

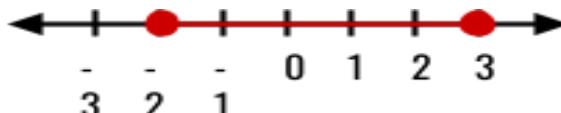
Section:Linear Inequality

Sub-section: System of Linear Inequalities and Real-life Skills

Choose the correct answer.

1.

In the number line above, which of the following could be the interval of it?
(understand, MA 1.3 G.9/1)


- A. $[-3, 3]$
- B. $(-3, 3]$
- C. $[-3, 3)$
- D. $(-3, 3)$

Solution $(-3, 3]$

$(-3, 3]$ because -3 was not included and 3 was included.

It could be denoted in interval notation as $(-3, 3]$.

2.

In the number line above, which of the following could be the interval of it?
(understand, MA 1.3 G.9/1)

- A. $[-2, 3]$
- B. $(-2, 3]$
- C. $[-2, 3)$
- D. $(-2, 3)$

Solution $[-2, 3]$

$[-2, 3]$ because -2 was included and 3 was included.

It could be denoted in interval notation as $[-2, 3]$.

Section:Linear Inequality**Sub-section: System of Linear Inequalities and Real-life Skills**

3. Solve for x .

$$-1 \leq 5 - 2x \leq 9$$

(understand, MA 1.3 G.9/1)

- A. $[1, 3]$
- B. $[2, 3]$
- C. $[-1, 3]$
- D. $[-2, 3]$**

Solution $[-2, 3]$

$$[-2, 3] \text{ because } -1 \leq 5 - 2x \leq 9$$

$$-1 - 5 \leq 5 - 2x - 5 \leq 9 - 5$$

$$-6 \leq -2x \leq 4$$

$$\text{So, } -2 \leq x \leq 3$$

Thus, it could be denoted in interval notation as $[-2, 3]$.

4. Solve for x .

$$-1 < 7 - 2x \leq 13$$

(understand, MA 1.3 G.9/1)

- A. $(3, 4]$
- B. $[3, 4)$
- C. $[-3, 4)$**
- D. $(-3, 4]$

Solution $[-3, 4)$

$$[-3, 4) \text{ because } -1 < 7 - 2x \leq 13$$

$$-1 - 7 < 7 - 2x - 7 \leq 13 - 7$$

$$-8 < -2x \leq 6$$

$$\text{So, } -3 \leq x < 4$$

Thus, it could be denoted in interval notation as $[-3, 4)$.

Section:Linear Inequality**Sub-section: System of Linear Inequalities and Real-life Skills**

5. Solve for x .

(apply, MA 1.3 G.9/1)

$$\begin{cases} 4x - 3 < 5 \\ 3x + 7 \geq 1 \end{cases}$$

A. $[- 2, 2)$

B. $[- 1, 5)$

C. $(- 2, 2]$

D. $[1, 5)$

Solution $[- 2, 2)$

Consider $4x - 3 < 5$

$$4x < 8$$

$$\text{So, } x < 2$$

Consider $3x + 7 \geq 1$

$$3x \geq - 6$$

$$\text{So, } x \geq - 2$$

Then, $x \geq - 2 \cap x < 2$, that is $- 2 \leq x < 2$

Thus, it could be denoted in interval notation as $[- 2, 2)$.

Section:Linear Inequality**Sub-section: System of Linear Inequalities and Real-life Skills**

6. Solve for x .

(apply, MA 1.3 G.9/1)

$$\begin{cases} 4x - 5 \leq 7 \\ 5x - 9 > -4 \end{cases}$$

- A. (4, 5]
- B. (1, 3]**
- C. [1, 3)
- D. [-4, 7)

Solution (1, 3]

Consider $4x - 5 \leq 7$

$$4x \leq 12$$

$$\text{So, } x \leq 3$$

Consider $5x - 9 > -4$

$$5x > 5$$

$$\text{So, } x > 1$$

Then, $x > 1 \cap x \leq 3$, that is $1 < x \leq 3$

Thus, it could be denoted in interval notation as (1, 3].

Section:Linear Inequality**Sub-section: System of Linear Inequalities and Real-life Skills**

-
7. Of the 12 students including boys and girls, there are more boys than girls. How many boy students could there be?
(apply, MA 1.3 G.9/1)

- A. The number of boy students is greater than 4 persons.
- B. The number of boy students is greater than 5 persons.
- C. **The number of boy students is greater than 6 persons.**
- D. The number of boy students is greater than 7 persons.

Solution The number of boy students is greater than 6 persons.

Let x = the number of boy students

and $12 - x$ = the number of girl students.

Since there are more boys than girls,

then $x > 12 - x$

$$2x > 12$$

$$x > 6$$

Therefore, the number of boy students is greater than 6 persons.

8. Of the 16 students including boys and girls, there are more boys than girls. How many boy students could there be? (apply, MA 1.3 G.9/1)

- A. The number of boy students is greater than 5 persons.
- B. The number of boy students is greater than 6 persons.
- C. The number of boy students is greater than 7 persons.
- D. **The number of boy students is greater than 8 persons.**

Solution The number of boy students is greater than 8 persons.

Let x = the number of boy students

and $16 - x$ = the number of girl students.

Since there are more boys than girls,

then $x > 16 - x$

$$2x > 16$$

$$x > 8$$

Therefore, the number of boy students is greater than 8 persons.

Section:Linear Inequality**Sub-section: System of Linear Inequalities and Real-life Skills**

-
9. Mark and Mike play in the same game. Mark had 5 more points than Mike. Together, they had less than 21 points. How many Mike's points could there be?
(apply, MA 1.3 G.9/1)

- A. Mike's points are greater than 7 points.
- B. Mike's points are greater than 8 points.**
- C. Mike's points are greater than 9 points.
- D. Mike's points are greater than 10 points.

Solution Mike's points are greater than 8 points.

Let x = the points of Mike

and $x + 5$ = the points of Mark.

Since together they had less than 20 points,

then $x + (x + 5) < 21$

$$2x + 5 > 21$$

$$2x > 16$$

$$x > 8$$

Therefore, Mike's points are greater than 8 points.

Section:Linear Inequality**Sub-section: System of Linear Inequalities and Real-life Skills**

10. Joe and John play in the same game. Joe had 8 more points than John. Together, they had less than 30 points. How many John's points could there be?
(apply, MA 1.3 G.9/1)

- A. John's points are greater than 11 points.
- B. John's points are greater than 12 points.
- C. John's points are greater than 13 points.
- D. John's points are greater than 14 points.

Solution John's points are greater than 11 points.

Let x = the points of John

and $x + 8$ = the points of Joe.

Since together they had less than 20 points,

then $x + (x + 8) < 30$

$$2x + 8 > 30$$

$$2x > 22$$

$$x > 11$$

Therefore, John's points are greater than 11 points.