1. Premise and Introduction

In the aeronautics sector, a successful launch and mission holds the potential to
significantly bolster the reputation and innovation credentials of the organization, affording it a
distinct competitive advantage, particularly when the spacecraft in question embodies
state-of-the-art technology. Conversely, unsuccessful project launches can inflict substantial
harm, like damage to their reputation. Over a sixteen-year span, small satellite initiatives have
experienced a notable 41.3% failure rate, comprising a 24.2% total failure rate, 11% partial
failure rate, and a 6.1% launch failure rate (Jacklin, 2019). Given the gravity of these statistics, it
is essential that collective efforts are directed toward reducing this failure rate to a more
reasonable and desirable level, approaching zero. However, a fundamental question makes us all
wonder: How can we achieve a near-zero percent failure rate? To answer, we must scrutinize a
key factor contributing to project failures.

The propulsion system, for instance, plays a pivotal role in the incidence of project
failures, with the feeding system accounting for approximately 65% of all propulsion-related
failures (Fernandez et. al, 2022). To ensure the integrity of the propulsion system, referencing
Section 6 of the NASA-STD-5012 B technical standard is necessary, as it talks about various
pressurized components within the system, such as hydraulic pumps, bellows, and combustion
chambers. While this section is generally informative, it is not without its shortcomings. Terms
like "MDC loads" and "FOS" can be rather ambiguous, owing to the lack of information and/or
lack of clarity in the document's exposition. Because of this, project teams may falter, incurring
both time and financial losses. This shows how vague technical documentation can harm a
mission, which is further exemplified by the fact that an alarming 45 to 60% of all incidents
reported in the Aviation Safety Report Systems (ASRS) are attributed to issues arising from them
(Avers et al., 2012). So, how exactly can a group of six software engineers devise a plan to
develop a program that can alleviate these challenges faced by technicians?

This question was inspired by the concept of Human-Centered Computing, with a
specific focus on human-system modeling. The way human-system modeling works, lies in a
model that can emulate human decisions and performance (Shafto and Hoffman, 2002).
Recognizing that the process of processing documentation can be time-consuming and sluggish,
we strived to create a model capable of simulating proofreading while delivering the utmost
accuracy and performance so that technicians can focus on what they do best. As this hackathon
concludes, the Intergalactic Pirates are excited to introduce a groundbreaking solution harnessing
the power of artificial intelligence (Al) and large language models (LLMs) to streamline various
technical standards in aeronautics: Aero Copilot.

Aero Copilot is a state-of-the-art document processing system backed by Al that
streamlines and corrects technical documents so that technicians can save time and money, as
well as reducing the high rate of spacecraft failure because of technical documentation, so that



they can focus on launching a successful mission. This technical document will serve as a
comprehensive guide on how to use the tool. There will be a brief overview of the product and
the impact that it will cause, how to set it up, a look at how the system functions with insights
into its functionality, explanations on things like security, deployment, testing methodologies and
performance, and a roadmap for further enhancements.

2. The Impact of Using Aero Copilot

The usage of Aero Copilot benefits everyone involved, from consumers to space
agencies. With Aero Copilot ensuring that technical documents can be consistent and relevant,
there would be a global standard for spacecraft development, enabling collaboration with other
space agencies to harmonize data. Additionally, its processing speed and reliability by the trained
LLM, makes producing safer standards more efficient and an increase in satisfaction, due to the
lack of time reading through standards. These enhanced safety standards can also allow
passengers and consumers to have greater confidence in public space transportation services,
increasing usage and trust in this revolutionary transportation. Finally, data analysis capabilities
that Aero Copilot provides will allow organizations to generate insights in their document
processes, allowing data-driven decision making and continuous improvements in the technical
document. Based on these applications and the benefits they provide, Aero Copilot's
wide-ranging benefits extend to everyone, creating a new era of standardized, efficient, and
data-driven spacecraft development that enhances safety, satisfaction, and trust in space
transportation services while fostering global collaboration and continuous improvement.



3. System Overview

Aero Copilot’s system architecture is built using a microservices architecture consisting
of Amazon Web Services (AWS), LangChain and Claude 2 via Amazon Bedrock. The technical
architecture that we used is as follows:

"/AWS Services

"Web Application .

User Login
HTTP Request
AWS Lambda Cognito
PDF Upload Data Retrieval +
-
Web Application (Next.js)

S3 DynamoDB

‘ Data Storage

oy Seiices
LLM Execution ﬁ
Langchain Amazon Bedrock |

A

From the Flutter application, a request is thrown to AWS Lambda (a service that
automatically runs code), where technician sign-up and verification is provided by AWS
Cognito. The profile that was created by the technician is then stored using a database provided
by DynamoDB. Once a technician uploads a PDF in the website, it gets transferred to an AWS
S3 bucket for aggregating and parsing the text.



The text will be compared to other technical standards, lessons, bulletins and other
documents before being stored in a raw text database in a knowledge store. This database also
gets referenced in the backend during the searching phase of the document. Based on semantics,
the raw database becomes a vectorized database which is fetched by the backend as snippets of
the document that are related to the PDF. The backend also needs similar document snippets,
which are the knowledge graphs from the vectorized database being linked to relevant
documents. The raw and vectorized databases, as well as the knowledge graphs are stored
remotely on the cloud for future uses.

With similar and relevant content fetched from the knowledge store, an automated
prompt is created to suggest improvements based on the information that was fetched. The
document then goes through the LLM for each section. The custom prompt scrapes all technical
keywords, phrases and concepts and checks if a term is ambiguous and should be clarified, by
comparing with the vectorized database and knowledge graphs by similarity. Finally, it will show
the text with any ambiguous terms flagged, with additional details being provided to the
technician at the bottom half of the website. This is what the expected output should be like in an
earlier version of this application:

Aero Copilot asht ploac Hello, nikkon €) = Logout &

Definitions Content

Acceptance Test i
P Glass Pane-to-Seal (or Cushion) Interface a. The window seal shall meet its | performance requirements requirements within the

Brittle Material temperature extremes extremes of the seal-to-windowpane interface for the duration of the | design life of the window, life of the window,
Catastrophic Hazard precluding | degradation from the environment or aging. b. The window design shall prohibit the phase change (glassy transition) of the seal (or cushion)
Ceraies material in contact with the glass at | the lower temperature lower temperature extremes of the seal/glass pane interface. In this context,the seal is any materiall

in contact with the glass in the assembly. The material does not necessarily have to function as a seal for this requirement to be applicable.
Certification

Critical Hazard

Analysis

Critical Stress Intensity (KIC)

performance requirements : The ‘performance requirements' are not defined. It is unclear what requirements the window seal needs to meet.
Design Life

Dynamic Amplification Factor temperature extremes : The 'temperature extremes' at the seal-to-windowpane interface are not quantified or defined. The acceptable range is unclear.
E design life of the window : The 'design life of the window' is not defined. The acceptable duration is unclear.
Dynamic Factor of Safety A q
degradation : The type and extent of 'degradation’ that is unacceptable is not defined.
Flight Article
lower temperature extremes : The 'lower temperature extremes' at the seal/glass pane interface are not quantified or defined. The acceptable range is unclear.
Glass
Glass Ceramics
Glass Pane or Pane or Windowpane
Initial Design Flaw Depth

Limit Load

Margin of Safety (MS)

Modulus of Rupture (MOR)

4. A Step-by-Step Guide on Getting Started
1. To start, Make sure you have an AWS account, Python and Next.js installed on your
computer.
2. Clone the repository on GitHub.
Set up your AWS Credentials.
4. Install packages that are going to be used in the project.

[98)



5. Configure AWS services and environmental variables.

5. User’s Guide

Here is a process on how it works:
1. Register an account on Aero Copilot and login.
2. Upload your PDF to the website through the user-friendly web interface.
3. Refresh the page and click on the new file. The text will be flagged if the LLM has
deemed it ambiguous.
4. The technician should review and accept suggestions for document improvements, which
will be tracked and managed into an automated database.

6. System Functionality
Here is a list on the functionality of the system:
- PDF Ingestion: PDF documents are ingested into AWS S3 bucket and processed using a
custom script
- Al Document Analysis: Textract analyzes technical PDFs, extracting content and
identifying areas for improvement.
- Suggestion Generation: Custom algorithms analyze parsed results to generate document
improvement suggestions.
- Workflow Automation: JIRA implementation allows .

7.1. Details about Security
Since we are building a web application, security needs to be prioritized to prevent any
leaks from happening. To provide security for the end user, we ensured authentication with the
integration of AWS Cognito, encrypted all data from the parsing of the data to the final output
and restricted user actions by access control.

7.2. Details about Application Deployment
For scalability throughout the project, AWS, along with Lambda and the API Gateway
was implemented. We also used strategies that can only be done on a scalable platform, like load
balancing and auto-scaling to boost performance. CloudWatch was also implemented to provide
logging in real time.

7.3. Details about Application Test Cases
We used unit tests to cover each part of Aero Copilot, integration cases for the interaction
of multiple systems and user acceptance tests as an example for how it showcases real world
usability.



7.4. Details about Application Performance
Currently, this application is scientifically valid and can work in real life, but we need
more time to optimize the performance of our model. As of right now, implementations of the
scalable load balancing and auto-scaling boosts the performance and the reliability of the
application. Additionally, we will improve the performance for years to come as we further
optimize our Amazon Bedrock model.

7.5. Details about Documentation
Along with this guide, API documentation is available for developers and code
documentation is provided by Python docstrings and JavaScript comments.

7.6. Details about Accessibility
Next.js is used for this project, instead of other frameworks because of its variety of
accessibility features. So far, a light and a dark mode are implemented, which allows for
improved text readability. There will be more updates that can improve accessibility in the near
future.

8. Application Roadmap

Our roadmap consists of trying to get the front-end and Amazon Bedrock to work
together, so that the application can be used for all technical PDFs; for the technical example, it
was hardcoded. Then, we will enhance our Al and fine-tune the model, so we can optimize the
performance to the best of our abilities. Collaboration with other technicians will also be
implemented in the future, so that others can use the suggestions for a group project. Finally, to
make it more usable for everybody, polishing the user experience and implementing accessibility
features like text to speech and text resizing will be our top priority going forward.

If technicians want more features, they can submit feature requests through GitHub.

9. Conclusion
While working on this project, we have learned a bit about how important Al can be in
processing documents. We have witnessed the benefits that Al can bring, like improving the
efficiency of checking all the PDF files, compared to checking them by hand. We have also
witnessed Al can also make us more collaborative with fellow group members with the
reduction of time needed to check all files. If it were not for Al, we would not be writing an
entire project at the end of this hackathon, but we would still be checking a PDF.

To conclude, our team has learned a lot from building this project. We are a vibrant blend
of cultures, backgrounds, and knowledge levels. We have a Google Developer Student Club
Lead from Waterloo, an enthusiastic high school student and one hails from as far as King City, a



distant oasis from the bustling heart of Toronto. The challenge we embarked upon was
undeniably tough, but we rose to the occasion, working in harmony as a team and producing
something truly extraordinary. We are elated that we chose to tackle the STAR (Standards
Technical Assistance Resource) challenge. Throughout this journey, we had an absolute blast,
delving into the world of machine learning, seamlessly managing both software and hardware
aspects, and learning how to bridge these technologies with the realm of space. Our optimism is
boundless as we look forward to presenting our final project, a testament to our collective effort,
innovation, and unwavering teamwork. We sincerely hope that all the love and care put into Aero
Copilot can make this the new technical standard for aerospace.

Reference List

Avers, K., Johnson, B., Banks, J., & Wenzel, B. (2012). Technical documentation challenges in
aviation maintenance: A proceedings report. Federal Aviation Administration, Office of
Aerospace Medicine.

Fernandez, L. A., Wiedemann, C., & Braun, V. (2022). Analysis of Space Launch Vehicle
Failures and post-mission disposal statistics. Aerotecnica Missili &amp, Spazio, 101(3),

243-256. https://doi.org/10.1007/s42496-022-00118-5

Jacklin, S. A. (2019, March). Small-satellite mission failure rates - NASA technical reports
server ... NASA.

https://ntrs.nasa.gov/api/citations/20190002705/downloads/20190002705.pdf

Shafto, M. G., & Hoffman, R. R. (2002). Human-centered computing at NASA. /IEEFE Intelligent
Systems, 17(5), 10—14. https://doi.org/10.1109/mis.2002.1039827



https://doi.org/10.1007/s42496-022-00118-5
https://ntrs.nasa.gov/api/citations/20190002705/downloads/20190002705.pdf
https://doi.org/10.1109/mis.2002.1039827

