WebSocket Throttling Design

Adam Rice <ricea@chromium.org>

Objective

Implement REC6455-compliant throttling for the new WebSocket stack in net/.

WebSockets multiplexed over SPDY or HTTP/2 transports are out of scope for this document
(except for WebSockets tunnelled over a SPDY proxy, which is just an ordinary proxy from the
WebSocket point-of-view).

Background

The new WebSocket stack re-uses the HTTP stack for its handshake. Unfortunately, the
connection throttling semantics differ between HTTP and WebSockets:

e For HTTP, the browser limits itself to 6 connections per (hostname, port) pair.

e For WebSocket, only one connection a particular (ip, port) pair may be in the handshake
phase at a time. This permits connection limits to be enforced on the server side, so
there is no theoretical limit on the number of connections a browser may have to a
particular server.

When connecting via a proxy, the browser doesn’t usually have the IP address, so it is expected
to serialise connections by (hostname, port) instead, and in addition keep some limit on the
overall number of connections in the handshake stage to prevent DoS by creating hundreds of
hostnames all pointing to the target’s IP address.

See REC6455 section 4.1 bullet point 2 for the exact wording of the requirements.

Once a socket has been used as a WebSocket, it cannot be reused either as a WebSocket or
as an HTTP socket.

Challenges
Proxy lookup

The decision of whether or not to throttle must be made after any proxy scripts have been run,
since the answer will be different if we are going through a proxy. This means the simple
approach of doing the throttling in the WebSocket code before even creating the URLRequest
will not work.

Hostname lookup

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455#section-4.1

The existing (old) implementation actually throttles to all IPs that a host resolves to, not just the
one we actually connect to. This is implemented in net : :WebSocketThrottle. It opens up
some boring DoS attacks.

Example of boring DoS attack
goodguy.example.com resolves to 8.8.8.8

badguy.example.com resolves to 223.0.0.1, 223.0.0.2, 223.0.0.3, 223.0.0.4, ..., 8.8.8.8

goodguy.example.com has a useful WebSocket service running on 8.8.8.8:443. badguy hacks
an ad network to deliver Javascript which repeatedly attempts to connect to
wss://badguy.example.com/. Most of the time it hits one of the blackhole addresses, taking
some minutes to timeout. Because both resolve to 8.8.8.8, connections to
wss://goodguy.example.com/ must wait in the queue behind connections to
wss://badguy.example.com/

Proxies

Chrome has a global limit of connections per-proxy. Exceeding the limit is not practical or
desirable, but it is an open question whether WebSockets should use every available socket or
leave some for HTTP. See http://crbug.com/347488.

When the proxy limit is reached, HTTP(S) attempts to close any idle connections, then queues
connections waiting for an available slot. It might be more developer-friendly for WebSocket
connections to fail in this condition, since it provides more feedback. However, it is not clear that
this is permitted by RFC6455.

WebSocket uses a separate pool of proxy connections from HTTP, which could mean we make
up to twice as many proxy connections as we are supposed to. That would be bad.

We have no automated integration tests for WebSocket through proxies. Manual testing
environments for proxies are laborious to set up.

“Happy Eyeballs”

Where a host has both IPv6 and IPv4 addresses, Chrome will start a connection to an IPv6
address, then if there hasn’t been a response after a short period, start another connection to an
IPv4. The first of the two connections to actually complete will be used. This is needed to deal
with the abundance of hosts with broken IPv6 connectivity. This behaviour is quite important for
a good user experience and should be retained for WebSockets if possible.

Backup jobs

net::ClientSocketPoolBaseHelper will start a second connect job if the group is empty and
the first one doesn’t succeed within a timeout. See
https://code.google.com/p/chromium/codesearch#chromium/src/net/socket/client_socket pool
base.cc&l=411

This is probably harmless.

https://code.google.com/p/chromium/codesearch#chromium/src/net/websockets/websocket_throttle.h
http://crbug.com/347488
https://code.google.com/p/chromium/codesearch#chromium/src/net/socket/client_socket_pool_base.cc&l=411
https://code.google.com/p/chromium/codesearch#chromium/src/net/socket/client_socket_pool_base.cc&l=411

Proposed Design

High-level Overview

Although the wording of RFC6455 treats the proxy case as a special-case of the direct
connection case, for Chrome purposes it is easier to treat it as a completely separate case.

Direct WebSocket WebSocket over HTTP (for
proxy comparison)

Number of 1 1 6
connections allowed
in CONNECTING'
state.
Number of 0 0 6
connections allowed
in CONNECTED
state.
Unit of throttling ip:port hostname:port hosthame:port
Global limit on 0 “a reasonably low 0
number of number”
connections in
CONNECTING state.

Design for Direct Connection Case

“Direct” means either plain TCP/IP, or TLS. It includes the cases where there are middleboxes
performing NAT or transparent proxying.

IP lookups are performed in the net: : TransportConnectJob class. Itis the first place where
the information necessary to perform throttling is available. Normally it passes a list of
addresses to ClientSocketFactory: :CreateTransportClientSocket butitis possible to
filter the list to pass a single address at a time. This makes it a possible place to insert a
decision to throttle. To avoid interfering with existing code, we need a new class,

net: :WebSocketTransportConnectJob which splits up the addresses returned by the
resolver and performs throttling based on IPEndPoint if needed. We also need a new

' The socket is “CONNECTING” from the start of the handshake until it either completes successfully, or
fails. See REC6455 Section 4.1.

https://tools.ietf.org/html/rfc6455#section-4.1

net: :WebSocketTransportClientSocketPool which ensures that endpoints are unlocked
when sockets are returned to the pool.

Changes To Existing Classes

net::ClientSocketPoolManagerImpl already has code in the constructor to vary the
arguments to net: : TransportClientSocketPool depending on whether it is for WebSockets
or not. It will need to be modified to create a net: :WebSocketTransportClientSocketPool
for WebSocket use.

A call will be added from net: :WebSocketBasicHandshakeStream: :Upgrade() to
WebSocketTransportClientSocketPool: :UnlockEndpoint() to release the lock on the
endpoint and allow other connections to proceed.

New Classes

net: :WebSocketTransportClientSocketPool will be a subclass of
net::TransportClientSocketPool. It will re-implement all of the virtual methods without
delegating to net: :ClientSocketPoolBase. For simplicity, it will not retain idle sockets, at least
not in the first version. This will avoid the need to duplicate most of the logic of
net::ClientSocketPoolBase.

net: :WebSocketTransportConnectJob will take care of IP address resolution, IPEndPoint
throttling, and connecting sockets.

SubJob

In the existing net: : TransportConnectJob, racing of IPv6 connections with IPv4 connections
is handled separately from the main state machine. Because in the WebSocket case the state

machine needs more states to handle connections which are throttled, this approach becomes
unreasonably complicated.

Instead, WebSocketTransportConnectJob will separate the returned addresses into two lists,
IPv6 addresses and IPv4 addresses. It will then create one

WebSocketTransportConnectJob: :SubJob for each of the two lists, and race them. As with
TransportConnectJob, the IPv6 addresses will be given a 0.3 second head-start?, and the first
SubJob to return a connected socket wins the race.

This will give slightly different semantics in edge cases, but should make little practical
difference.

WebSocketTransportConnectJob: :SubJob further divides the list it is given into individual
endpoints. Each address is first checked with the WebSocketEndPointLockManager to see
whether it has already been claimed by a different connect job. If it has, the SubJob will be

2 |If there are no IPv6 addresses, the IPv4 connections start immediately. If all the IPv6 addresses fail in
less than 0.3 seconds, the IPv4 connections will start at that point without waiting for the timer to expire.

added to a queue and wait until all of the connect jobs ahead of it in the queue are complete.
For this purpose, SubJob subclasses base: : LinkNode. Once the SubJob is the “owner” of the
IPEndPoint, it proceeds to use CreateTransportClientSocket(), passingin an address list
containing only one endpoint.

Normally, iteration through the endpoints returned by DNS lookup is performed by
TCPClientSocket; however, since SubJob will only try one endpoint at a time, it needs to
handle the looping through the address list itself. In particular, when a connection fails,
TransportConnectJob normally passes the error back immediately, whereas
WebSocketTransportConnectJob should only do that if there are no more addresses in the list
to try.

Issues

The major issue with this design as it stands is that proxy connections for WebSockets share
the ConnectionPoolManager with direct connections. However, there are various conceivable
workarounds for this. In the end, WebSockets cannot be taking proxy connections from a
separate pool to HTTP connections because the proxy itself does not have a separate pool of
resources for serving WebSocket connections.

There is a per-proxy limit of 32 connections by default; it can be overridden by setting the
MaxConnectionsPerProxy administrator policy. This is anecdotally widely set to a lower value in
corporate environments with underpowered shared proxies. Because there is a separate
instance of net: :ClientSocketPoolManagerImpl for WebSockets, the proxy server can end
up with MaxConnectionsPerProxy x 2 connections, which would probably be considered
unexpected behaviour.

For these reasons, it would probably be preferable to use the HTTP instantiations of
TransportClientSocketPool, HttpProxyClientSocketPool and SOCKSClientSocketPool
when a proxy is in use.

Another concern is how the WebSocketTransportClientSocketPool, which ignores group
limits, will interact with higher-level pools that enforce them. Hopefully being the lowest-level
pool and not keeping idle connections around will avoid major problems.

Currently when the experimental TCP FastOpen flag is enabled, and DNS returns multiple 1Ps
for a host, Chrome will fail to fall back from a non-working IP to a working IP. This issue is
common with HTTP, but because WebSocketTransportClientSocketPool duplicates the
address selection logic from TCPClientSocket, any fix will have to be duplicated too. Similarly,
the “Happy Eyeballs” fix for broken IPv6 connectivity will fail with TCP FastOpen enabled.

Discussion

http://www.chromium.org/administrators/policy-list-3#MaxConnectionsPerProxy

Alternatives Considered

Alternatives to creating WebSocketTransportClientSocketPool

The logic for WebSockets could go in the ordinary TransportClientSocketPool,
controlled by a runtime flag. However, this would lead to increased complexity and
maintainability issues. As a general principle, knowledge of WebSockets should not be
required for general maintenance of the HTTP stack.

A WebSocketTransportConnectJob could be injected into a
TransportClientSocketPool object. This doesn’t work because the pool itself needs
to contain logic to unlock endpoints when sockets are released.

Logic could be added to TCPClientSocket to optionally implement WebSocket throttling
semantics. This has the benefit of simplicity; the disadvantage is that it is intrusive and
everybody hates the idea.

As mentioned above, the old implementation throttles all IP address for the hostname.
This is complex because the sets of IP addresses for different hostnames can overlap in
arbitrary ways, resulting in a queue that is not strictly FIFO. Bad experience with this
approach was the major impetus to try to do something better.

WebSockets could use a subclass or parallel implementation of TCPClientSocket to
implement the throttling functionality. This would involve copying most of the code from
TCPClientSocket. The copied code would need to be kept up-to-date, which would be
a maintenance burden. Two alternatives were considered to avoid copying code:

o TCPClientSocket and TCPIPEndPointThrottledClientSocket could both
delegate most of their functionality to a helper object, with only the parts that
need to be different living in the exposed class. This approach was discarded due
to a sense that we have too many levels of abstraction already.

o TCPClientSocket could have a state machine object injected into it at
construction time, to which it delegates decisions about how to respond to
various events. Rejected due to complexity.

TCPClientSocket could expose its IP selection logic to the caller, allowing the caller to
suspend the connection after an IP address is selected. Rejected due to complexity.

IP selection logic could be removed from TCPClientSocket completely, and performed
by the calling class. Rejected due to the size and disruptive nature of the changes
needed.

Logic could be placed in TCPSocket instead. This is a lower-level platform-specific class;
changing it would be riskier and require more changes.

Alternatives to subclassing TransportClientSocketPool

Subclassing the concrete implementation class TransportClientSocketPool to create
WebSocketTransportClientSocketPool is arguably the ugliest part of this design.
Unfortunately, client classes cannot simply use the ClientSocketPool interface

because the type of the |params| parameter passed to methods RequestSocket () and
RequestSockets() depends upon the concrete type TransportClientSocketPool.
TransportClientSocketPool itself could be changed to an interface type, with the
implementation moved to TransportClientSocketPoolImpl (for example). However,
this would add an extra layer of abstraction, making the code harder to follow while
providing no benefit to HTTP.

The HTTP stack could be taught to understand WebSocketTransportClientPool
natively. This would be very invasive and defeat our design goal to be minimally
intrusive.

Why not delegate to net::ClientSocketPoolBase?

ClientSocketPoolBase will sometimes delete StreamSocket objects without providing
any hook for us to remove associated endpoint locks. One case is where a request is
cancelled before the connection completes. Adding hooks everywhere
ClientSocketPoolBase deletes a StreamSocket object would be intrusive.

Wrapping StreamSockets in a delegating type in order to hook the destructor would
double the virtual call overhead on Read() and Write(), and is ugly.

Putting something in the base StreamSocket interface destructor to hook destruction
would be evil and wrong.

Most of the functionality of ClientSocketPoolBase simply isn’t needed for WebSockets
anyway.

Code Locations

o net/websockets
o net/socket

Design for Proxy case
TBD.

Revision History

2014-02-28: First version.

2014-03-18: Updated with more notes.

2014-03-25: Direct implementation details.

2014-03-28: Document the IPEndPointThrottler::Release() method that eliminates the

necessity to change the StreamSocket interface.

e 2014-03-28: Removed the language about preconnects being harmful;
tyoshino@chromium.org ruled that they are acceptable in moderation.

o 2014-04-25: Considerably rewritten to reflect the

WebSocketTransportClientSocketPool-based implementation.

mailto:tyoshino@chromium.org

	WebSocket Throttling Design
	Objective
	Background
	Challenges
	Example of boring DoS attack

	Proposed Design
	High-level Overview

	Design for Direct Connection Case
	Changes To Existing Classes
	New Classes
	SubJob

	Issues
	Discussion
	Alternatives Considered
	Alternatives to creating WebSocketTransportClientSocketPool

	
	
	Design for Proxy case
	
	Revision History

