
Instant OpenHIE Technical Architecture

Links
Instant OpenHIE Docs Site
Preliminary one-pager for wiki
Slides from 2019 Community Meeting with Edits
Proposed components

The OpenHIE Discourse and monthly OpenHIE Dev-Ops Community calls are for regular
communication and updates.

Project Team
Instant OpenHIE is an OpenHIE community project; all contributions are welcome. It is primarily
meant as a volunteer effort by existing product owners. Initial support is provided by Digital
Square with launch coordination by Jembi and IntraHealth.

Why Instant OpenHIE?
It is critical to exchange health information to reach UHC and the SDGs. However, exchanging
health information is complex and expensive.

●​ Patient security and privacy are paramount.
●​ It is technically costly to launch and test an HIE.
●​ There is an ever-expanding set of use cases, scenarios, workflows, and components.
●​ Components are written in many programming languages and require diverse systems

administration skills to demonstrate use cases, let alone move into enterprise-ready
production environments.

●​ Data sovereignty and locality regulations and guidance dictate that HIE and related
components are hosted in-country. This makes it difficult to demonstrate HIE use cases,
train persons on advanced IT skills, and manage running systems.

●​ Many implementers need or start with HIEs for one project or a narrow national use
case, then face the challenge of scaling up and out into new areas.

Objectives
The Instant OpenHIE project aims to make it possible for anyone to get started with HIE use
cases to see how they can address the SDGs and UHC. It will provide for:

https://openhie.github.io/instant/
https://docs.google.com/document/d/1pvb_WwI0J52Rg5C0-QOS4a6DO-3FGy3NW89m5fZ6PnU
https://docs.google.com/presentation/d/1PPw8HvGd_3ym3JomR1r-cmBzAsIGdsqFRa8GmFCexIc
https://docs.google.com/presentation/d/1hvulMGv8RrrQ2lGPNkWNiHQfv82UpFoG5I8FgyO524k
https://discourse.ohie.org/

●​ Easy demonstrations of key UHC and SDG workflows using an HIE based on the
OpenHIE architecture.

●​ Hands-on and practical training.
●​ Reduced costs and skills required for software developers to deploy an OpenHIE

architecture for quicker initial solution testing.
●​ As a starting point for faster production implementation and customization.

Instant OpenHIE will be a simple way for technical persons to install and see a complex system
working against a real-world use case. It will allow users to illustrate how interoperability can
work to solve health challenges and show how UHC and SDG health use cases are addressed
with open-source software and standards.

Where it fits
Instant OpenHIE is one layer of an answer to the question, ‘How do I get started with using
health information exchanges to meet UHCs and SDGs?’ The Technical Architecture document
is the entry point for understanding how to get started and make use of the stack, as well as
contribute to it.

Example of where Instant OpenHIE fits

Roadmap
At maturity, Instant OpenHIE activities will provide portable, launchable versions of multiple
OpenHIE components to facilitate:

1.​ Demonstrable reference products -- those that align with the OpenHIE Community's
vision for low resource contexts

2.​ Rapid software development of mediators and point-of-service systems by making it
possible to launch several applications easily so the developer can focus on their task

3.​ Reproducible, version-controlled infrastructure for user-contributed tests of the OpenHIE
Architecture profiles, workflows, and use cases.

4.​ Production-ready containers and orchestrated components that are deployable in a
range of contexts.

The first phase of activities addresses items 1-2 with a focus on a particular use case and set of
packages, while production-ready deployments and infrastructure for testing will be built
incrementally upon the innovations and lessons learnt from the efforts of the earlier phase.

The first phase focuses on:

●​ Consultations with the relevant communities on profiles, use cases, and workflows,
including with the OpenHIE Architecture Community and DevOps Community.

●​ Capturing the community feedback into an Instant OpenHIE Technical Design document
for sharing. The Technical Design Document is the entry point for understanding how to
get started and make use of the stack as well as contribute to it and its future.

●​ The initial efforts at creating a core prototypical health information exchange using open
standards and open-source software to help developers add interoperability to your own
products.

User Stories
Instant OpenHIE will facilitate demonstrations, rapid software development, and reproducible
tests as they become available. During the first phase, a core subset of components will be
stood up that will focus on a limited but fundamental set of user stories. Consider the following
set of core user stories:

●​ A user wants to demonstrate a data use scenario for HIV epidemic control. In this use
case, the data managers need to provide a coherent, deduplicated list of facilities in their
HMIS to support the rapid reporting of program indicators and thus inform health policy.

●​ A user wants to develop a software workflow for family planning and reproductive
health. For example, MOH is correlating low-performance family planning outcomes in
certain districts with the recency of health workforce training.

●​ A user wants to confirm that a recent version of a product passes workflow tests before
recommending the implementation for deployment.

Each package that is added to Instant OpenHIE will expand the core infrastructure with
additional functionality. Each package will define additional user stories that will be available if
those packages are deployed.

Healthworkforce user stories
In the first phase only the Healthworkforce package will be available. It will sync facility, health
worker and service data into a central FHIR store. This FHIR store will allow mobile care
services discovery(mCSD) queries to be made to interrogate this interlinked data. The following
are examples of the user stories that it will enact:

●​ A patient, June, wants to find out which facilities in their location that do HIV testing and
ART treatment. She is able to use a public app on their phone to look up the contact
details and locations for these facilities so they may go there for treatment. (Service ->
Facility)

●​ A doctor, Joseph, at a rural clinic wants to refer a patient, Mousa, to an Oncologist
because of a lump that they suspect may be cancerous. They are able to look up a list of
specialists that offer that service in their EMR system. They choose a particular
specialist and find out the facilities in which they work. A referral can now be produced
by the EMR for the patient and they can be sent to that facility for their visit.
(PractitionerRole -> Practitioner -> Facility)

It will be easy for additional packages to be created and plugged-in to add more user stories to
the Instant OpenHIE portfolio.

How it Works
Instant OpenHIE will provide multiple sets of scripts to configure and setup HIE components for
particular use cases and workflows. Each of these are organised into self-contained packages
and each of these packages may depend on other packages. This allows highly complex
infrastructure to be setup in time once more packages are created.

In this first phase, a core package will be created that will provide some of the most
fundamental components that all other packages will use. In addition, a health workforce
package that builds off core will also be created to showcase more concrete workflows and a
particular reference use case. It will also demonstrate how additional packages can be created
to extend Instant OpenHIE in the future.

In particular, the use cases that the health workforce package will add are described below:

●​ A patient wants to find out which facilities, in their location, do HIV testing and ART
treatment. They are able to use a public app on their phone to lookup the contact details
and locations for these facilities so they may go there for treatment. (Service -> Facility)

●​ A GP at a rural clinic wants to refer a patient to an Oncologist because of a health issue
that they suspect may be cancer. They are able to look up a list of specialists that offer
that service in their EMR system. They choose a particular specialist and find out the

facilities in which they work. A referral can now be produced by the EMR for the patient
and they can be sent to that facility for their visit. (Service -> Practitioner -> Facility)

Each of these packages will contain scripts that will setup containerised applications, configure
them and ensure necessary metadata is loaded into them. Docker will be used to containerise
each of the necessary applications and to enable them to be easily deployed. Two modes of
deployment will be supported: local and cloud. Docker Compose will be used for local
deployment as it has the lightest footprint and will give the highest performance for local
development. Kubernetes will be used for doing cloud deployment as it is the most popular
orchestration platform available at present. An ability to do a local Kubernetes deployment using
Minikube (kubernetes bundled into a virtual machine) will also be supported to allow users to
explore a local Kubernetes deployment as well.

User Experience
Usage depends a great deal on someone’s use case and their comfort with the command line.

●​ Experienced users can clone with GitHub repository, decide on their stack (core +
whatever additional apps they wish for their use case), and then run a container
workflow for their use case. Experienced users would have to be familiar with git and be
able to know or learn Docker/Kubernetes, which is available for Mac, Windows, or Linux.

●​ The initial contributors are exploring ways for users unfamiliar with the command line
to be able to run Instant. This is done by creating a downloadable application that does
the git and Docker/Kubernetes commands for the user, who only has to use a simple
web interface. The preliminary design goals for the native application are that:

○​ Easy-to-use: The user doesn’t need to know the command line, git, Docker,
Kubernetes.

○​ There are minimal dependencies: Only Docker and Docker Compose have to be
installed.

○​ Native: Anyone on any platform can use it, so there are binaries for Windows,
macOS, Linux.

○​ Simple and opinionated: Narrow scope and limited options. It just works.

Not in Scope
Deploying and managing private health information on patients and providers is among the most
sensitive of any data. It is critical to ensure security and privacy, backups and data recovery,
authentication, authorization, and other enterprise standards. At maturity, Instant OpenHIE
would provide production-ready containers and some orchestration assets, such as Kubernetes
manifests, but these would be borrowed from Instant OpenHIE and still managed by
implementers, who are responsible for databases, upgrades, privacy, security, backups and
recovery, authentication, authorization, and other production-ready concerns. Instant OpenHIE
would be a way for implementers to develop their tooling around the OpenHIE Architecture and

the versions of it, rather than as a substitute for enterprise HIS implementation, support, and
management.

The Instant OpenHIE project may provide tests for the OpenHIE architecture, to the extent that
the use cases dictate the need for them. However, tests are not comprehensive, not for
conformance, and should embrace a long term strategy to align with IHE or other relevant
bodies.

Partnerships, especially with regard to security, privacy, and standards-testing are critical,
including future coordination with IHE and other entities to ensure alignment and to follow best
practices of the leading institutions and prevent duplication.

Deploying to the cloud will be supported via managed Kubernetes, however, there is only limited
budget for cloud hosting throughout the project so hosting services may be spun up to support
demonstrations or testing. Continuous cloud hosting of a demonstration environment can only
be supported if budget allows and can only be supported until the project comes to a close.

Architecture
This section will outline the logical architecture of the components of Instant OpenHIE for this
first phase. It will detail the following:

●​ Components that will be involved in the core package and health workforce package
●​ Profile and data flows that Instant OpenHIE will support
●​ Infrastructure and deployment strategy

These approaches will be modified and updated as the project progresses and more is learnt.
The current architecture shown describes the planned approach that appears to be the most
logical at the outset.

Architecture for Core and Health Workforce packages
Two packages will be produced in the first phase, the core package and the health workforce
package that extends from the core and adds health workforce-related functions and metadata.

The following diagram shows a generic logical architecture showing the involved OpenHIE
components. Each of these components’ roles could be played by any application that supports
the necessary OpenHIE workflows and component requirements. It would be possible to swap
out applications for others as long as they conform to these specifications. In the future, Instant
OpenHIE could support multiple application options for each role.

[diagram source]

For phase 1 particular applications have been chosen to support the required roles. The
diagram below shows the complete architecture, with the selected components applications, for
the work that will be completed in phase 1. This includes:

●​ The selected applications that will be included to play each role
●​ The separation of packages
●​ The project teams that will be working on each component of the architecture
●​ A depiction of the deployment strategy for development, testing and production

These components and their actions are further described in the sections that follow.

https://drive.google.com/file/d/16qnTmDpl2zeWfBR0yigucWDiMe42lQTy/view?usp=sharing

[diagram source]

mCSD mediator and FHIR metadata store
An mCSD mediator will be developed for the OpenHIM that can sync data from the Care
Services Update Suppliers and then forward each received record to the FHIR store which can
then in turn act as a Care Services Selective Supplier. It will use the Request Care Service
Updates [ITI-91] transaction from the mCSD profile to pull this information from each source
system (in this phase those source systems will be GOFR and iHRIS). It will process each
resource returned in the history bundle in order of original execution and apply the effect
(create, update or delete) to the FHIR store. Thus the FHIR store becomes the central metadata
store for all the source systems.

https://drive.google.com/file/d/16qnTmDpl2zeWfBR0yigucWDiMe42lQTy/view?usp=sharing

The FHIR store will then act as a Care Services Selective Supplier to clients of Instant OpenHIE
by supporting the Find Matching Care Services [ITI-90] transaction. This enables clients to
query for a variety of interlinked metadata.

The mediator will be triggered by an OpenHIM polling channel which gives us a configurable
scheduled trigger. The mediator will request updates from each source system each time it is
triggered and it will remember when the last time it sync’d was so that only new updates are
queried.

Generic Architecture
Above we discuss the architecture for phase 1 of the project where we will be implementing an
mCSD use case. However, in the future Instant OpenHIE is envisioned to cover a number of
user cases with additional packages being implemented and included in the default installation.

Due to this, it makes sense to extract the generic architecture (which is package agnostic) of
Instant OpenHIE and to make it available as part of the user facing documentation to drive
adoption and understanding. This also allows it to evolve with the project independent of this
document. This generic description of the architecture can now be found here (link broken until
we do a docs deploy) instead of in this document.

Contributing
Instant OpenHIE should be extensible so that others may base their architectures off of the base
that will be created. By splitting the functionality into particular packages others are able to
choose the specific packages of functionality that they require and add new ones for
implementation-specific functions.

There are two broad areas of contributing:

●​ New apps and packages added to the Instant OpenHIE stack
●​ New use cases, workflows, and tests to validate and make use of it.

Instant OpenHIE uses containerized applications and should rely on existing container images
provided by product owners, not build one-off solutions. App owners should also provide a
docker-compose file to demonstrate how to launch a running stack for their product.

App owner responsibilities Description

https://openhie.github.io/instant/docs/more-info/architecture/

Tagged releases

Releases should be tagged in git or other version control system and
in a public repository.

Environment variables Configurations must be stored in or be able to be overridden by
environment variables. See the Twelve Factor App:
https://12factor.net/config

Dockerfile

Create a publicly available Dockerfile used to build the image and a
link to it.

Container image

Make available a link to a public image of the application. A tagged
release image should be available.

Docker Compose Provide a link to a versioned Docker Compose script. A Docker
Compose file should exist for running the application stack, including
databases or web servers or other needs. Where possible use
existing containers for things like databases or web servers. Slim
images (e.g. Alpine) are recommended as many images will be run
concurrently.

Automated configuration

Provide detailed information or scripts that can run in a non-GUI
environment for automated configuration.

Ideally, component owners should become Instant OpenHIE maintainers. Component and use
case/workflow owners and Instant OpenHIE Maintainers are often going to be the same set of
persons because component (app) owners generally also contribute to the definitions of the
architecture.

Workflow owner responsibilities Description

Test data Generate fake but realistic data for E2E tests and
general functionality.

Package test data Make test data available or reproducible online.

Tests Write tests for the expected workflows supported
using the containers, configuration, and fake data.

Dockerfile Tests can be written in any language. Provide a
Docker container for tests so that they can be run
easily (with environment variables) against any
stack (not just Instant OpenHIE)

Container image

Make available a link to a public image of the
tests. A tagged release image should be available.

Risks
There are several challenges that may arise in this set of activities

●​ Fake data for data workflows is fragmented, inconsistent, incomplete, and fragile. This
means that, for example, to demonstrate an HIV use case the data is not available that
would be used to move from component to component. This could slow the process of
demonstrating Instant OpenHIE considerably.

●​ It is important to define and manage scope creep. The tools developed for Instant should
not be considered production-ready. It is important to ensure all stakeholders understand
the limits of the project.

●​ Additional steps will need to be addressed before Instant OpenHIE can be used in
production setting:

○​ Security configuration of databases
○​ Password storage and rotation
○​ Backup scripts

License
The documentation, fake data, and code developed should be made available under a
permissive open-source license.

	Instant OpenHIE Technical Architecture
	Links
	Project Team
	Why Instant OpenHIE?
	Objectives
	Where it fits
	Roadmap
	User Stories
	Healthworkforce user stories

	How it Works
	User Experience
	Not in Scope
	Architecture
	Architecture for Core and Health Workforce packages
	mCSD mediator and FHIR metadata store

	Generic Architecture
	Contributing
	Risks
	License

