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diagnosis: unified framework incorporating vision
transformer and advanced object detection
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Abstract— Wheat diseases threaten global food security,
leading to yield losses exceeding 20% annually. This study
presents a comparative evaluation of advanced deep learning
architectures for automated wheat disease detection. We
assessed five transformer-based classification models (MaxViT,
Swin, MViTv2, DAvit, RDNet) and five object detection models
(YOLOv7, YOLOv10, YOLOv12, RT-DETR, RT-DETRv3)
using a large dataset of 14,155 images spanning 15 disease
categories. Among classification models, MaxViT achieved the
highest accuracy at 97.83%, while YOLOv12 demonstrated the
best detection performance (94.4% mAP@0.5) alongside
superior computational efficiency. The results show that the
unified framework, combining YOLOv12 and MaxViT
achieved an overall accuracy of 97.62%. Gradient-weighted
Class Activation Mapping confirmed that the models focused
on biologically relevant features, reinforcing their diagnostic
reliability. Our findings highlight that state-of-the-art
architectures can be effectively leveraged for agro-diagnostic
applications, helping mitigate crop losses and strengthen food
security. This work contributes to precision agriculture by
providing guidance on selecting practical deep learning models
tailored to specific constraints and operational needs.
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1. INTRODUCTION

A. Importance and Relevance

Wheat is critical not only as a food source but also for
global security, providing a significant portion of the
calories and protein intake for a large segment of the human
population [1], [2]. Wheat’s widespread cultivation across
various agricultural regions showcases its importance for
sustaining humanity and as a driver of economic activity in
many nations [3]. However, the cultivation of this key crop
is, and will continue to be, challenged by a myriad of biotic
factors, the most pressing of which are plant diseases.
Pathogenic fungi, bacteria, and viruses responsible for these
diseases often cause catastrophic epidemics, greatly
diminishing crop yield and quality while inflicting
substantial economic harm to farmers and the agricultural
industry as a whole [4], [5]. Such phytopathological threats
demand equally powerful and proactive management
approaches. In this regard, timely and precise procedures for
diagnosing and determining wheat diseases suffer from a
lack of necessary attention, which needs to be redressed.
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Such methods provide a basis for effective disease
management to reduce losses and allow sustainable wheat
production practices worldwide [5]. The diagnosis of wheat
diseases has been done for many years with the aid of a
camera and manual examination performed by deep
agricultural specialists, such as phytopathologists and
farmers with many years of experience. Common ailments
can often be diagnosed with the help of a visual check,
thanks to the efforts of skilled personnel, but these outdated
techniques are extremely subjective, require a great deal of
effort, and take a long time. In addition, their use in the
solution of large-scale agricultural tasks, especially in areas
devoid of specialized phytopathological intellect, is severely
restricted [5]. One of the main disadvantages of a visual
checkup is that in many cases, the early symptoms are not
readily visible or are mixed with symptoms of other
conditions, which makes accurate detection and timely
decision-making impossible. Such delays in diagnosis can
allow rampant diseases to spread uncontrollably, making
control efforts more complicated, ineffective, and expensive.
These shortcomings and the need for more sophisticated
measures to achieve better diagnostics have forced the
agricultural technology industry to look for automated
means. The intersection of deep learning (DL) technologies
with the rapidly evolving fields of computer vision and
artificial intelligence has brought about a paradigm shift in
the capacity for diagnosing and managing plant diseases.
The sophisticated pattern learning capabilities of deep
learning models from image datasets are leading toward
fully automated, precise, and dependable systems for disease
detection, heralding transformational advancements in
precision agriculture.

B. Historical Context

The advancement of diagnostic methods concerning the
effective management of diseases in wheat crops has
undergone some remarkable changes. For more than a few
decades, the primary method depended on the sight and
expertise of qualified agricultural specialists and farmers,
who would check the crops for any possible disease [6], [7].
The approach certainly has strengths, especially in areas
with ready distinctive skill local expertise, but suffers from
subjectivity, the sheer scale of field surveys, automation, and
multi-symptom complexities [9]. Moreover, the applicability



of such manual inspections is severely restricted in
enormous agricultural fields, where a rapid response is
necessary to avert substantial calamity. These traditional
approaches to visual inspections have faced increasing
challenges in the aftermath of the boosting demand for
agricultural productivity, coupled with the factors associated
with the already complicated nature of disease patterns, such
as climate change. Understanding these limitations,
agricultural researchers wondered how to achieve more
objective and easy-to-scale diagnostic tools. The initial work
on automated disease detection made use of image
processing techniques and machine learning algorithms.
These methods usually required manual feature engineering,
wherein individual visual features of the diseased plants,
like lesion colors, shapes, and textures, had to be precisely
defined and retrieved from images. Even though these
techniques were more advanced than using hand inspections,
they still faced difficulty with the biological variability,
including the lighting, plant growth stage, and how the
environmental context and different wheat cultivars would
alter the symptoms of the disease. The accuracy of these
systems was mostly limited to the quality and
representativeness of the engineered features, which could
be quite complicated and expensive. A true paradigm shift in
the automated diagnostics of plant diseases was the
widespread implementation and rapid growth of DL
technologies, particularly CNNs or, more recently, Vision
Transformers (ViTs). Unlike their predecessors, DL models
do not require feature extraction; instead, they intuitively
structure sophisticated features from raw images. Because
models can discern intricate and subtle latent patterns, often
beyond human perception, there is no need for pre-defined
feature engineering [8]. The modern move from manual
visual assessment alongside traditional machine learning to
these advanced Al-assisted diagnostic techniques is a
remarkable shift. Deep learning-driven automated systems
are capable of achieving extremely high accuracy and can
rapidly analyze large datasets, offering versatile applications
in agriculture, such as mobile or drone-based imaging to
enable unprecedented early and accurate disease detection
on large scales.

C. Objectives and Contributions

This research undertakes an elaborate and methodical
evaluation of the modern architectures of deep learning for
the automated identification and diagnosis of diseases in
common wheat plants. The main aims of this investigation
are articulated so that they focus on critical considerations of
model evaluation: performance, applicability, and
trustworthiness in the scope of precision agriculture.
Specifically, this paper aims to:

1) Analyze object detection model proficiency:
Critically analyze the YOLO family object detection
models with particular reference to YOLOvV7,
YOLOv10, YOLOvl2, and RT-DETR and
RT-DETR v3.

2) Optimize Vil-based classifier: Incorporate recent
ViT models to boost wheat disease prediction
performance. We analyze a variety of vision
transformer-based classification models, such as the
Swin Transformer, RDNet (Residual Dense
Network), MViTv2 (Mobile Vision Transformer v2),

MaxViT (Maximal Vision Transformer) , and DAvit
(Dual Attention Vision Transformer).

3) Comprehensive model evaluation: Provide a
comprehensive  experiment to evaluate the
combination of object detection with image
classification models. This analysis uses the Wheat
Plant Diseases Dataset, which includes 14,155
high-resolution images organized into 15 distinct
classes for various diseased conditions.

4) Analyze Model Performance: As for evaluating the
chosen models, it is to be done in detail with a
complete set of standard evaluation metrics. For
classification problems, the evaluation metrics are:
accuracy, precision, recall, and Fi-score. mAP (mean
Average Precision) is the primary metric used for
object detection tasks. This analysis enables us to
quantitatively benchmark the performance of each
model with respect to detecting and localizing
diseases on wheat crops.

5) Investigate Model Interpretability: Try to explain
the deep learning models’ interpretability using the
Gradient-weighted Class Activation Mapping
(Grad-CAM). That is, create visual representations
that highlight the important areas of the image the

model focused on while diagnosing, thus
illuminating the black box and facilitating trust in its
prediction.

1L LITERATURE REVIEW

The need for precise, fast, and scalable techniques to
detect plant diseases has accelerated the adoption of deep
learning and additional computational techniques in plant
pathology. As with any field, agriculture has its
challenges—most notably, crop diagnosis, which relies on
an expert’s visual inspection. Such inspections are arduous
and subjective, lacking effective early detection, impeding
timely diagnoses, and in many cases can stymie agricultural
development. In fact, imprecise and delayed inspections in
vast farmlands may result in an abominable 20-40% loss of
crops, diminishing global yield by 20 percent, which is
estimated to be worth billions [9]. Moreover, the aid of
global trading and climate change has strained most
mechanized systems' sophistication and problem-solving
abilities. These tried in vain to assist with the first steps of
automation, but turned to rudimentary image analysis and
crafted an ML algorithm. The need for heuristic features
created a barrier to entry where they could only rely on
significantly simplified descriptions—called lesion and
spectral signatures. Although these methods allowed some
advanced cognition over heuristic methods, there was little
room for adaptation to the multitude of variable symptoms
of diverse environments, resulting in limited generalization
and scalability [9].

The impact of deep learning, especially with the use of
Convolutional Neural Networks (CNNs), has revolutionized
the field of computer vision, which later propagated into the
processing of images in agriculture [8], [9]. The most
distinguishing feature of the CNNs was the end-to-end
learning feature. The CNNs were able to derive complex
hierarchical features at the pixel level, eliminating the need
for manual preprocessing and removing the prominent step



of feature extraction. Numerous models have been or
adapted, such as AlexNet, VGGNet, GooglLeNet, ResNet,
DenseNet, and numerous Inception variants, or served as
backbone models for classifying diseases of staple crops like
wheat, maize, rice, and horticultural crops such as tomatoes
[7]. Stunning classification accuracy results have been
reported in several studies for the benchmarking datasets,
particularly in PlantVillage, where many would surpass the
accuracy mark of 95%. For instance, Lu et al., [10] reported
astonishing results on their modified VGGNet architecture
for detecting wheat diseases, attaining 97.95% accuracy.
Sharma et al., [11] also achieved equally high figures by
building a rust detection framework based on multilayer
perceptrons, obtaining 96.24% correct answers. It is,
however, noteworthy that these performance metrics, which
are frequently cited, often depend on datasets gathered under
quite controlled and homogeneous circumstances as shown
in Table I.

TABLE I. CoMPOSITION AND STATISTICS OF THE WHEAT PLANT DISEASES

DATASET.
Study Dataset Size Disease Controlled
Classes Conditions
Luetal., [10] 5,230 7 Yes
Sharma et al., [11] 4,125 3 Yes
Tabbakh et al., [12] 9,740 9 Partially
Our Study 14,155 15 No

Fostering the more recent Efficient and MobileNet
architectures, Advanced research into enhancing efficiency,
along with CNNs, has been dedicated to streamlining these
models, making them maximally fit for the precision-cost
balance, which is ideal in mobile and edge devices with low
resource settings. At the same time, a remarkable progress in
natural language processing appeared: the Transformer
model. ViT models, as well as their countless derivatives
like Swin Transformer, MViTv2, MaxViT, and Davit, the
main focus of our investigation, have attained remarkable
success, often rivaling or surpassing the traditional CNNss,
most recently in plant disease classification [10], [11]. These
models use global information extraction with self-attention
techniques that make image processing over long distances
more effective than traditional convoluting methods that use
restricted receptive fields. Tabbakh et al’s TLMViT
(Transfer Learning Model and Vision Transformer) [11]
demonstrated this trend by integrating VGG19 features into
a ViT framework and performing exceptionally well on the
PlantVillage and custom wheat disease datasets.

IN.LMETHODOLOGY

The methodological framework of this study was
designed to provide a rigorous and fair comparison of
state-of-the-art deep learning architectures for wheat disease
diagnosis. To achieve this, we constructed a unified
experimental pipeline that integrates dataset preparation,
preprocessing,  model  training,  evaluation, and
interpretability analysis. FEach stage was carefully
standardized to ensure reproducibility and consistency
across both classification and object detection tasks. By
combining transformer-based classification models and
advanced object detection architectures within a controlled
pipeline, the study not only benchmarks their performance
but also highlights practical trade-offs in terms of accuracy,

efficiency, and scalability. This methodological design
ensures that the findings are directly applicable to real-world
agro-diagnostic scenarios, where both reliability and
computational feasibility are critical.

A. Dataset Description and Preprocessing

As shown in Table II, we used the extensive Wheat Plant
Diseases Dataset, which includes 14,155 high-resolution
images organized into 15 distinct classes, including pests,
rusts, smuts, blights, rots, spots, and blotches. Composition
and Statistics of the Wheat Plant Diseases Dataset.

TABLE II. COMPOSITION AND STATISTICS OF THE WHEAT PLANT
DISEASES DATASET..
Metric Value
Number of Disease Classes 15
Total Images 14155
Mean Resolution ~1920x1080pnx
Annotation Type Bounding box

To achieve effective model training and evaluation, we
designed a structured preprocessing pipeline for all images.
Each of the images was resized to a standard value of
448x448 pixels, maintaining their proportions via center
cropping. The pixel value normalization was done with the
standard ImageNet statistics as shown in Eq. 1:

=L «O»

norm o

All input images were first resized to 448 x 448 px

through center cropping to maintain the aspect ratio, and
then the pixel intensities were normalized using ImageNet
statistics (L = [0.485, 0.456, 0.406], o = [0.229, 0.224,
0.225]). As a method to strengthen generalization and
robustness, we used random horizontal and vertical flips (p
= 0.5), rotations to +15° and perturbations of £10%,
brightness/contrast,  together =~ with  the  stochastic
augmentation sequence of RandAugment. Finally, we
employed Mixup (a = 0.4) to generate convex combinations
of image pairs and their labels, further enriching the training
distribution.
The dataset was then class-stratified and split into three
parts: training (70%), validation (15%), and test (15%), all
while keeping inter- and intra-class balance, which can be
observed in Table III.

TABLE IIL DATASET SpLIT DISTRIBUTION.
Dataset Split Percentage Number of Images
Training Set 70 % 9909
Validation Set 15% 2123
Test Set 15% 2123

For more details about the dataset, readers are directed to the
dataset page:
B. Model Architectures

e (lassification Models: This section describes five
classification models based on transformer—and
CNN-based architectures to classify wheat diseases
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given an image. These models were chosen to test
their performance in the precision agriculture case.

1) Swin Transformer: This variant employs
hierarchical self-attention in local windows
and cross-window relations. The Swin-B
variant is a tradeoff between computation
and modeling capacity, which is why it is
well-suited to learning spatial hierarchies.

2) MViTv2: A refined multiscale vision
transformer that integrates residual links and
a pooling attention mechanism. The
MViTv2-B version improves the
spatial-channel trade-offs to better represent
features.

3) MaxViT: Convolutional and
transformer-based operations are integrated
via a new multi-axis attention mechanism.
Such a hybrid architecture learns both local
and global dependencies, which is useful in
complicated visual tasks.

4) DAvit: Uses two attention mechanisms:
spatial and channel-wise, to concentrate on
informative features. This architecture will
increase the ability of the model to
generalize with varied presentations of
symptoms.

5) RDNet: A residual dense network with
CNN, which enables feature reuse and
gradient flow through dense connections
between residual blocks. Such an
architecture enables more hierarchical
representations to be learned.

Object Detection Models: The five models
evaluated and examined towards the object detection
challenge are as follows:

1) YOLOvV7: This is an improved version of
YOLO that integrates the E-ELAN
backbone and feature aggregation. By
enhancing the network design, it aims to
achieve a tradeoff between speed and
accuracy.

2) YOLOvVI10 suggests an anchor-free detection
head and an improved backbone. It divides
the problem into classification and
regression and uses high-level augmentation
schemes to increase accuracy.

3) YOLOvVI12: It inherits YOLOvVI1O0 but has a
lighter backbone and channel attention. It
operates feature pyramid networks and new
loss functions to make the detection more
robust and the inference quicker.

4) RT-DETR: Real-time adaptation of the
DETR model with a hybrid encoder. It uses
CNN parts to decrease the computation
overhead and preserve the benefit of
transformer-based detection.

5) RT-DETRv3: This is an enhanced version of
the RT-DETR, which has a better
cross-attention mechanism, a stronger

Input

Raw Wheat Images

prediction head, and feature extraction
capability.

Training Protocol: We maintain a uniform
methodology when training all models in order to
provide a consistent comparison. we selected the
AdamW optimizer with an initial learning rate set to
le-4, a weight decay of 0.05. The Learning rate was
adjusted based on the cosine schedule approach after
warming up for the first five epochs. For the
classification tasks, the model was trained for 50
epochs with early stopping based on validation loss
with a 5-epoch patience. The multi-class
classification employed cross-entropy as the loss
function. For the object detection tasks, the batch
size was set to 32 and the model was trained for 50
epochs. The model defined the classification loss as
Binary Cross Entropy (BCE), objectless loss as
BCE, and bounding box regression loss as CloU,
assigning 1.0, 1.0, and 5.0, respectively, for
bounding  box  regression.  Object-specific
augmentation included mosaic augmentation,
random scaling, and random cropping. All models
were initialized with weights frozen from
ImageNet-1K, and transfer learning was performed,
which included fine tuning at the lower layers.
During this stage, a layer-wise learning rate decay
schedule was implemented wherein low-level
intuitively useful features were retained with
restricted learning at assigned minimal values while
delivering aimed higher values to the target layers,
thus enabling unconstrained adaptation to the task.

Evaluation Metrix: We assessed model performance
using a set of standard metrics for both classification
and object detection, which included accuracy,
precision, recall, and F1-score for classification and
mean average precision for object detection, as well
as inference time and GFLOPs for efficiency.

Unified Pipeline Architecture: To overcome the
problems of wheat discase identification and
classification, we designed a full pipeline using
various deep learning methods. Fig. 1 demonstrates
the entire pipeline of our proposed system.

.

Stage 1 Stage 2 Stage 3 Stage4
Object Detection

Preprocessing

(Classification Interpretability

Predict disease class 3

Qutput
Heatmap — deployable diagnosis

Fig. 1. Proposed pipeline architecture.

The pipeline consists of four main stages:

1) Data Acquisition and Preprocessing: Raw
images of wheat plants were captured
under field conditions under different
circumstances. They are standardized with
regard to preprocessing, resized to




448%x448 pixels, ImageNet statistics
normalization (pn = [0.485, 0.456, 0.406],
c = [0.229, 0.224, 0.225]), and
augmentation techniques (random flips,
rotations, brightness/contrast,
RandAugment, and  Mixup). The
processed data are stratified and divided
into training (70%), validation (15%), and
test (15%) portions afterwards.

2) Disease Localization: The preprocessed
images are fed through the object
detection models (YOLOv7, YOLOvIO,
YOLOv12, RT-DETR, RT-DETRv3) to
localize the disease symptoms. A
bounding box was produced around the
affected areas.

3) Disease Classification: In the second
direction with localization, classification
models (MaxViT, Swin, MViTv2, DAvit,
RDNet) were applied to the images to
detect certain classes of disease among the
15 classes. Accuracy, precision, recall, and

Fl-score were used as performance
measures.
4) Model  Interpretability: Grad-CAM

visualizations were applied to improve
model interpretability by attending to
regions of an important image in model
predictions. Detection models picked out
the disease symptoms spatially, whereas
classification models detected the exact
type of disease. Combining the results of
the two, a full and reliable diagnostic
system was realized. Grad-CAM also
confirmed that the models attend to
biologically meaningful features, which
makes the decision-making process more
believable.

IVRESULTS AND DISCUSSION

The deep learning models YOLOv10 (along with
considerations for YOLOv7 and YOLOv12), RT-DETR,
Swin Transformer, RDNet, MViTv2, MaxViT, and DAvit
were tested on the dedicated wheat disease test set. This
section describes the quantitative results obtained from the
classification and object detection tasks supported by an
ablation study.

A. Fine-Tuning Strategies and Performance Analysis

The technique of fine-tuning of the already trained deep
learning models is an important aspect of transfer learning
and allows models to adjust to the new and more specific
dataset, but uses the knowledge gained on the large-scale
dataset. The mentioned approach is especially useful in
fields where data are difficult to collect or limited, as it
greatly decreases the requirement to train a model virtually
from scratch and can result in much better performance.
Here, we describe our approach to fine-tuning our models'
performance on the wheat disease diagnosis task in greater
detail. We explore four varied fine-tuning strategies, each of
which we successively unfreeze and train distinct sections of
the pre-trained network, and as such, enables an extensive
examination of its effects on model accuracy and

generalization properties. The outcomes of every strategy
are provided in specific tables where the achievements in
performance measures are outlined.

a) Performance with All Layers Frozen: This initial
stage evaluates the performance of the pre-trained
models without any finetuning on our specific
dataset. All layers of the pre-trained models are
kept frozen, and only a newly added classification
head (e.g., a dense layer) is trained. This serves as a
baseline to wunderstand the inherent feature
extraction capabilities of the pre-trained models in
the context of wheat disease images, even before
any domain-specific adaptation. The results
demonstrate the out-of-the-box transferability of
features learned from large general datasets to our
specialized task, as shown in Table IV.

TABLE IV. PERFORMANCE WITH ALL LAYERS FROZEN.
Model Accuracy Precision Recall F 1-Sc0re
(%) (%) (%) %)
MaxViT | 78.72 79.63 77.57 77.12
Swin 75.70 75.81 77.69 75.72
MViTv2 | 74.25 73.35 72.87 72.43
DAUvit 73.60 74.61 73.00 72.63
RDNet 74.05 76.60 73.56 73.38
b) Training the Last Layer Only: Under this

fine-tuning approach, the pre-trained model's last
classification layer (or layers) is (are) trained, but
all the previous layers are frozen. This method is
typical when the target dataset is not very large and
resembles the source dataset on which the model
was pre-trained. It does not change the robust,
general features learnt on the pre-training data, but
lets the model learn the specific mapping of the
extracted high-level features to the new class
labels. This is computationally efficient and allows
avoiding overfitting on smaller datasets, as
illustrated in Table V.

TABLE V. TRAINING THE LAST LAYER ONLY.

Model Accuracy Precision Recall F 1-Score
(%) (%) (%) %)
MaxViT | 75.75 77.43 75.02 74.53
Swin 79.66 80.43 80.13 79.04
MViTv2 | 67.86 71.66 68.45 66.06
DAvit 70.52 72.09 70.32 69.15
RDNet 66.15 69.41 66.99 64.44

c) Training the Last two blocks: In this strategy, the
last classification layer and some of the layers (e.g.,
the last one or two blocks) of the convolutional
layers of the pre-trained model are unfrozen and
trained. The advantage of this method is that the
target dataset is similar to the source dataset but
necessitates a certain adaptation of the higher-level
feature representations. This way, by enabling these
layers to be fine-tuned, the model was able to learn
more helpful domain features that are relatable to
the wheat disease images, resulting in an
improvement in performance over training just the
final layer, as demonstrated in Table VI.



TABLE VI. TRAINING THE LAST 2 BLOCKS.

Model Accuracy Precision Recall F 1-Score
(%) (%) (%) %)
MaxViT | 97.83 97.73 97.68 97.70
Swin 97.38 97.54 97.38 97.41
MViTv2 | 95.24 95.74 95.26 95.37
DAvit 96.77 96.95 96.78 96.81
RDNet 94.02 94.48 94.08 94.90

d) Training the entire Block of the Models: This is an
advanced fine-tuning strategy, where the whole last
block of the pre-trained model (including the
classification head) is unfrozen and trained. This
approach is commonly used when the target dataset
is dissimilar to the source dataset by a large margin
or, when superior performance is needed, which
will require greater adaptation of the pre-trained
features. To enable the model to learn more
task-specific and hierarchical features, training a
whole block enables the possibility of the model to
achieve the best performance, but at a higher
computational expense and risk of overfitting when
the dataset is not large enough, as demonstrated in

Table VII.
TABLE VII. TRAINING ALL BLOCKS OF THE MODELS.
Model Accuracy Precision Recall F 1-Score
(%) (%) (%) %)
MaxViT | 97.38 97.73 97.38 97.46
Swin 95.70 95.81 95.69 95.72
MViTv2 | 96.56 90.83 89.70 90.23
DAvit 95.60 89.07 88.92 88.86
RDNet 92.02 92.48 92.08 92.28

B. Classification Fine-Tuning Results

The assessment of the four different fine-tuning schemes
Performance with All Layers Frozen Table IV, Training the
Last Layer Only Table V, Training the Last 2 Blocks Table
VI, and Training All Blocks of the Models Table VII
showed a subtle sequence of the models’ performance as
visualized in Fig. 2. As explained in their corresponding
tables, the models were first trained to give moderate results
with all the layers frozen, which acted as a baseline of innate
feature extraction. The training of the final layer only gave
mixed results, and whereas some of the models improved a
little, others actually got worse, which suggests that a more
drastic adaptation is required. It is worth noting that the
largest performance improvements were constantly attained
when training the last 2 blocks, and such models as MaxViT
reached extremely high accuracy and remarkable Fi-scores
(e.g., MaxViT’s 97.70% Fi-score), which confirms the
importance of adapting higher-level feature representations.

Accuracy of Models Across Different Fine-Tuning Strategies

Accuracy (%)

RONeat

Fig. 2. Accuracy Across Different Fine-Tuning Strategies.

The MaxViT model showed significantly better results
on all evaluation measures compared to other models, with
the highest accuracy of 97.83% and an Fi-score of 97.70%.
Such excellent performance can be explained by its
multi-axis attention mechanisms, which are good at
capturing local and global contextual information at
different scopes. The Swin Transformer also showed good
results with the second-highest Fi-score of 95.72% percent
and an accuracy of 95.70%. Although MViTv2 was still
competitive in the accuracy of 96.56%, its precision and
recall were relatively quite low, resulting in an Fi-score of
90.23%. Notably, the model with the lowest accuracy,
RDNet, at 92.02%, offered the balanced precision-recall
performance, with the Fi-score of 91.90%, outperforming
DAvit at 88.86%. This is an indication that RDNet might
misclassify more samples, but those that it correctly
classifies have a higher consistency among the disease
classes.

a) Confusion Matrix Analysis: From the matrix
specified above, we examined the performance
metrics associated with each model-—more
specifically, the accuracy metrics and error metrics
based on classification. Performance was computed
using the confusion matrix of the best model,
which is represented in Fig. 3. Each block counts
the number of samples coming from a certain class
in rows that were predicted to belong to that
predicted class denoted in columns.

Confusion Matrix: Wheat Dissaze Glassification
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Fig. 3. Confusion matrix for the best model.

b) ROC Curve Analysis: Further analysis was
performed to assess the discriminative power of all
classification models using Receiver Operating
Characteristic (ROC) curves and Area Under the
Curve (AUC) statistics. Fig. 4 shows all five
models’ macro-averaged ROC curves.

ROC Curves for Classification Models (Macro-averaged)
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Fig. 4. ROC curves of the models.

The ROC analysis substantiates the ranking of
performance with the accuracy and Fi-score metrics. The
AUC was most significant for the MaxViT model at 0.989,
followed by the Swin Transformer (0.970), MViTv2 (0.965),
DAvit (0.958), and RDNet (0.957). The AUC figures from
the given models demonstrate outstanding distinctiveness in
discriminative capability, even for the lowest performing
RDNet. The ROC curves also integrated further
discrimination of all models as possessing high true positive
rates while maintaining extremely low false positive rates.
This characteristic is especially useful in agricultural
applications where mistakes stemming from false positives
can trigger unnecessary interference and interventions. The
MaxViT model is extremely capable in the critical region of
low false positive rate (0-0.2), which showcases the ability
to minimize false positives while sustaining sensitivity.

¢) Performance of the Object Detection Models: The
accuracy of localization and classification of
disease symptoms in images of wheat plants for
object detection models was assessed. Table VIII
presents the quantitative results for different
models against multiple metrics.

TABLE VIII. COMPARISON OF MODEL CHARACTERISTICS.
Parameter | Gy op | Inferen | mAP@0.5(%
Model S
™) S ce(ms) )
YOLOvV7 36.9 9.8 27.8 90.2
YOLOv10 43.7 13.5 32.5 94.0
YOLOvI2 41.2 8.7 10.7 94.4
RT-DETR. 324 11.2 45.3 92.7
RT-DETRv | 35.6 12.5 47.8 94.6
3

In the detection performance and the efficiency of
computation, YOLOv12 surpassed the rest dramatically. It
also lagged only slightly in detection accuracy, scoring
94.4% mAP@0.5, second to all models except RT-DETRvV3,
which scored 94.6%. In YOLOv12's case, outperforming
other models by a significant margin, 10.7 ms per image for
inference speed, was striking. This figure represented a 2.6
increase over YOLOV7, which required 27.8 ms, and 4.2x
better than RT-DETR, which required 45.3 ms. The
RT-DETRv3 model, achieving the highest mAP0.5 (94.6%),
showcases the power of transformer-based models for
precise localization of disease within an image.

d) Ablation Study: To help determine the contribution
of classification and object detection when
integrated into the proposed unified framework, an
ablation study was performed to evaluate the effect
on overall diagnostic performance for wheat
disease diagnosis. Three configurations were tested
as shown in Table IX. The classification-only
configuration, based on MaxViT, was trained to
identify carious/-lesion regions at the image level.
The object detection-only configuration
(YOLOVI12) localized lesions in each image
without any classification refinement. The final
configuration involved both components as part of
the Unified Detection—Classification Framework

where the detection localization (YOLOv12)
produced region proposals that were then refined
by the MaxViT classifier to achieve a joint

decision.
TABLE IX. ABLATION STUDY RESULTS.

. Precisio Recal Accurac mAP@0.
Configuration n (P) 1(R) v (%) 5
Classification-

Only 97.73 97.68 97.83 -
(MaxViT)
Detection-Onl
y (YOLOVI2) 0.901 0.932 -- 94.4
Unified
Detection-Clas
sification 97.54 96.70 97.62 --
(MaxViT-YOL
012)
e) Interpretability:  Grad-cam  visualization. To

improve the interpretability and trust of the deep
learning models, we applied Grad-CAM to
highlight the areas of interest that guided the
models’ decisions. Grad-CAM visualizations for
the black rust disease class are shown in Fig. 5.

Class: Black Rust
Black Rust Original

Black Rust Original

Fig. 5. Grad-CAM visualizations for Black Rust.

The Grad-CAM visualizations show that the model is
effective at attending to pathologically relevant regions,
especially symptomatic root tissues, which are characteristic
of Black Rust. In other instances, the model learns important
diagnostic features such as large areas of discoloration and
focal necrotic lesions, which demonstrates a high degree of
similarity between the learnt representations and the actual
disease patterns. This geometrical agreement assures that the
model does not detect irrelevant background noise but
disease-specific patterns. Interestingly, the differences in the
attention maps among the samples indicate that the model
can be superior at capturing global structural disturbances as
well as local lesions, indicating good generalization to
different symptom manifestations. These findings make the
predictions of the model more interpretable, which should
provide meaningful assistance to plant pathologists, further
exemplifying the feasibility of Al-based diagnostic
instruments in farmers’ fields.




V. COMPARATIVE ANALYSIS WITH OTHER WORKS

Table X provides a rigorous comparative analysis of our
proposed disease classification model against contemporary
methodologies, revealing critical insights into scalability,
robustness, and adaptability. Our model demonstrates a
significant advancement in addressing complex, real-world
challenges by leveraging a dataset of 14,155 samples, the
largest among all evaluated studies, and classifying 15
distinct disease categories, the highest number reported in
the literature. This contrasts sharply with prior works, which
typically focus on smaller datasets (e.g., 4,125-9,740
samples) and fewer disease classes (3—14), thereby limiting
their applicability to broader diagnostic scenarios. While
many existing approaches rely on controlled experimental
conditions to mitigate data variability, our model achieves a
robust accuracy of 97.83% in uncontrolled, heterogeneous
environments, underscoring its resilience to real-world data
imperfections. This performance is particularly noteworthy
when compared to Khan et al.’s 99.0% accuracy [13],
which, although impressive, is derived from a text-based
classification of 14 classes, a task inherently less complex
than our image-driven, multi-class framework.

TABLE X. COMPARATIVE ANALYSIS RESULTS.
Disea Controll
Study /
Author( Dgt‘aset se ed. . Acct;ra
s) ize Class Conditio cy (%)
es ns
Luet al
Hol. 5:230 7 Yes 97.95
Sh.
ot aéllI‘[Ill’;a]l. 4,125 3 Yes 96.24
Tabbakh .
etaal [?2]. 9,740 9 Partially 96.87
N/A
Khan et
al [13]. ((;;;t) 14 No 99.0
. 1
Uzair et RustNet L
(stripe Yes 95.35
al [14]. dataset rust)
Ahmad Unknow
et al [15]. n 3 Yes 98.8
(0]
sul:c;y 14,155 15 No 97.83
VI CONCLUSION

In this paper, we propose an integrated deep learning model
to achieve the efficient and accurate detection of wheat
diseases, which is of immense contribution to precision
agriculture. By simultaneously grasping local and global
features with the multi-axis attention mechanism, the
MaxViT classifier attained a high accuracy of 97.83%.
YOLOv12 was chosen as the best deployment model
because it offered a good balance between accuracy (94.4%
mAP@0.5) and low inference time (10.7 ms) and
computational cost (8.7 GFLOPs), which is well-suited to
resource-constrained and real-time settings. Besides, the
Grad-CAM visualizations confirmed that the models

attended to pathologically relevant features, improving
interpretability and trust. The study establishes the
feasibility of the proposed approach of combining
classification, detection, and explainability into an
end-to-end diagnosis system, which is the foundation of
extensions to multi-modal data and predictive early warning
systems in the future.
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