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The Go compiler’s inliner has never been particularly good. It wasn’t until Go 1.12, released in
2019, that the Go compiler supported inlining more than leaf functions, and we’ve slowly
chipped away at more limitations of the inliner over the years (it started inlining functions with for
loops in early 2021!). Go 1.20, released in February 2023, added support for basic
profile-guided inlining, the most significant change to Go’s inlining policy since 1.12.

The backend of the inliner—the component that implements the decisions made by the inlining
policy—received a major overhaul with unified IR in Go 1.20. In Go 1.21, the old backend was
deleted entirely, which eliminated almost all backend limitations that have suffused the inlining
policy for years.

Our current inlining policy remains built on a foundation that is becoming increasingly strained
as we add things like PGO, is increasingly anchored in past backend limitations, and it
continues to use an overly simplistic cost model driven by an overly simplistic scheduler.
Between unified IR and the untapped possibilities of PGO, I believe there’s now a significant
opportunity to improve the inlining policy, resulting in significant performance improvements for
Go applications, and reducing the effort and expertise needed to write highly efficient Go code.

The rest of this document lays out a set of considerations for a redesign of Go’s inlining policy.

Obvious improvements
If we know there's only one call to a function and it’s possible to inline, inline it. A trivial case of
this is: func() {...}(). This would also be easy to analyze for unexported functions. There
are some potential downsides to doing this in the general case: it may present an undesirable
performance cliff where adding a second reference to a function suddenly prevents inlining, or
doing it only for unexported functions violates our goal of not having performance penalties on
package boundaries.

Heuristic improvements
Inlining heuristics determine whether or not to inline a given call edge. Our current inliner uses a
simple cost model where it computes the “hairiness” of a function, which is roughly the number
of AST nodes in it, and inlines anything under a certain threshold.
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Prefer inlining if it enables follow-up optimizations. The current heuristic solely models the
costs of inlining, and not the value of inlining. This makes it extremely conservative. In effect,
this models the only value as eliminating call overhead, but most of the value of inlining comes
from enabling further optimizations, particularly constant propagation (and subsequent
dead-code elimination), call devirtualization, and escape analysis. If we could model this value,
we could accept cases with a medium cost but a high value. Cherry proposed a simple but
expensive way to do this: make two copies of a caller, one in which we do inlining and another
in which we don’t, pass both through further phases of the compiler, and at some point after key
optimizations have been applied, pick between them. Alternatively, we could attempt to model
(perhaps approximately) these key optimizations directly in the inlining policy.

Better PGO heuristics. Currently, PGO essentially works by raising the hairiness threshold for
hot functions. Even this fairly rudimentary approach achieves a 3–4% speedup, but with further
work I’m sure we could improve this. Improving the inliner scheduling is one thing that would
help us make better use of PGO data. Another possibility is that we use PGO not just to directly
drive inlining decisions, but to direct where the compiler spends time applying more costly
inlining heuristics, such as trying follow-up optimization passes.

Call site-aware heuristics. The current inliner is completely insensitive to the caller: a callee is
either inlined everywhere or nowhere. The call site, however, can significantly affect the value of
a particular inlining decision. For example, it’s generally more valuable to inline a call that’s
performed in a loop because the cumulative overhead of that call is higher, and because it may
enable loop-invariant code motion. Many other follow-up optimizations are also sensitive to the
caller: constant propagation depends on constant arguments at a call site, and escape analysis
depends on whether a value further escapes the caller. One case where non-trivial constant
propagation should encourage inlining is when closures are passed to a function. For example,
sort.Search is a small function that is almost always called with a function literal. Ideally we
would inline sort.Search into such callers and perhaps even inline the function literal, resulting in
optimal code at no cost to expressiveness.

Consider performing partial escape analysis before inlining. Currently, we perform inlining
before escape analysis because it significantly affects the results of escape analysis. However,
it would be valuable to have information from escape analysis available to inlining. It might be
possible to perform partial escape analysis first to produce data flow graphs that can then be
quickly combined following inlining and other basic optimizations (like dead code elimination)
before being finalized into function-level escape summaries.

Consider moving inlining to SSA. The current inliner works on our AST representation, which
makes it difficult to accurately model costs because some simple ASTs produce a large amount
of code and some complex ASTs optimize to very little code. Moving it to SSA would enable a
more accurate cost model. However, there are many complications to doing this, so it may not
be worthwhile: we would have to either move escape analysis to SSA or find a way to perform
escape analysis before inlining (see above); SSA compilation is currently entirely parallel, and
this would add significant ordering constraints (though we have experimented with SCC



ordering of SSA compilation and found it has little negative impact); and we currently have no
way to serialize SSA to the export data.

Scheduling improvements
The scheduler determines the order in which inlining considers call edges. Our current inliner
does a strict bottom-up traversal of the call graph (technically, of the strongly-connected
components graph), inlining callees into callers until a threshold is reached, then starting over
with the next caller up the chain. Even in a fixed-threshold model, this is suboptimal, and it leads
to unstable results where small changes to functions near the leaves of the call graph can lead
to completely different inlining boundaries as you go up the call chain. This algorithm originated
before we supported mid-stack inlining, and it still reflects this limited model of inlining.

Cost-based inline scheduling. The current bottom-up approach is suboptimal and unstable.
An obvious possibility is to compute the local cost of every function, then start with the
lowest-cost functions and inline those into their parents (recomputing the cost of the combined
function) and keep going from there until every remaining call edge would exceed the inlining
threshold. This is very similar to building a Huffman tree. It would have dramatically better
stability and would likely result in more optimal results. It may also be a prerequisite for certain
heuristic improvements. For example, a common pattern in Go is to split computations into a
small fast path function and a large slow path function, where the fast path is intended to be
inlined and calls the large function if the fast path conditions aren’t satisfied. In a bottom-up
schedule, there’s always a danger that strong heuristics will allow inlining the large slow path
function into the fast path function (for example, if we unconditionally inline functions with a
single call site) but the combined function will not be inline-able, defeating the whole purpose. A
cost-driven scheduler will consider inlining the fast path into its callers before considering
inlining the slow path into the fast path. Cost-driven scheduling would also handle calls within
strongly-connected components much better than our current approach (e.g., #58905).

Call site-aware scheduling. Much like call site-aware heuristics, the scheduler could also
benefit from being call site-aware. For example, it could start by inlining the highest value call
sites in a caller and stop once the caller goes over a size threshold (at which point i-cache
pressure increases).
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CL 459037 duplicates sort.Search logic into slices.BinarySearch and gets a substantial
performance improvement.

CL 495595 disallows inlining from a norace package into a race package (in -race mode)
because we track this at the package level and lose this information across inlining. This is an
example of a larger problem where we track information at the source function or package level,
which is almost always hostile to inlining. We may want to push more of this into IR nodes so it
doesn’t block inlining.
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