Example of Convex Optimization Problem

Regularization terms in Empirical Risk minimization

(Konstantin Burlachenko, <u>burlachenkok@gmail.com</u>)

About regularization

Regularization solves multi objective optimization problems in some cone and allow trace optimal trade-off curve in math. One possible note about what is regularization is here: https://sites.google.com/site/burlachenkok/articles/what-is-regularization

About regularization path

In supervised machine learning goal to find from Class of functions $F \subseteq \{f: f \text{ is } X \rightarrow Y\}$ function which minimize **Score Function**. Where **Score function** judge quality of fitted model or quality of selected function. Gold standard is prediction risk (also known as lack of accuracy) which defined as

$$R(F) = E_{xy}L(y, F(x))$$

In fact it's functional, i.e. unknown variable is function *F*. This setup has a lot of math and engineering problems. For example we really don't know joint distribution of (X,Y).

Due to that we don't know joint distribution we create finite sum approximation

$$R(F) = \frac{1}{N} \sum_{i}^{N} L(y_{i}, F(x_{i}))$$

Each technics from AI/ML cover some subset of possible functions. And more or less general technics allow to perform "blowing" up size of the function space with your hypothesis/approximation/predictors.

Regularization allow make even more. It allow via changing *parameter* of regularization trace path indexed by regularization parameter and measure *how good we are* via test set, which is our proxy to population. Scientist who research regularization path are J.Friedman, T.Hastie, R.Tibshirani.

Several Convex regularization functions

Function	Function name
$r(x) = \lambda x _2^2$	Ridge Regression
$r(x) = \lambda x _1$	Lasso Regression
$r_{\beta}(x) = \lambda(\sum(\beta - 1)x_{j}^{2} + (2 - \beta) x_{j}), \beta \in [1, 2]$	Elastic Net(Zou and Hastie, 2005).Bridges lasso -> ridge
$r_{\gamma}(x) = \lambda x_i ^{\gamma} \ \gamma \ge 1 - \text{penalty is convex}$	Convex Power Family