Physics Matching Motion Lab

To be completed in your lab notebook

Pre Lab:

- On a fresh piece of paper in your lab notebook write today's date and the title of the lab.
- Don't forget to continue the page numbers in your lab notebook.
- Don't forget to add this lab and its page number to your Table of Contents.
- 1. Copy these statements and fill in the blanks:
 - a. The slope of a position to time graph represents the object's _____.
 - b. The slope of a velocity to time graph represents the object's _____

Purpose: Using a computer, probes and software, model motion and analyze the Position-Time, Velocity-Time and Acceleration-Time graphs.

Materials:

Laptop (with Loggerpro software)

Procedure:

- 1. Connect all the lab probes and wires to the computer as instructed.
- 2. Open the Loggerpro software and you should immediately see three graphs.
 - a. If not, go to "File" and Click "Open."
 - b. Within the "Experiments" folder, open the folder "Probes & Sensors."
 - c. Open "Motion Detector" and click on the experiment labeled "Motion Detector."
- 3. Find the green "Collect" button and click it.
- 4. Move your hand towards and away from the motion detector and then click the stop button to view your first trial. *If your data collection ends before you click "stop," ask the teacher about extending the time sample.*
- 5. Experiment with your motion detector so that you can easily model moving forwards, backwards, speeding up and slowing down. *Use the Motion Detector box in front of you*

for consistent readings.

- 6. Go to "File," and click "Open." Within the "Motion Detector" folder, click on "Position Match #1."
- 7. Try to match the motion. Once you have created an identical graph, answer questions #2.
- 8. Repeat step #6 and 7 for "Position Match" #2-4, and 7. Answers questions #3-6.
- 9. Repeat step #6 and 7 for "Velocity Match." Answer questions #7.
- 10. Go to "File," and click "Open." Within the "Motion Detector" folder, click on the "Motion Detector" experiment as you did in the beginning and you should see three graphs again (Distance-Time, Velocity-Time and Acceleration-Time).
- 11. Create a graph that shows a positive acceleration; answer question #8 and 9.
- 12. Create a graph that shows a negative acceleration; answer question #10 and 11.

Observations:

△ Underneath your title, write "Observations" and you will answer the questions below in complete sentences. Don't forget to number your answers!

- 2. Describe the motion you made that matched Position Matching Graph 1.
- 3. Describe the motion you made that matched Position Matching Graph 2.
- 4. Describe the motion you made that matched Position Matching Graph 3.
- 5. Describe the motion you made that matched Position Matching Graph 4.
- 6. Describe the motion you made that matched Position Matching Graph 7.
- 7. Describe the motion you made that matched Velocity Matching.

Analyzing:

△ Underneath your Observations, write "Analyzing" and you will answer the questions below in complete sentences. Don't forget to number your answers!

- 8. Sketch a Velocity-Time and Acceleration-Time graph that shows your positive acceleration.
- 9. What did you notice about the Velocity-Time graph when you created a positive acceleration?
- 10. Sketch a Velocity-Time and Acceleration-Time graph that shows your negative

acceleration.

- 11. What did you notice about the Velocity-Time graph when you created a negative acceleration?
- 12. As you moved towards the motion detector sensor, did the computer interpret that as positive or negative displacement?
- 13. Was it possible to show a negative position with your lab set-up? Why or why not?