

BR 201 Bronze Powder

BR 201			
Formula	Cu Sn		
Purity	90/10		
Particle size	-100 mesh		

	Chemistry			
Elements	Specification	Typical Results		
Copper		90		
Tin	9.5-10.5	10		
Lubricant		0.75		
Green strength @ 6.3 g/cc	500 psi min	560 psi		
Apparent density	3.15-3.35 g/cm ³	3.24		
Hall flow	40 seconds max	29 seconds		

	Particle Size					
		Specification	Typical results			
+100 mesh		0.2 max	0			
+200 mesh		<u>-</u>	15			
+325 mesh		<i>y</i>	31			
-325 mesh		40-60	51			

BR 201 Bronze powder is a copper-tin based material, blended and typically formulated to 90% copper and 10% tin. These pre-mixed powders are engineered for low noise sintered bearings. The sintered pore structure of the bearings provides a uniform controlled porosity and oil permeability for excellent hydrodynamic lubrication at lower shaft loads and higher rotational speeds.

	sented herein is bel e or warranty by Ai	 	 	