output of these comparisons
. < N B e L and a threshold 1is chosen. While
thresh R ' R " . imprecise, this works well for a
g first pass and can be extended in
the next step by building a binary
classifier for entity matching.

Once again SAME_AS edges are
added between matches and con-
+SAME_AS nected components are run to
R L3 determine which nodes to merge,
at which point the fields can be

merged and summarized.

Followed by Connected Components

=_ Ent—|ty Resolution Phase 2 |[Matchi ng
e ewwa] ||

Entity Matching 2.0: Fine Tuned Classification

Labeled data for fine-tuning a classifier using the sentence transformer representations can be obtained via
a labeling platform implementing active learning algorithms or by weak and distant supervision and

programmatic data labeling (see: Snorkel).


https://datasaur.ai/
https://github.com/snorkel-team/snorkel

Deep Entity Matching can be per-
0 . e . . formed with an -dncreased accurac
Fine-Tuned Classifier for Entity Matching and precision by fine-tuning a clas
sifier on Tlabeled entity pairs:
Hash Bucket MATCH (1) / NO_MATCH (@). Two sets
Blocks of fixed length embeddings from sen-
i X ) tence transformers representing one
Fine-Tuning a Pre-trained or more fields are appended and
Label: 0/1 Language Model along with labeled data are used to
fine-tune a classifier for entity

matching.

Google Grale as well as Deep Entity
Matching using Pre-Trained Language
Models both outline neural network
architectures that can be used as
the basis for a classifier.

Weakly Supervised Learning methods
such as weak supervision, program-
matic labeling, distant supervi-
sion, semi-supervised learning and
active 1learning can minimize the
amount of hand labeled data required
to train a matcher. Weak and distant
supervision can be used together via
Snorkel to make use of clues from
error(label, P) the knowledge graph as well as
external sources of knowledge to
generate large amounts of Tlabeled
data for large datasets where few
Binary Classifier labels are known. Active learning
NO_MATCH: @ focuses hand labeliqg on a few areas
where coverage can improve the mod-
el’s performance.
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Entity Matching 3.0: Hand Engineered Graph Features

The next phase of entity matching incorporates the topology surrounding a pair of nodes and incorporates
them as features in the matching classifier. In the example below the fields of companies can be compared
in the previous steps but in this phase the officer names and any fields describing them can be incorporated
into the embedded representation via the scheme described above, for the example of entity matching

between two companies below.
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Entity Matching with Neighborhood Features

Topological features in a corporate network of companies and their officers are a vital clue that two
companies are identical. Companies that share officers are often the same; however, person and company
name matches are rarely +dentical. Fuzzy matching using text embeddings address this challenge at a
field level. Comparisons are between sets of officers, not individuals, presenting another challenge.

Potential Comparisons Between Two Companies and their Corporate Officers

Field Level Comparisons

Person A \

1) Programmatic comparis:
/ 2) Fuzzy String Matching
3) Embedding Comparison

officership
I officership

| 4 I

LSH Bucket Pairs l
Co—Off1|cersh'|p Company A Company D Co-Officership

officership officership
Set Level Comparison
1) Jacquard Similarity

2) TF-IDF
3) Sentence Transformers

=_ SRl e these 3
L S e—a
0 e —

ORAFILELA

Because large language models have parsed a lot of XML, this scheme is sufficient to allow a sentence
transformer or other text representation to infer the meaning of the semi-structured lists of officers and to
consider them in context of other instances of descriptions of corporate officers.

type [VAL] company
name [VAL] Apple, Inc.
location [VAL] Sunnyvale, CA, USA

officers.1 [VAL] -Arthur D. Levinson
officers.2 [VAL] Tim Cook

Entity Matching 4.0: Graph Neural Networks

In the highest level of sophistication for entity matching a GNN representation of nodes can be fine-tuned in
a classifier to incorporate graph features beyond individual fields in a node’s immediate neighbors.

"



Heterogenous Graphlets and their Minors

Query languages for property graphs enable rich queries for network motifs incorporating both topology

and node and edge properties. However, without first performing entity resolution, graph queries do not

return good results because hopping across edges misfires due to duplicate nodes. This is especially the

case on datasets and knowledge graphs that are themselves made up of disparate sources of nodes, edges

and their properties because there is heavy bias in what results and how many are returned. | have seen

match counts for a motif search to be as much one million times more frequent after entity resolution is

performed!

Entity Resolution (ER) Enables Motif Searching and Motif-Based GNNs

A motif search for friends may match:

* Person Entity Al’s propl
* Person Entity B2’s propl

Person Person
Entity Al ntity A2
propl propl

prop2 prop2

Person
ntity Al

propl
prop2

Person
ntity A2

propl
prop2

e

Person
ntity A3

propl
prop2

Person
ntity A3

propl
prop2

Most motif matches aren’t visible without entity resolution.

This motif search misses on the first row because Al doesn’t
connect to B2 as identities are not resolved. It does match
on the second row because they have been combined.

Person Person
FRIEND ntity B1 Enﬁty B2

propl propl
prop2 prop2

Person
Entity Bl
propl
prop2

FRIEND

/
Person
Entity B2

propl
prop2

Person Identity B

IM x Increase in Paths Possible -

o 2022 craphtetAl] |

Heterogenous graphlets are graphlets for property graphs that assign numeric structural roles to patterns in

a network that allow the definition of a network defined not in the objects making up the problem domain

(companies, people, officerships) but describing the concepts of the actual problem (competitive conflicts,

financial secrecy or obscurity). Heterogenous graphlets are network motifs with numeric positions for

structural roles.

12


https://www.dataversity.net/what-is-a-property-graph/#:~:text=A%20property%20graph%20is%20a,Data%20Architectures%20and%20data%20schemas.

Heterogeneous graphlets are then merged by removing edges into graphlet level or orbit level nodes in a
process analogous to graph minors to create a concept level map of the problem space. This allows the
problem to be modeled such that one of two approaches can be used to solve a given business problem:
graph analytics or motif based graph representation learning, with the former being preferable as they are
simpler than the latter.

Edge Projection of Property Graphlet Minors

New edges based on pattern aggregation in the style of graph minors at the graphlet
or orbit level can define new semantics mapping from the domain of the problem to
its solution space. Metrics like connected components, clustering and centralities
can yield solutions.

Mapping from Problems to Solutions -
PHLET Al

Graphlet and Motif Representation Learning

In addition to being useful for network analysis, heterogenous graphlets are used by systems like GL2Vec
(code) as the basis for graph neural networks that perform representation learning by searching for the most
significant graphlets as a way to bootstrap higher level representations and fine tune them for a given task.
A simple approach to graphlet based learning is possible given that orbits representing structural roles in a
network are easily represented as a bitwise position in a vector. These orbit vectors can be used as input
for a graph neural network as they accept arbitrary input. A graph neural network can then learn deeper
representations with the graphlet concepts available from the beginning of training.

13


https://paperswithcode.com/paper/gl2vec-graph-embedding-enriched-by-line
https://github.com/benedekrozemberczki/karateclub/blob/a6e4d385572a9c8e573f00551d879b34bf138ca0/karateclub/graph_embedding/gl2vec.py

In the image below you can see how a graphlet can be computed over a business graph using a Spark
based library called GraphFrames that provides a powerful capability to search for network motifs which can
then be labeled with orbits corresponding to structural roles to create a heterogenous graphlet that can
then be used with the graphlet minors previously described or as a feature of a node or edge for a graph

neural network.

PySpark / GraphFrames Implementation of Heterogeneous Network Motif Search

# Get all paths between pairs of nodes linked by majority ownership in a middle layer

graphlet_paths = (
g.find( )
.filter(F.col( = D)
.filter(F.col( d>1D
.filter(F.col( ).isin([
.filter(F.col( ) > D
.filter(F.col( N= )
.filter(F.col( ).isin([
.filter(F.col( — )
.cache()

)

# Group by the top/bottom layers and count the total ownership percentage of the
# middle layer of companies
majority_stakes = (

graphlet_paths

-groupBy( ;

. sum( ).alias(

:select( )

D)

# Assign orbits 1-3 using the above two DataFrames.. left as an exercise for the reader :)

graphlet_paths.display()

._ Scales to Billions of Nodes / Edges motif.py
GRAPHLET Al L7 T
T e | | —————— 7
| ——— |

KNOWLEDGE GR
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https://graphframes.github.io/graphframes/docs/_site/index.html

Business Graph Motif for Financial Secrecy: Multiple Path Indirect Ownership

Company A
Orbit 1

Ownership degree > 1

Majority Majority Majority Majority
Ownership Ownership Ownership Ownership

y

Company B1 Company B2 Company B3 Company BN
Orbit 2 Orbit 2 Orbit 2 Orbit 2

Ownership Ownership Ownership Ownership

N
oy

Sum of ownership percentages > 50%

Banks evaluate the risk of doing business
with their customers by analyzing their
assets and associations. A network
science approach uses a business graph
formed by companies and their officers
from business registries and other public
records.

Multiple-path indirect ownership +is a
network motif for risk as it indicates an
attempt at secrecy by obscuring a
controlling -1interest 1in a company to
avoid meeting financial disclosure
requirements for banking.

(Company A) can obfuscate 1its controlling
interest in (Company C) using an
intermediate layer of shell (Companies
B). (Company A) owns a majority share 1in
multiple (Companies B), each of which
owns a minority share in (Company C). In
combination, these minority shares sum to
a majority share of (Company C) for
(Company A), which 1is 1in control of
(Company C) as a result.

* Source: Creating clarity around ownership structures, Bureau Van Dijk

e R e

a1 FACTO

Risk Scoring via Network Motifs -

(] © 2022 Graphlet AT | |
IR A= 2n22  GrAphlet A
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Vector Encoding of the Orbits of a Node in a Network Motif

Company A
Motif 1
Orbit 3

. Orbits Encode Structural Roles -
GRAPHLET Al I__
[ —E————— |

While most graphlet and motif based learning perform searches for the most significant patterns in a
network, there is a combinatorial problem with searching for graphlets or motifs with more than 5 nodes,
and the complexity of graphlet searches over property graphs are not yet well defined' but are even more

complex once you factor in the use of properties.

' A literature review by the author, Russell Jurney, turned up empty on the complexity for heterogenous graphlet
search.
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Orbit Vectors as Features for Representation Learning
Graph Neural Network (GNN) - Orbit Message Passing

1) Graph Neural Networks (GNNs) are 2) Nodes in a GNN model accept arbitrary
structured in the same way as the Company A vectors as input. Initializing them with
underlying knowledge graph and use features including property graphlet orbits
message passing to spread node features Feature Vector | allows the network to reason in terms of

across the network. [0,0,1,0, ...] critical roles straight away rather than having
T to infer them.

7100, [0,0,1,0_..,]
[0,0,1,0,...] / [oo1o .

3) Nodes receive messages containing
feature vectors from all inbound edges and

Company B1 Company B2 Company B.. Company Bn summarize via convolution (GCN), sequence
models (GraphSAGE) or Transformers
(GTNs). This summary is the node’s state for
the next iteration of message passing.

4) At the end of two iterations the representation for Company C has
incorporated knowledge of the roles of the nodes with orbits 1 and 2 as
well as the structure of the network and any other features that
describe the nodes. This allows the network to learn in terms of both
generic features and to be guided with weak supervision via domain
experts and property graphlets.

5) After several iterations of message passing, the final state of the
nodes is recorded and can be used via transfer learning with labels

Company C for a given task to solve any supervised learning problem involving
the nodes in the network.

Motif-based learning enables the property graphlet features that

served as the basis for representation learning for the network to be

used to explain predictions in terms of the business logic of the

graphlets, which make sense to stakeholders of the business process

being automated.

Complexity of graphlet search necessitates the incorporation of additional heterogenous graphlets defined
through graph queries in GraphFrames created in collaboration with domain experts into the graphlet
representation learning. Structural roles that relate to the solution to a downstream task will aid
performance and can be used in explainability. Systems like MotifExplainer use network motifs to explain
predictions, which can be visualized in the domain of the problem to explain weakly causal explanations to
users of an application. This work to incorporate pre-defined graphlets with graphlet searches as part of a
graph neural network architecture remains to be researched but is the key to understanding networks in an

application where the network itself as well as the models predictions are of interest to the user.
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MotifExplainer: a Motif-based Graph Neural Network Explainer
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Figure 2. Visualization of explanation results from different explanation models on three datasets. The generated explanations are
highlighted by green and bold edges. Three rows are results on the MUTAG dataset, the BA-Shape dataset, and the BA-2Motif dataset,
respectively. We only show the motif-related edges for two synthetic datasets to save space.

MotifExplainer on the left provides explanations in terms of network motif visualizations

KNOWLEDGE GRAPH SERVICES

This section outlines how knowledge graphs, once constructed, find use inside an enterprise. Most
enterprises have more than one reason to build a knowledge graph. Node representations from graph
neural networks trained on knowledge graphs can find a range of internal use cases within a single
organization by powering multiple models that automate tasks. A knowledge graph for this use case is a
feature store. On the other hand many use cases for knowledge graphs within an enterprise involve serving

a portion of the graph via an API based on a search query along with any inferences produced by a model.

Task Automation via Transfer Learning

The novelty of graph machine learning in the form of graph neural networks is that the representations it
produces are able to incorporate the context of a node’s surroundings in a network in an embedding for
each node in the network. These node embeddings are a general purpose asset to drive machine learning
applications within a company. Once the problem domain of the business that the knowledge graph models
is understood in the right representation, task automation using these representations is a much simpler
matter. This is how knowledge graphs can power a company in its transformation to Software 2.0, where its
core assets are the models that automate its business processes rather than the source code that powers

its services.

Graph Search, Model Management and API Access
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Many graph machine learning applications require real-time APIs to automate tasks using predictive models
so the ultimate output of a property graph factory is to instantiate a cloud search engine and graph
database and load the nodes and edges of the graph. Most graph databases tightly integrate with a search
engine to provide real-time graph queries. Most graph queries in a graph database start with a search for
one or more matching nodes and proceed to walk across the graph, defining a motif, which can be labeled
with orbits to create a property graphlet.

Batch and Realtime Inference

Inference or prediction can often be pre-computed using batch computing systems like Spark in fitting with
the ingest / build / refine / publish pattern used in most big data applications. Inferences create new edges
that define semantics which enable simple queries or graph analytics that satisfy application requirements.
Models powering these inferences can be applied to the graph in batch in advance of being indexed and
queried. A model management system like Spark and MLFlow, which operates on top of DataBricks via its
Managed MLFlow offering, can be employed to provide task automation using real-time APIs for machine

learning. Amazon Neptune supports the openCypher query language and integrates with the Amazon
OpenSearch Server to initialize or filter graph walks as part of queries based on the full lucene query

language.
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Once the ontology of the application graph is defined, the datasets making up the graph are transformed to
match this ontology. Representation learning describes the network. These representations power models
which add edges to the graph to create the type of relations needed to solve a given problem. These

models are applied to the network using batch inference with MLFlow.

Additional systems are needed to serve the edges to the graph that define our solution in the context of
their local neighborhoods: a search engine, graph database, version ML APIs and a middleware API server.
The user of a knowledge graph factory should be able to point-click create the above diagram to serve that
knowledge graph via an API. The queries can then be efficiently defined by the user and the system can

move into production efficiently.

Vector Search

The representations of the nodes and edges in the network produced by training a graph neural network
(GNN) are vectors that can be used via Approximate K-Nearest Neighbor (ANN or A-KNN) or HSNW to
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perform semantic searches on an enterprise knowledge graph. Vector search is also a powerful tool for
internationalization (i18n) using tools like multilingual sentence transformers. Scaled up queries using
vectors are simple to add to both Elastic 8 now that Lucene 9 supports ANN and OpenSearch supports
vector search as well. While there are numerous new vector search engines, Elastic with vector search

support is an effective way to search billion node/edge knowledge graphs as it is easily partitioned across
multiple machines and has excellent support through the Lucene community. Elastic makes it easier to load
data and handle a query workload while scaling in a linear manner. Either version of Elastic can now use
TF-IDF style search for matching or ANN and also rank and re-rank using vector matching. A property graph
factory should include an API for vectorizing search requests through a model management system like
MLFlow to incorporate them into queries against Elastic as it takes a query vector to search with an index
vector. Tools like Steamlit and BentoML ensure most ML platforms will soon offer APIs for inference and

associated information retrieval.

Explainability via Network Visualization

People do not act on predictions that they don’t trust. Without explainability or causal modeling, even
accurate predictions have limited utility in many domains. When working with knowledge graphs, network
visualization is an effective way of visualizing explanations of predictions in a knowledge graph factory. In
fact even without an explainable model, serving a prediction along with the subgraph of its neighborhood

provides rich context that can satisfy explainability requirements.
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A visual explanation of a money laundering risk score based on business networks

Systems like Graphistry can handle large scale network visualization but most explanations are in the local
network of the node or nodes of interest. These are retrieved based on the search criteria the user of the
application gives and which the search component of the factory sends the APl For smaller scale,

interactive network visualization Cambridge Intelligence offers a system called Keylines that has a React

wrapper called ReGraph. ReGraph allows you to define rich interfaces in a simple manner using skills
common among application developers such that expertise in network visualization is not required to build

interactive network visualizations.

A property graph factory should have an API layer for search and information retrieval along with a web
interface for visualizing networks that together enable application developers using the factory to produce
web and mobile apps that present and explain inferences and predictions in the business domain of the

end user.

PROBLEMS AND SOLUTIONS

NOTE: THIS SECTION IS IN PROGRESS

The process defined above is executed by many organizations in one variation or another. It is never easy.
The scale of the data involved combined with frequent combinatorial scaling issues occurring with graphs.
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Large knowledge graphs arise from heterogeneous sources of data, each of which must be normalized into

a common representation through an ETL process in order to be modeled and queried as part of a solution.

A series of common challenges are encountered by teams constructing knowledge graphs and using them

with machine learning to power task automation. An effective knowledge graph factory is a system

designed to mitigate these problems and make teams more productive.

Features of Graphlet Al

NOTE: THIS SECTION IS IN PROGRESS. It is pasted from a [too] long email :)

Features that Graphlet Al will incorporate include:

Python base classes for speeding up PySpark ETL of different datasets into a uniform ontology that
produce DataFrame schemas making them easy to use with pandas_udfs in PySpark. It would have
saved us a ton of time if we had classes with properties and we just extended the methods and they
were run in one LOC for each dataset we transformed from the raw datasets to our application
graph. For example at the moment on a project | have gigabytes of GitHub, GitLab and BitBucket
repository metadata and | want to transform it into a Repository entity in an open source ecosystem
ontology. Makes it easy to define base classes to reuse code to transform. | am looking at using
something like pydantic-spark which makes this pretty easy... just a matter of a good example in
docs. It would have saved us time on a team that went from 1to 16 engineers.

GPU accelerated fuzzy LSH joins in Spark. Spark's included implementation of LSH joins is CPU and

was a major bottleneck for us using 384 dimension sentence transformers to do blocking for entity
resolution on Databricks... reducing the size of the vector involved was the way to optimize it on
Spark but we ended up using distributed FAISS instead. For a single stop KG platform you want it to
"just work" on your cluster to get the job done. The Google Grale paper takes note of the
widespread use of LSH on embeddings to implement a sort of "MapLSH" for graph ML which is as
fundamental for scaling graph ML as MapReduce is for scaling general data processing. Whatever
the domain of your graph, you are missing many of the edges for the relations you have in your
problem domain and you don't have the edges you need that define solutions in that space... you
need to pair nodes to use ML to build the edges that enable simple graph analytics to build and
deploy automation solutions.

A configurable entity resolution system for large knowledge graphs using deep entity matching for

pre-trained language models (Github)

Tools to go from PySpark (GraphFrames) or pandas node/edge DataFrames to a deployed API
driven by Amazon Neptune and OpenSearch... could be Neo4j and Elastic. The point is once you
have a graph, you probably need to serve the actual graph with the inferences you're making
(sometimes not, but | have always needed to in the problems I've worked on) and this should be a
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point-click solution. I've thought of making a product on top of Databricks that does this on AWS.

Support for writing motifs in GraphFrames and shipping them as graphlet features to the
aforementioned APl so you can visualize the structural roles involved in a viz as a form of

explanation. You can also use them in your representation learning.

Summarization of nodes and edges with embeddings that then ship in the form of vectors in
OpenSearch / Elastic so you can use them for search. It would be great if you could go from a
GraphFrame and do what PyGraphistry is doing with DGL to get an embedding from a GNN in a few
lines of code. The scale part is what is hard.
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