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This document is an essay about building and using enterprise knowledge graphs in the form of property 

graphs after reflecting on being CTO at three knowledge graph companies and outlines a gap in the open 

source ecosystem and market where a Property Graph Factory fits to improve outcomes in risky, expensive 

large knowledge graph projects. These projects can cost eight figures and fail to provide a return on  

investment. An effective property graph factory can address the problems every enterprise knowledge 

graph AI project encounters to cut the costs of building applications based on graph intelligence in half. This 

document covers the process of building a knowledge graph using the most popular open source stack 

before outlining the problems in this process that kill projects and the features in Graphlet AI that will solve 

them. 

I focus on process and technology rather than use cases because this essay is a net with which to gather 

use cases that fit or alter the factory. I would appreciate feedback on this document in the form of 

questions, comments and suggestions as I develop this idea. This is the philosophy of my new knowledge 

graph consultancy Graphlet AI (website in progress). It is the driving ethos of our practice, it could be an 

open-source project under Apache governance or it could be a startup that disrupts the graph database 

and knowledge graph markets by unblocking their growth by offering a platform that cuts the cost of 

applications driven by enterprise knowledge graphs in half. Which do you think it is? 

INTRODUCTION 

The workflow for the property graph factory described below defines the process that enables enterprises 

to embrace and extend the data platforms they already use to build an enterprise knowledge graph with a 

uniform ontology that represents the domain in which their business operates. On top of this 

domain-specific graph they can then use graph intelligence to add the types of edges in the solution space 

that solve their business problems. In addition to network construction, a KG factory would allow companies 

to easily do graph search, graph machine learning, and the rapid development of graph neural networks 

 

https://gradientflow.com/what-is-graph-intelligence/


 

(GNNs) to build a high fidelity model of their problem domain which can drive the models that automate 

their business processes under a Software 2.0 model as defined by Andrej Karpathy and Ratner, Hancock 

and Ré. 

Heterogeneous knowledge graphs offer a rich domain in which to model your market and its problems. 

When combined with heterogenous graphlets and motifs, motif search against null models and Motif Graph 

Neural Networks, they offer an efficient way to create automated solutions using representation learning 

that builds on top of the domain expertise previously expressed by an organization in the form of graph 

queries. These distributed representations of the problem domain of a market are the core assets that drive 

FAANG companies… and is causing other enterprises to follow them in transforming their companies to be 

model first, rather than code first. 

Without a factory to make the workflow more efficient, innovative enterprises spend eight figure budgets on 

knowledge graph projects that fail to provide a return on investment. If a property graph factory could make 

the process above 25%, 50% or 75% faster it would create an enormous amount of value for its users. 

Spending $5M instead of $10M to achieve an improved outcome constitutes enterprise value. 

The graph database and knowledge graph markets have long been frustrated by the failure of the semantic 

web and many enterprise knowledge graph factories are closed silos based on legacy technology. I believe 

the market will explode once the Python open data stack is easy to apply to model a problem using graph 

machine learning. It is the mission of Graphlet AI to build a Property Graph Factory that brings network 

science and graph machine learning into the operations of enterprises across the globe. 

PROBLEM DEFINITION 

The knowledge graph and graph database markets have long asked themselves: why aren’t we larger? The 

vision of the semantic web was that many datasets could be cross-referenced between independent graph 

databases to map all knowledge on the web from myriad disparate datasets into one or more authoritative 

ontologies which could be accessed by writing SPARQL queries to hop from one knowledge graph to 

another. The reality of dirty data made this vision impossible, as Cory Doctorow outlined in his essay 

Metacrap. 
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Semantic Web was a dead end. People think in terms of objects - not attributes they must reify 

In reality most time is spent cleaning data - graph data isn’t in the format you need to solve your business 

problems. You have multiple datasets in different formats, each with its quirks. You need to deduplicate data 

using entity resolution - an unsolved problem in commercial tools for large graphs. Even once you merge 

duplicate nodes and edges, you rarely have the edge types you need to think in terms of your problem 

domain to make a problem easy to solve. 

It turns out the most likely type of edge in a knowledge graph that solves your problem with analysis is 

defined by the output of an entire program - a program in Python which employs machine learning. For 

large graphs, this program needs to be run on a scalable platform based on commodity machines like 

Databricks or Snowflake (which are improving using GPUs) and extend rather than rebuild and isolate within 

to provide an excellent developer experience. To create new edges in the domain of your solution, you 

need to compare candidate pairs nodes that are candidates for edges in an efficient manner. Google Grale 

outlines a simple blocking or reduce mechanism for building a graph that solves your business problem 
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using simple graph algorithms like connected components or other types of querying or pattern matching. It 

can also be the basis for graph machine learning on a more refined graph. 

This document outlines the broad requirements for a property graph factory that embraces the most 

popular open source technologies for machine learning, big data and information retrieval and that meets 

the needs of users in enterprises by extending the data platforms they already use. This confluence of 

factors are they key to unlocking the potential of the knowledge graph and graph database markets under 

the auspices of graph intelligence. 

PLATFORM ARCHITECTURE 

The system architecture for this platform is optimized for large scale datasets and their corresponding 

knowledge graphs by adopting the Delta Architecture, supported by cloud services for search, graph 

retrieval and machine learning operations. The data pipeline is operated under an ingest / build / refine / 

publish / query model of data processing. As much data processing as possible is performed in a 

horizontally scalable, batch processing system such as Databricks (PySpark) or Snowflake. The platform 

builds on top of the open Python data stack, which is utilized for the purposes of Extract Transform Load 

(ETL), feature extraction or engineering, construction of a knowledge graph with a uniform ontology for a 

given problem domain, graph representation learning, entity resolution and the computation of network 

motifs or heterogenous graphlets which are then folded into node-level representations as heterogeneous 

graphlet minors. 
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KNOWLEDGE GRAPH CONSTRUCTION 

This section outlines the phases of the knowledge graph construction process for large knowledge graphs 

using distributed systems and deep learning. This process is echoed in Databricks marketing on using big 

data for financial services. Once we outline the process, in the next section we will discuss problems one 

encounters in knowledge graph construction before outlining a set of solutions to these problems Graphlet 

AI will build. 

Ingestion 

Datasets that make up a knowledge graph are ingested onto bulk storage systems such as Amazon S3, 

Google Cloud Storage (GCP) or onto parquet based tables with a version tracking component such as Delta 

Tables or Apache Iceberg, which has broad language and library support. This allows version tracking of 

datasets and their varying metadata along with source code and predictive models over time so the 
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pipeline producing the knowledge graph from scratch is always uniquely versioned from end-to-end. Nodes 

and edges can be stored in their own intermediate silver tables. 

 

Data Cleaning and ETL 

Data from different sources about the same thing often contain different schemas, and for efficiency’s sake 

it is necessary to transform - rather than link - the data into a single ontology representing your problem 

domain. Multiple datasets need to be transformed into a single, generic form that fits the query and access 

patterns for your application - for example Github, GitLab and BitBucket repositories can become Repos 

with a type field referring to the source. 
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Tools for building Python classes for each domain’s application ontology are required to make ETL’ing 

multiple bronze datasets into PySpark DataFrames or tables in SnowFlake. Classes for each type in the 

ontology can be created from base classes provided by the system that use Python decorator functions to 

define DataFrame or table schemas in a way that encourages code reuse. 

Entity Resolution 

The landmark paper Deep Entity Matching with Pre-Trained Language Models defined an encoding 

mechanism for semi-structured records and embedded these representations using Sentence Transformers 

to create vector representations of entities for entity matching. This turns out to be an excellent starting 

point as an encoding mechanism for many graph ML tasks. Matching code for entity resolution is available 

as part of the papers’ authors’ implementation ditto. This sentence transformer vector encoding can be 

used for blocking and even matching via semantic similarity between structured records using cosine 

similarity with a threshold, although a different model is used for matching via a fine-tuned classifier in the 

ditto paper.​
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Blocking with Locality Sensitive Hashing (LSH): Google Grale 

Google Research put out a paper in 2020 about a system called Grale - the system that drives Google’s 

internal knowledge graph factory for all its web properties. Similar to the reduce phase of MapReduce, 

Grale uses a relatively simple, scalable algorithm called Locality Sensitive Hashing (LSH) to perform blocking 

of nodes into similar groups for comparing pairs of nodes to perform tasks such as blocking for entity 

resolution or link prediction. It can be thought of as MapLSH for the big graph ML space as compared to 

MapReduce for general purpose big data processing. 

It is critical to ship the simplest thing that could possibly work to production before moving on to more 

sophisticated methods for any machine learning problem one pursues as premature optimization can be a 

terminal flight pattern for any ML project. A knowledge graph factory should support and enable this 

process through tools that enable stepwise implementation of solutions to link prediction problems. 

A lightweight implementation of link prediction is possible for property graph nodes using the encoding 

mechanism for structured records from ditto, which can represent semi-structured data including lists, maps 
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and trees. Sentence Transformers are used to encode the data. Spark ML’s BucketedRandomProjectionLSH 

can act as the blocking mechanism for entity resolution. It offers a fuzzy join operator that can use any 

vector such as a deep embedding to perform self-joins for link prediction tasks.  

Spark ML’s LSH self-join on node records encoded using structural hints for pre-trained language models 

provide a base capability to create the edges in your enterprise knowledge graph that form part of the 

solution space via graph analytics whereas the provided edges usually lie in the problem space. The job of 

a data science team using enterprise knowledge graphs is to transform a graph in the problem space to 

one describing the solution space. 

 

Entity Matching 1.0: Cosine Similarity Thresholds 

An prototype for fuzzy matching of nodes in property graphs can be created using cosine similarity between 

the sentence embedding vectors and a hand-tuned threshold. This assures the practitioner of the 

technique’s capabilities before investing more time and resources in a full implementation. 
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Entity Matching 2.0: Fine Tuned Classification 

Labeled data for fine-tuning a classifier using the sentence transformer representations can be obtained via 

a labeling platform implementing active learning algorithms or by weak and distant supervision and 

programmatic data labeling (see: Snorkel). 
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Entity Matching 3.0: Hand Engineered Graph Features 

The next phase of entity matching incorporates the topology surrounding a pair of nodes and incorporates 

them as features in the matching classifier. In the example below the fields of companies can be compared 

in the previous steps but in this phase the officer names and any fields describing them can be incorporated 

into the embedded representation via the scheme described above, for the example of entity matching 

between two companies below. 
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Because large language models have parsed a lot of XML, this scheme is sufficient to allow a sentence 

transformer or other text representation to infer the meaning of the semi-structured lists of officers and to 

consider them in context of other instances of descriptions of corporate officers. 

 

Entity Matching 4.0: Graph Neural Networks 

In the highest level of sophistication for entity matching a GNN representation of nodes can be fine-tuned in 

a classifier to incorporate graph features beyond individual fields in a node’s immediate neighbors. 

11 



 

Heterogenous Graphlets and their Minors 

Query languages for property graphs enable rich queries for network motifs incorporating both topology 

and node and edge properties. However, without first performing entity resolution, graph queries do not 

return good results because hopping across edges misfires due to duplicate nodes. This is especially the 

case on datasets and knowledge graphs that are themselves made up of disparate sources of nodes, edges 

and their properties because there is heavy bias in what results and how many are returned. I have seen 

match counts for a motif search to be as much one million times more frequent after entity resolution is 

performed! 

 

Heterogenous graphlets are graphlets for property graphs that assign numeric structural roles to patterns in 

a network that allow the definition of a network defined not in the objects making up the problem domain 

(companies, people, officerships) but describing the concepts of the actual problem (competitive conflicts, 

financial secrecy or obscurity). Heterogenous graphlets are network motifs with numeric positions for 

structural roles. 
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Heterogeneous graphlets are then merged by removing edges into graphlet level or orbit level nodes in a 

process analogous to graph minors to create a concept level map of the problem space. This allows the 

problem to be modeled such that one of two approaches can be used to solve a given business problem: 

graph analytics or motif based graph representation learning, with the former being preferable as they are 

simpler than the latter. 

 

Graphlet and Motif Representation Learning 

In addition to being useful for network analysis, heterogenous graphlets are used by systems like GL2Vec 

(code) as the basis for graph neural networks that perform representation learning by searching for the most 

significant graphlets as a way to bootstrap higher level representations and fine tune them for a given task. 

A simple approach to graphlet based learning is possible given that orbits representing structural roles in a 

network are easily represented as a bitwise position in a vector. These orbit vectors can be used as input 

for a graph neural network as they accept arbitrary input. A graph neural network can then learn deeper 

representations with the graphlet concepts available from the beginning of training. 
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In the image below you can see how a graphlet can be computed over a business graph using a Spark 

based library called GraphFrames that provides a powerful capability to search for network motifs which can 

then be labeled with orbits corresponding to structural roles to create a heterogenous graphlet that can 

then be used with the graphlet minors previously described or as a feature of a node or edge for a graph 

neural network. 
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While most graphlet and motif based learning perform searches for the most significant patterns in a 

network, there is a combinatorial problem with searching for graphlets or motifs with more than 5 nodes, 

and the complexity of graphlet searches over property graphs are not yet well defined  but are even more 1

complex once you factor in the use of properties. 

1 A literature review by the author, Russell Jurney, turned up empty on the complexity for heterogenous graphlet 
search. 
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Complexity of graphlet search necessitates the incorporation of additional heterogenous graphlets defined 

through graph queries in GraphFrames created in collaboration with domain experts into the graphlet 

representation learning. Structural roles that relate to the solution to a downstream task will aid 

performance and can be used in explainability. Systems like MotifExplainer use network motifs to explain 

predictions, which can be visualized in the domain of the problem to explain weakly causal explanations to 

users of an application. This work to incorporate pre-defined graphlets with graphlet searches as part of a 

graph neural network architecture remains to be researched but is the key to understanding networks in an 

application where the network itself as well as the models predictions are of interest to the user. 
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MotifExplainer on the left provides explanations in terms of network motif visualizations 

KNOWLEDGE GRAPH SERVICES  

This section outlines how knowledge graphs, once constructed, find use inside an enterprise. Most 

enterprises have more than one reason to build a knowledge graph. Node representations from graph 

neural networks trained on knowledge graphs can find a range of internal use cases within a single 

organization by powering multiple models that automate tasks. A knowledge graph for this use case is a 

feature store. On the other hand many use cases for knowledge graphs within an enterprise involve serving 

a portion of the graph via an API based on a search query along with any inferences produced by a model. 

Task Automation via Transfer Learning 

The novelty of graph machine learning in the form of graph neural networks is that the representations it 

produces are able to incorporate the context of a node’s surroundings in a network in an embedding for 

each node in the network. These node embeddings are a general purpose asset to drive machine learning 

applications within a company. Once the problem domain of the business that the knowledge graph models 

is understood in the right representation, task automation using these representations is a much simpler 

matter. This is how knowledge graphs can power a company in its transformation to Software 2.0, where its 

core assets are the models that automate its business processes rather than the source code that powers 

its services. 

Graph Search, Model Management and API Access 
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Many graph machine learning applications require real-time APIs to automate tasks using predictive models 

so the ultimate output of a property graph factory is to instantiate a cloud search engine and graph 

database and load the nodes and edges of the graph. Most graph databases tightly integrate with a search 

engine to provide real-time graph queries. Most graph queries in a graph database start with a search for 

one or more matching nodes and proceed to walk across the graph, defining a motif, which can be labeled 

with orbits to create a property graphlet.  

Batch and Realtime Inference 

Inference or prediction can often be pre-computed using batch computing systems like Spark in fitting with 

the ingest / build / refine / publish pattern used in most big data applications. Inferences create new edges 

that define semantics which enable simple queries or graph analytics that satisfy application requirements. 

Models powering these inferences can be applied to the graph in batch in advance of being indexed and 

queried. A model management system like Spark and MLFlow, which operates on top of DataBricks via its 

Managed MLFlow offering, can be employed to provide task automation using real-time APIs for machine 

learning. Amazon Neptune supports the openCypher query language and integrates with the Amazon 

OpenSearch Server to initialize or filter graph walks as part of queries based on the full lucene query 

language. 
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Once the ontology of the application graph is defined, the datasets making up the graph are transformed to 

match this ontology. Representation learning describes the network. These representations power models 

which add edges to the graph to create the type of relations needed to solve a given problem. These 

models are applied to the network using batch inference with MLFlow. 

Additional systems are needed to serve the edges to the graph that define our solution in the context of 

their local neighborhoods: a search engine, graph database, version ML APIs and a middleware API server. 

The user of a knowledge graph factory should be able to point-click create the above diagram to serve that 

knowledge graph via an API. The queries can then be efficiently defined by the user and the system can 

move into production efficiently. 

Vector Search 

The representations of the nodes and edges in the network produced by training a graph neural network 

(GNN) are vectors that can be used via Approximate K-Nearest Neighbor (ANN or A-KNN) or HSNW to 
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perform semantic searches on an enterprise knowledge graph. Vector search is also a powerful tool for 

internationalization (i18n) using tools like multilingual sentence transformers. Scaled up queries using 

vectors are simple to add to both Elastic 8 now that Lucene 9 supports ANN and OpenSearch supports 

vector search as well. While there are numerous new vector search engines, Elastic with vector search 

support is an effective way to search billion node/edge knowledge graphs as it is easily partitioned across 

multiple machines and has excellent support through the Lucene community. Elastic makes it easier to load 

data and handle a query workload while scaling in a linear manner. Either version of Elastic can now use 

TF-IDF style search for matching or ANN and also rank and re-rank using vector matching. A property graph 

factory should include an API for vectorizing search requests through a model management system like 

MLFlow to incorporate them into queries against Elastic as it takes a query vector to search with an index 

vector. Tools like Steamlit and BentoML ensure most ML platforms will soon offer APIs for inference and 

associated information retrieval. 

Explainability via Network Visualization 

People do not act on predictions that they don’t trust. Without explainability or causal modeling, even 

accurate predictions have limited utility in many domains. When working with knowledge graphs, network 

visualization is an effective way of visualizing explanations of predictions in a knowledge graph factory. In 

fact even without an explainable model, serving a prediction along with the subgraph of its neighborhood 

provides rich context that can satisfy explainability requirements. 
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​
A visual explanation of a money laundering risk score based on business networks 

Systems like Graphistry can handle large scale network visualization but most explanations are in the local 

network of the node or nodes of interest. These are retrieved based on the search criteria the user of the 

application gives and which the search component of the factory sends the API. For smaller scale, 

interactive network visualization Cambridge Intelligence offers a system called Keylines that has a React 

wrapper called ReGraph. ReGraph allows you to define rich interfaces in a simple manner using skills 

common among application developers such that expertise in network visualization is not required to build 

interactive network visualizations. 

A property graph factory should have an API layer for search and information retrieval along with a web 

interface for visualizing networks that together enable application developers using the factory to produce 

web and mobile apps that present and explain inferences and predictions in the business domain of the 

end user. 

PROBLEMS AND SOLUTIONS 

NOTE: THIS SECTION IS IN PROGRESS 

The process defined above is executed by many organizations in one variation or another. It is never easy. 

The scale of the data involved combined with frequent combinatorial scaling issues occurring with graphs. 
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Large knowledge graphs arise from heterogeneous sources of data, each of which must be normalized into 

a common representation through an ETL process in order to be modeled and queried as part of a solution. 

A series of common challenges are encountered by teams constructing knowledge graphs and using them 

with machine learning to power task automation. An effective knowledge graph factory is a system 

designed to mitigate these problems and make teams more productive. 

Features of Graphlet AI 

NOTE: THIS SECTION IS IN PROGRESS. It is pasted from a [too] long email :) 

Features that Graphlet AI will incorporate include: 

●​ Python base classes for speeding up PySpark ETL of different datasets into a uniform ontology that 

produce DataFrame schemas making them easy to use with pandas_udfs in PySpark. It would have 

saved us a ton of time if we had classes with properties and we just extended the methods and they 

were run in one LOC for each dataset we transformed from the raw datasets to our application 

graph. For example at the moment on a project I have gigabytes of GitHub, GitLab and BitBucket 

repository metadata and I want to transform it into a Repository entity in an open source ecosystem 

ontology. Makes it easy to define base classes to reuse code to transform. I am looking at using 

something like pydantic-spark which makes this pretty easy... just a matter of a good example in 

docs. It would have saved us time on a team that went from 1 to 16 engineers.​
 

●​ GPU accelerated fuzzy LSH joins in Spark. Spark's included implementation of LSH joins is CPU and 

was a major bottleneck for us using 384 dimension sentence transformers to do blocking for entity 

resolution on Databricks... reducing the size of the vector involved was the way to optimize it on 

Spark but we ended up using distributed FAISS instead. For a single stop KG platform you want it to 

"just work" on your cluster to get the job done. The Google Grale paper takes note of the 

widespread use of LSH on embeddings to implement a sort of "MapLSH" for graph ML which is as 

fundamental for scaling graph ML as MapReduce is for scaling general data processing. Whatever 

the domain of your graph, you are missing many of the edges for the relations you have in your 

problem domain and you don't have the edges you need that define solutions in that space... you 

need to pair nodes to use ML to build the edges that enable simple graph analytics to build and 

deploy automation solutions. ​
 

●​ A configurable entity resolution system for large knowledge graphs using deep entity matching for 

pre-trained language models (Github)​
 

●​ Tools to go from PySpark (GraphFrames) or pandas node/edge DataFrames to a deployed API 

driven by Amazon Neptune and OpenSearch... could be Neo4j and Elastic. The point is once you 

have a graph, you probably need to serve the actual graph with the inferences you're making 

(sometimes not, but I have always needed to in the problems I've worked on) and this should be a 
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point-click solution. I've thought of making a product on top of Databricks that does this on AWS.​
 

●​ Support for writing motifs in GraphFrames and shipping them as graphlet features to the 

aforementioned API so you can visualize the structural roles involved in a viz as a form of 

explanation. You can also use them in your representation learning.​
 

●​ Summarization of nodes and edges with embeddings that then ship in the form of vectors in 

OpenSearch / Elastic so you can use them for search. It would be great if you could go from a 

GraphFrame and do what PyGraphistry is doing with DGL to get an embedding from a GNN in a few 

lines of code. The scale part is what is hard.  
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