

…GSoC’22 Proposal…
p5-texturesynth.js

 Input Sample Synthesised Result

 (src: http://graphics.stanford.edu/projects/texture/)

Project Abstract

Texture Synthesis is the process of algorithmically constructing a large digital image from a
small digital sample image by taking advantage of its structural content. This project would
involve developing a texture synthesis library for artistic filling of the background in p5.js. The
main focus is to introduce a simple, easy-to-use library to generate various textures. It would
provide artists and game developers tools to fill textures in the objects in their sketches with
ease.

Personal Details

Name: Kartikeya Saxena
Github Handles: ktk53x, anexas5
Gitlab Handle: https://gitlab.com/anexa_s
Email ID: kartikeya.0005@gmail.com
Discourse handle: anexas
p5 editor sketches: https://editor.p5js.org/anexas/sketches

http://graphics.stanford.edu/projects/texture/
https://gitlab.com/anexa_s
https://editor.p5js.org/anexas/sketches

About Me

Overview
I am a Final Year undergraduate pursuing B.Tech in Computer Science and Engineering
from the Indian Institute of Technology, Guwahati (IITG), India.
I am an experienced competitive coder and have solved a significant amount of problems on
various platforms like Leetcode, Codeforces, Atcoder and Codechef with C++ as my
primary language. Python and Javascript have been my secondary languages. I have good
working experience with Git and GitHub.

Motivation
I was introduced to the world of creative coding by watching the Coding Train youtube
channel by Daniel Shiffman. I was immediately hooked to his coding challenge video playlist
and gained interest in generative art as a culmination of science, maths, coding and art. I
enjoy creating p5.js sketches in my free time and have made a lot of sketches at
https://editor.p5js.org/anexas/sketches. My views align with the organisation’s mission to
promote software literacy within the visual arts, and visual literacy within technology-related
fields. This is my first time contributing to an open source organisation and I am really
looking forward to contributing to the Processing Foundation’s projects and learning more
about them.

Projects

●​ Data Mining [Incremental Clustering Algorithms]
I have worked with Prof. Amit Awekar as a part of a group project on developing
incremental data mining algorithms. We have proposed a novel technique to the
paper on SUBCLU by Karin Kailing, Hans-Peter Kriegel and Peer Kröger. We have
proposed an algorithm that can take new data in and incrementally apply our novel
technique combined with the static version and achieve a 20x speedup over the
original static algorithm without much loss in accuracy compared to the static
algorithm.
[Work completed, might get published]
Code, Datasets, Reports

●​ Routing in Lightning Network [Blockchain and Public Channel Network]
I am working with Prof. Kalpesh Kapoor as a part of my BTech thesis project on
developing an efficient algorithm for routing in Lightning Networks. We have
developed an algorithm which is an improved version of the earlier proposed Speedy
Murmurs Algorithm by Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, Ian
Goldberg and are currently simulating the performance of the algorithm compared to
other state of the art algorithms.
[Work under progress, might get published]

List of courses I have done so far as part of my BTech Programme: Course Material

https://leetcode.com/ktk54x/
http://codeforces.com/profile/practice_account_
https://atcoder.jp/users/Tsukishima
https://www.codechef.com/users/ktk54x
https://editor.p5js.org/anexas/sketches
https://github.com/ktk53x/CS568-Data-Mining
https://github.com/ktk53x/CS568-Data-Mining/tree/main/incremental/real_datasets
https://github.com/ktk53x/Course_Material/blob/master/CS568%20Lectures/7_dataHacks_finalReport.pdf
https://github.com/ktk53x/Course_Material

Project Description

●​ Why p5-texturesynth.js?

An artist creating digital media for a virtual world or a video game or in graphic
design, often requires a large number of textures for these kinds of designs like
concrete walls, fabrics, leaves etc. But the problem occurs when they wish to fill, say
an entire road with a concrete texture but they only have a small patch at their
disposal. The easiest solution is to repeatedly copy paste the patch in a tile fashion
but this results in unsatisfactory design which suffers from seams.
p5-texturesynth.js will try to resolve these problems by procedural generation of the
texture using the input sample image in a satisfactory and elegant manner.

●​ Algorithms

Texture synthesis is an active area of research and many algorithms have been
developed for it. Following are some of the well performing practical algorithms in the
literature.
Wave Function Collapse:
(by Maxim Gumin)

Sample output

(src: https://github.com/mxgmn/WaveFunctionCollapse)
This texture synthesis algorithm is inspired from the concepts of quantum mechanics.
In quantum mechanics, wave function collapse occurs when a wave
function—initially in a superposition of several eigenstates—reduces to a single
eigenstate due to interaction with the external world. This interaction is called an
"observation".
In the context of textures, the algorithm starts with a grid of cells each occupying the
superposition of all the possible states of that cell.

https://github.com/mxgmn/WaveFunctionCollapse

Each cell comes with a set of adjacency rules which only allow certain cells to be its
neighbours.

The wave function collapse algorithm randomly picks a cell with lowest entropy
(lowest number of possible states) and collapses it into a single tile propagating the
consequences of the adjacency rule to its neighbours.

These affected neighbouring cells further propagate the consequences to their
neighbours in a ripple like fashion.

This composes a single iteration of the algorithm and the algorithm continues until all
cells contain a single tile generating a final texture.

(src: https://www.youtube.com/watch?v=2SuvO4Gi7uY)

https://www.youtube.com/watch?v=2SuvO4Gi7uY

P.F. Harrison Algorithm

It is a practical simple and fast algorithm and is in current use in the form of an
open-source GIMP plug-in.
The algorithm assumes that the input sample is taken from a Markov Random Field.
If the image is a sample from a Markov Random Field, then the likelihood of the
unknown pixel having a certain value may be determined solely from the values of a
fixed neighbourhood of surrounding pixels. Knowledge of values beyond this
neighbourhood provides no further information.

In this algorithm, pixel values are chosen one at a time in random order and their n
nearest pixels that already have values are located. The input image is then
searched for a good match to the pattern these pixels form and appropriate pixel
values are copied from the match. Some early chosen pixel values are re-chosen
and recomputed.

P.F. Harrison advancement

(src: https://logarithmic.net/pfh-files/thesis/dissertation.pdf)

When choosing each pixel value, only a small number of locations in the input texture
are examined, yielding a considerable speed-up as compared to a search of the
whole image. https://www.youtube.com/watch?v=8sUMBMpZNzk. This link consists
of a nice visualisation of the way the algorithm works.

 Input Sample Synthesised Result

(src: https://www.youtube.com/watch?v=8sUMBMpZNzk)

https://logarithmic.net/pfh-files/thesis/dissertation.pdf
https://www.youtube.com/watch?v=8sUMBMpZNzk&t=337s
https://www.youtube.com/watch?v=8sUMBMpZNzk&t=337s

API

OutputImageTexture = texture(inputImageTexture, inputWidth, inputHeight, outputWidth,
outputHeight, algorithm, [options])

Example Sketch

let inputImg;
let outputImg;
let options;

function preload() {

inputImg = loadImage('input.png');

}

function setup() {
 createCanvas(400, 400);

options = {
​ algorithm: “wfc”,
​ tileSize: 3,
​ periodic: false,
​ neighbours: {
​ ​ 0: [-1, 0],
​ ​ 1: [1, 0],
​ ​ 2: [0, 1],
​ ​ 3: [0, -1]

}
};
outputImg = texture(inputImg, inputImg.width, inputImg.height,

width, height, “wfc”, options);
​ image(outputImg, 0, 0);
}

Work Timeline

Phase/Week Dates Work Description

 Community Bonding

Community
Bonding
Period

May 20 - May 27 Understand the existing codebase of p5.js, figure out the parts of the code
base necessary for building the library and being active in the community.

May 28 - June 4 Reviewing existing algorithms (like Fast texture synthesis using
Tree-structured Vector Quantization, Chaos Mosaic, Graphcut textures,
P.Harrison, Wave function collapse, Multiresolution Stochastic Texture
Synthesis) and its implementations in literature
and finalising the algorithms and features for the library.

June 5 - June 12 Discuss with the mentor the best way to go about the
implementation.

 Phase 1

Week 1 June 12 - June 19 Breaking the goals of my project to several small trackable issues
for better analysis of progress and milestones.

Week 2 & 3 June 20 - July 4 These two weeks would involve implementation of the wave function collapse
and P.F. Harrisons algorithm along with automated test cases.

Week 4 July 5 - July 12 Updating documentation for the algorithms implemented and API functions.

Week 5 July 13 - July 24 Reviewing existing algorithms for additional features and its implementations
in literature.

 Phase 1 Evaluations July 12-July 16

 Phase 2

Week 6 July 25 - Aug 1 Starting with the implementation of the additional features finalised.

Week 7 Aug 2 - Aug 9 Continue working on additional features and algorithms discussed along with
automated test cases.

Week 8 Aug 10 - Aug 17 Updating documentation for the algorithms implemented and API functions.

Week 9 Aug 17 - Aug 24 Tutorial building and example creation of the algorithms implemented in the
library.

Week 10 Aug 24 - Sep 4 Final touchup on the library. Making the final GSOC project Report.

 Final Evaluations Aug 23 -Aug 30

https://graphics.stanford.edu/papers/texture-synthesis-sig00/texture.pdf
https://graphics.stanford.edu/papers/texture-synthesis-sig00/texture.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-32.pdf
https://faculty.cc.gatech.edu/~turk/my_papers/graph_cuts.pdf
https://logarithmic.net/pfh-files/thesis/dissertation.pdf
https://www.youtube.com/watch?v=2SuvO4Gi7uY
https://www.anastasiaopara.com/texture-synthesis#:~:text=Multiresolution%20Stochastic%20Texture%20Synthesis%20is,automatically%20extracting%20rules%20from%20examples.
https://www.anastasiaopara.com/texture-synthesis#:~:text=Multiresolution%20Stochastic%20Texture%20Synthesis%20is,automatically%20extracting%20rules%20from%20examples.

Additional Features (to be discussed)

1.​ This library can be improved further by exploring more texture synthesis algorithms

and could also be extended to perform procedural texture generation without any
input digital image. There are many physical and biological phenomena that can be
simulated to create an entire texture without any initial input patch.

Procedurally generated tiling textures

(src: https://en.wikipedia.org/wiki/Procedural_texture)
2.​ Parallelisation of the discussed algorithms to improve performance.
3.​ The algorithms discussed above can be extended to create 3D texture using a

sample 3D texture sample.

3D texture synthesis

(src: Marian42, Selfsame)
4.​ Multi example synthesis involving multiple image patches remixed to generate a

single large texture.

https://en.wikipedia.org/wiki/Procedural_texture
https://marian42.de/article/wfc/
https://selfsame.itch.io/unitywfc

Multi source texture synthesis

(src: Anastasia Opara)

Reference

-​ Texture Synthesis Wiki - https://en.wikipedia.org/wiki/Texture_synthesis
-​ Procedural Texture Wiki - https://en.wikipedia.org/wiki/Procedural_texture
-​ Wave Function Collapse - https://www.youtube.com/watch?v=2SuvO4Gi7uY
-​ Resynthesis algorithm of P.F. Harrisons algorithm -

https://logarithmic.net/pfh-files/thesis/dissertation.pdf

Looking forward to working with the Processing Foundation on this!!

Literature Survey:

Parametric:
https://www.cns.nyu.edu/heegerlab/content/publications/Heeger-siggraph95.pdf
https://www.cns.nyu.edu/pub/lcv/portilla99-reprint.pdf

Non Parametric:
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/papers/efros-iccv99.pdf
https://people.eecs.berkeley.edu/~efros/research/quilting/quilting.pdf

https://www.anastasiaopara.com/texture-synthesis
https://en.wikipedia.org/wiki/Texture_synthesis
https://en.wikipedia.org/wiki/Procedural_texture
https://www.youtube.com/watch?v=2SuvO4Gi7uY
https://logarithmic.net/pfh-files/thesis/dissertation.pdf
https://www.cns.nyu.edu/heegerlab/content/publications/Heeger-siggraph95.pdf
https://www.cns.nyu.edu/pub/lcv/portilla99-reprint.pdf
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/papers/efros-iccv99.pdf
https://people.eecs.berkeley.edu/~efros/research/quilting/quilting.pdf

	

