
What Hutter Prize winning entries reveal about descriptive
complexity and truly universal lossless compression algorithms

Alexander Rhatushnyak

Hutter Prize is the only ongoing data compression competition with a cash
prize: it awards 500 euros for each 1% improvement (with 50,000 euros total
funding)[1] in the compressed size of the file enwik8, which is the first 100
million characters of a specific version of English Wikipedia.

We suggest that one of the most important observations, possibly the most
important one, revealed by the Hutter Prize winning entries and the associated
work, is that descriptive complexity levels are as numerous and well visible in
artificial systems as they are in the physical world.

In the physical world, hadrons are composed of quarks, then atoms are composed
of hadrons, molecules are composed of atoms, then the cells of living entities,
multicellular organisms, and so on. On each new level the instances have a
higher descriptive complexity, on average, than instances on the previous
level.

In a data compression scenario such that an improvement in compressed size is
desired at (almost) any cost, it seems natural to apply a bitwise algorithm,
like [2] and [3], an algorithm that calculates for each bit the probability
that this bit is one, making use of all of the already processed bits of input.
If input is big enough, then if we plot the compressed size as a function of
computational resources (memory and CPU time) used by our bitwise algorithm,
the plot looks somewhat similar to the plots of functions

y = Const + 1/x and y = C + 1/log(x).

Every doubling of x, the available resources, improves compressed size y by a
smaller and smaller amount. y = C1 + z1(x) where z1(x) converges to zero when x
runs to infinity.

It can easily be discovered that in the input, bits are the building blocks of
units, most often fixed-size units: symbols in case of qualitative data,

samples or numbers in case of quantitative data. If input is enwik8, symbols
are more often 8-bit, less often 16-bit symbols. If input, another example, is
raw (uncompressed) audio, units are 16-bit samples, as a rule.

After we apply the knowledge of peculiarities of the symbolic system(s) used in
our input, and plot the computational resources versus compressed size for the
improved compression algorithm, we see again something similar to y = C2 +
z2(x), but this time the constant appears to be smaller, C2 < C1.

Next, we can discover what is composed of symbols. In the case of English text,
as in enwik8, the units on the next complexity level are English words. After
we apply this knowledge, for example, build a dictionary of English words and
transform the input accordingly, the new plot of the improved compression
algorithm looks like y = C3 + z3(x), and C3 < C2. Here is another example: in
case of executable CPU code, the analogues of UTF-16 symbols are the elementary
CPU instructions, and analogues of English words are the typical sequences of
CPU instructions, for example: a comparison followed by a conditional jump,
calculation of the maximum of two values, pushing a set of registers into
stack, a dot product of two vectors.

Next, we can discover what is composed of typical sequences of symbols, which
are English words in case the input contains mostly English text, as in enwik8.

Sentences of English words are the next complexity level. And after we discover
and make use of the rules behind sentences, including parts of speech and
punctuation rules, the plot is like y = C4 + z4(x) where C4 < C3. In case of
CPU code, there are also certain rules for what is possible and what is not,
what is more likely and what is unlikely in the input when it is executable CPU
code. For example, “words” like “push many registers into stack” are likely at
the headers of functions, and “words” like “pop many registers from stack” at
the function footers.

In enwik8 there are two more complexity levels: paragraphs, and then the
complete Wikipedia articles, also known as Wikipedia pages. Paragraphs composed
of English language sentences are on the same complexity level as other
Wikipedia specific entities, for example, lists “See also”, “References”, and
“Other languages”. Here you could possibly discover that switching individual
models on and off, depending on the types of paragraphs, could be very
beneficial for the compression algorithm, for arriving at y = C5 + z5(x) such
that C5 < C4. A set of models for URIs should be rather different than a set of
models for sequences of English sentences.

Finally, Wikipedia articles are at the top of the stack of complexity levels in
enwik8. If you discover and make use of rules on how the articles are composed,
once again you get a plot like y = C6 + z6(x) and C6 < C5. For example, every
Wikipedia article has a header and a footer. Also, you could try to group
similar articles together: “Persons” and “Places” articles, for example.

Do C1, C2, …, C6 correspond to descriptive complexity, also known as Kolmogorov
complexity? The Kolmogorov complexity of an object is defined as the length of
the shortest computer program, in a predetermined programming language, that
produces the object as output. It is important that if the programming language
is as simple as a CPU instruction set, that’s one case, if it contains
knowledge of the symbolic system properties (e.g. UTF-16), that’s another case,

and if it contains also the knowledge of how thousands of English words are
composed of UTF-16 symbols, that’s a third case. Descriptive complexity of
input E decreases if complexity of the programming language increases, and if
information inserted into the programming language is relevant to information
in E. When using the definition of Kolmogorov complexity, we should take into
account the complexity of programming language. So the answer is yes, C1…C6 may
be close to descriptive complexities, if the sizes of decompression programs
are taken into account. Note these sizes must somehow take into account the
complexity hidden in hardware, including CPU, in standard libraries of the
programming language, and in the operating system.

It is worth mentioning that the original bitwise compression algorithm, after
all the complexity levels are taken into account, is “aware” of entities at
different levels, and does not always predict a bit at a time (by the way, not
necessarily the immediately next bit). When it is appropriate, it predicts a
complete symbol, or even a complete word, and possibly a complete sentence, or
at least something about the type of sentence. This allows shifting the y=f(x)
curve closer to the x=0 axis, which works very similarly to shifting it closer
to the y=0 axis, if the function f(x) is like C + z(x).

Another issue worth mentioning briefly is that a very straightforward (and very
slow) bitwise compression algorithm, for example multi-level artificial neural
network, could eventually discover all the rules “naturally”, especially if
there are approximately as many ANN levels as the number of complexity levels
in the input, and more neural cells than rules, on each level. However,
applying the most important rules “manually” seems to push the f(x) graph
significantly closer to the x=0 axis. This should improve as the state of ANN
art improves, and the top-level ANN supervisor algorithm is able to switch
between architectures, turn on and off stacks of levels, dynamically re-adjust
the number of cells on each level, reconsider the batch sizes, and so on.

A truly universal lossless data compression algorithm targeting a higher
compression quality should discover homogeneous portions and all the complexity
levels in each portion, before building and applying a complex model, a model
that should take into consideration all of the complexity levels, and other
discovered properties, including data dimensionality, references to standard
symbolic systems, etc. Note in general it is important to split input into
homogeneous portions; consider this example: executable machine code
intermixed with plain English text and with raw audio data.

References

1. Website of the Hutter Prize: http://prize.hutter1.net

2. Matt Mahoney. The ZPAQ Compression Algorithm.

http://mattmahoney.net/dc/zpaq_compression.pdf

3. Byron Knoll. CMIX version 18. http://byronknoll.com/cmix.html

http://prize.hutter1.net/
http://www.mattmahoney.net/dc/zpaq_compression.pdf
http://byronknoll.com/cmix.html

	References

