

On exploring crimes against software and causes for over-engineering.

Dependency hell

Click for more info

[Short 003] Crimes against software, Dependency hell
By Diogo Casado

2024/08/22 - Write & Record
2024/08/22-23 - Edit

Brainstorming

Leveraging existing libraries is necessary to produce software
quickly. Trying to implement complicated standards will take time and
effort that can distract us from working on the main functionality of
our products. Working on things provided by dependencies (libraries or
external services) can be way over our heads. And maintaining all the
code necessary to keep up with changing standards in a time that most
software is meant to be online is simply impractical.

I personally think that the less dependencies the better, and you
might feel the same if you are an old school programmer. This feeling
could come from a place of nostalgia from a time when most of the
software was actually implemented by one person and all the heavy
lifting was necessary. It was also a symbol of being a good
programmer. Reassuring autonomy. It was craftsmanship. But most
software was also offline and tangible. You would sell it and someone
would own it. That thing was complete in itself. With the concept of
SaaS most software moved online and is now an intangible thing from
the user's perspective. And the more dependencies we as developers add
to it, the less it feels like it's ours. It feels incomplete. And it
could be made broken at any time. And maybe many of the dependencies
we might add are just a consequence of complicating or

https://makefiles.xyz/videos/shorts/s003-dependency-hell.html

over-engineering the software and implementing features that are not
really necessary. That's my opinion.

But this is not what this is about.

We will need to add dependencies to our projects. But when does a
dependency become a bloat? It can be a deep hole. One package requires
another. And another. And soon you have multiple points of failure
that are simply out of your control. Sure the package could be open
source and you could fix it. But that's the same as saying you can
maintain software without any dependency. It's too much. And what
about the security? There are many examples of bugs and even malicious
contributions that jeopardized security. If it's a poison we have to
drink, surely there must be a criteria to choose one that won't kill
us. Meaning, a way to better choose dependencies. Pardon my lyricism,
it's because I'm thinking of a crime narrative. Crimes we commit
against our software.

Some thoughts:

-​ Dependencies that depend on too many other packages are sign of
danger and we question the value that is being added by it;

-​ Choosing libraries that implement standards is safer than
choosing libraries that just add "comfort";

-​ How often is the package maintained? How many people work on it?
-​ Is it an external service that can be run in a private structure?

What is the cost of moving away from it? Are there alternatives?

Research

Dependency hell - Wikipedia

How one programmer broke the internet by deleting a tiny piece of
code.

https://www.reddit.com/r/FlutterDev/comments/oplbly/how_many_are_too_m
any_packages/

https://en.wikipedia.org/wiki/Dependency_hell
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code#:~:text=%E2%80%9CThe%20fundamental%20act%20of%20friendship,more%20communal%20and%20widely%20useful
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code#:~:text=%E2%80%9CThe%20fundamental%20act%20of%20friendship,more%20communal%20and%20widely%20useful
https://www.reddit.com/r/FlutterDev/comments/oplbly/how_many_are_too_many_packages/
https://www.reddit.com/r/FlutterDev/comments/oplbly/how_many_are_too_many_packages/

Script

[Notes: I'm employing a crime motif. I'm thinking of the Unabomber guy
with exploding packages for a funny reference. I find it funny to have
his manifesto and the gnu manifesto being juxtaposed. It could also be
some sort of terror movie with a bad Santa delivering gifts. Although
less brainy.]

[🎦 Shot of me receiving a package from the side and opening it in
front of the computer and getting surprised]

If you are creating software, you will need to choose packages and
dependencies for your project. It will save time and effort. But it
might also end up blowing up.. Your projects.

 From the archives: "Unabomber" Ted Kaczynski indicted on June 18, …

In his GNU Manifesto, Richard Stallman wrote:

[🎦 Capture from the source]
The fundamental act of friendship among programmers is the sharing of
programs;

This is still a big influence on the open source community. In
general, we want to use our skills and be of service to others.

But should we trust everything? When does a dependency become
dangerous?

[🎦 Listening to the package (tic tac), foreshadowing?]

A software package can depend on another package that suddenly has a
bug or a security issue. It might even disappear and break your
project.

https://www.youtube.com/watch?v=bZdVcF3LL-o
https://www.gnu.org/gnu/manifesto.en.html#:~:text=The%20fundamental%20act%20of%20friendship%20among%20programmers%20is%20the%20sharing%20of%20programs%3B
https://www.gnu.org/gnu/manifesto.en.html#:~:text=The%20fundamental%20act%20of%20friendship%20among%20programmers%20is%20the%20sharing%20of%20programs%3B

I usually pay attention to the signs that a package might blow up.
What's the value I get from it? Is the guy maintaining the package
called Ted? Or if it's an external service, is there an alternative
just in case?

[🎦 I would return the package to my side]

Some packages are better left aside.. (idk I should be doing loop
traps, it feels cheap)

