NESHERY

Messaging Framework and
Notification / Operation Center

Under Review

Design Prologue
Design Goals
Design Objectives
Messaging System
Event format
Event Attributes
Event Types
Error Events
Event Format
Error Codes
Code Reuse and Source of Authority
Implementation
Repository
Go Code
Tooling
Notification Center
Architecture Diagram
Proposal For Audit and Notification Events [PR]
Another Approach
Sequence Diagram
Use Stories
Epic: Transition notifications through their lifecycle
Story 1: Acknowledgement of a Notification
Story 2: Scenario - ...<short title>....
Appendix
Discussions
Meeting Minutes
Meshery error code handling #1 (Feb / March 2021)
Meeting Minutes
Expanding Notification center (22/08/22) :
Meshery error code handling 21 (25 March 2021)
DRAFT: Meshery Extension (Kanvas)
Proposal: Making Meshery Event CloudEvents Compatible
Proposed Message Schema
Sample Message
Considerations for “Meshery Cloud” Events

‘:‘1 '
Yoy MESHERY
LK

O 00 00 00 0 00 N Jo utun i M b

NN NN 2 & & v v v s sy sy oy oy
O W NN OOLOOO UL UTW WWWwWwWwWwWwN -~ -~ 00

Meshery Design Document: Messaging System and Notification Center
MESHERY

AYAVA
AVAVAVA
VAVAVAY

/4

Status: Draft | Under Review | Approved

‘ﬂ
4444 MESHERY
O

Under Review

Design Prologue

Operations performed by Meshery are often asynchronous, some taking minutes to complete. Users
will fire-and-forget these operations, moving onto other tasks as the operations execute, relying on
Meshery to track operation progress and to notify them of operation completion.

Related

e Error Code Reference - https://github.com/layer5io/meshery/issues/2107
e Troubleshooting Guide - https://github.com/layerSio/meshery/issues/2399

Design Goals

Meshery has many loosely coupled components. As a unified system, these components benefit
from a common framework for defining and managing the lifecycle of their individual, interrelated
messages. This document provides specification for:

1. a Messaging Format and Messaging Framework

a. Message Classification System
2. a Notification Center (status and health of elements under management)
3. a Operation Center (status and history of operations and workflows)

Design Objectives

The designs in this specification should result in describing a common message format and
messaging system between components, enabling uniform access to:

component health
operation status
policy violation
workflow history

PwnN =

Wire format and protocol should be defined.

This specification defines how to provide users with the ability to define and manage the lifecycle of
notifications for different classes of messages:

1. Errors - Error and Remediation
2. Audit - Logging and Troubleshooting
3. Policies - Validation and Analysis

https://github.com/layer5io/meshery/issues/2107
https://github.com/layer5io/meshery/issues/2399

MESHERY

AVAVA
AVAVAVA
VAVAVAY

Y

Under Review

Messaging System

Using CloudEvents, a single messaging format is defined in which each type of message class can
use the same format.

In accordance with the reasoning here, the term event will be used to describe what will be
transported using messages. “Events represent facts and therefore do not include a destination,
whereas messages convey intent, transporting data from a source to a given destination.” For a
glossary of terms used in CloudEvents, see here.

Event format

Event Attributes

See CloudEvents primer.

The format is (mostly) specific to Meshery, but the types are not (for attributes defined in the spec).
Attributes tagged with an asterisk (*) are defined in the spec. Meshery specific extension context
attributes must follow the CloudEvents naming convention and type-system.

Attribute Description Type Example
id* Required. The unique id of the event. | string 617850cb-fc5¢-4
Format: guid. eaa-9706-4ba85
068f2fa
source* Required. source + id must be URI-reference urn:meshery:ad
unique. apter:consul
Format:

urn:meshery:component-type:compo
nent-name[:component-instance-id]

Note how the source includes
component type, name, and
optionally instance ID

Component type and name should be
the same as the ones exposed by the
Componentinfo APl endpoint (ony for
adapters as of this writing) and the
same as the ones used in
component_info.json used by the
error util.

specversion* Required. string

https://github.com/cloudevents/spec/blob/v1.0.1/primer.md#cloudevents-concepts
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#notations-and-terminology
https://github.com/cloudevents/spec/blob/v1.0.1/primer.md#cloudevent-attributes
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#extension-context-attributes
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#extension-context-attributes
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#attribute-naming-convention
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#type-system
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#id
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#source-1
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#specversion

AVAVA
AVAVAVA
VAVAVAY

Y

MESHERY

Under Review
type* Required. string error
One of the Meshery event types, see
Event Types
data* Optional. Contains the payload, for specified by
instance the error event data. datacontenttype
datacontenttype* | Optional. A JSON-format event with
no datacontenttype is exactly
equivalent to one with
datacontenttype="application/json"
dataschema* Optional.
time* Optional. Meshery always sets this. timestamp
Always use UTC.
subject* Optional. string
correlationid Optional. Meshery extension context | string 4bf0ffea-6fbf-4d
attribute. a8-a9fd-3858f6
Attribute that can be used to d0e60c
correlate events, e.g. events
correlated to a specific request or
operation. For adapters, use
operation ID for this.
Format: guid
Event Types
Category Type Description
Audit audit
error
log
Policy registration | Registering a component in the component registry of an installation /
solution.
health
operation

policy

https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#type
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#event-data
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#datacontenttype
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#dataschema
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#time
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#subject

AVAVA
AVAVAVA
VAVAVAY

A\ /\4

Under Review

Error

pattern

bestpractice

validation
deployment

Error Events

Users will run into system and cloud native infrastructure issues. These issues will generate errors.
Using Meshery's error codes:

w

Users should be able to easily reference troubleshooting documentation to identify and
resolve issues using a unique error code.

Every error code belongs to a superset called “class”. Every class has a predefined pattern
(naming scheme) defined.

Every error should have a Probable Cause and Suggested Remediation associated (provided).
There is no central single single source of authority for a specific message code. The codes
are unique to each component. They may overlap between components.

Meshery's components should not reuse messages. Components should emit their own
errors, and wrap errors returned by functions from other components or libraries.
Self-documenting where possible and as easy to maintain as possible.

Every error incident would display an error code along with an error statement.

Event Format

The custom error object that has been planned consists of several attributes that makes the error
much informative and yet easier to maintain across projects.

The error struct is defined in MeshKit. Type and name given here are for CloudEvents, and
correspond to its naming convention and type-system.

Attribute Description Type

componenttype The type of the component that emits this error event. | string

It is also part of the source URI-reference in the cloud
event context, but including it here is practical.

MESHERY

https://github.com/layer5io/meshkit/blob/master/errors/types.go
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#attribute-naming-convention
https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#type-system

AVAVA
AVAVAVA
VAVAVAY

Y

MESHERY

Under Review

componentname The name of the component that emits this error string
event. It is also part of the source URI-reference in the
cloud event context, but including it here is practical.

moniker A semi-human readable short key used in descriptive string
reference to the specific event at-hand.

code Unique code identifying a specific error within a number
specific component.

severity Predefined hierarchy, see MeshKit. string

shortdescription For abbreviated display in the Ul. A concise notification | string
with incomplete sentences.

longdescription For full display in the Ul. An extended explanation. May | string
include a stack trace.

probablecause Suggests the likely culprit. string

suggestedremediation A set of solutions for the user to attempt in order to string
rectify the situation.

Error Codes

The error code is a unique ident

ifier code per component. It carries no semantics.

Code Reuse and Source of Authority

Each component (adapter kuma for instance) is the source of authority of its own error codes.
Components should always emit their own errors, and wrap errors returned from functions from

other components and libraries.

Implementation

Repository

e config.json file in the root directory containing component type and name.

Go Code

e Each package (that can emit errors) contains an error.go file containing error codes and

factory functions for eac

h error.

https://github.com/layer5io/meshkit/blob/master/errors/types.go

Meshery Design Document: Messaging System and Notification Center
MESHERY

AVAVA
AVAVAVA
VAVAVAY

Status: | Under Review | Approved

e Errors areinstantiated using e

42

Top 5 HyperFlex Clusters by Alarms.

rrors.New from github.com/layer5io/meshkit/errors.

Tooling

Verifies that codes are unique within a component (i.e. repository).
Suggests next free error code(s).
Possibly updates the code in the errors.New function call if empty/not set.
Extracts error information (code, cause, remediation) and publishes it.
Possible solutions:
o Updates a local md-file
o Updates a central website.
o Updates a Google sheet.
e Note that until the tooling is in place, contributors should check manually that codes are not
duplicated within a component.

Operation States in adapters-

1. In patternops, currently when the user provisions a cloud native infrastructure or application
using a pattern file, no event is streamed back. We need to stream back particular events
encompassing the state of that operation that we want to convey.

2. These states can be:

a. Started provisioning(K8s has been informed)- return a URL with this event. E1
b. For cloud native infrastructurees-

i. Control plane in active state E2
c. For Applications-

‘:‘1 [

1414 MESHERY
1

Under Review

i. Application in active state E2

The delta of these states can be calculated by the data from meshsync, where we can use a
subscription for a given Operation consisting of n number of states. Where we can define the last
state for eg- cloud native infrastructure successfully provisioned and control plane in active state.

Notification Center

Operations, notifications, events, alarms... all have a lifecycle to manage. The notification center acts
as the main user interface from which to do this. Policies that define notifications will be configured
in a separate UL.

Meshery's notification area needs to be significantly enhanced.

Figure: See Cisco Intersight for example of messaging and workflows (full-sized image). See Cisco Intersight

Demos.

Architecture Diagram

Client

-
) Exu‘-"“"'“g Buffer Producer
c of puncio”
g P it A
per user ™
graphgl request
subscription listen to
events 4
vy
Buffer Producer
A

Producers are entities which perform operations and produce Events. A EventBuffer struct
in Meshkit will be used by these entities to create EventBuffer instances.

These producers can be adapters performing MeshOpsV1/ PatternOps or can be Meshery
server itself. Meshery server will have one instance of this EventBuffer in its handler so that
it can produce, buffer and send its own server events like kubernetes components being
deployed, etc.

A graphgl subscription will be created per client. For each graphgl subscription, the function
will reach out to all connected producers (adapters as well as Meshery's internal producer)
and send back all data stored in each buffer. After that, all new events created by producers
will be sent back over gRPC/function call.

Remove Buffer.

Persist events in Meshery

https://drive.google.com/open?id=1VDMIS-2-IvOApQPzGX4OhcPQFuAy_tSM&authuser=lee.calcote%40layer5.io&usp=drive_fs
https://www.cisco.com/c/en/us/products/cloud-systems-management/intersight/demos.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/intersight/demos.html

‘:41 [

1414 MESHERY
1

Under Review

Proposal For Audit and Notification Events [PR]

Broadly the events from the server can be classified as two types logging and notifications, while the
logging is for auditing and debugging purposes, the notifications are required for the user
instantiated events, the one that is important to been seen and notified to people.

e.g.

Save and Update; Save and update events run continuously for changes done in the design, they can
be classified as background events and thus they come under audit events and isn't directly thrown
to user with a snackbar. Additionally, the cloud-save icon regularly shows the updates of the
design-file, so this is also the cause to add this event as an audit event.

Deploy and Undeploy: Deploy and undeploy events are user instantiated events and they should be
notified against their event fired, so this will be classified as a notification and will be sent to user as
a snackbar and an entry in the notification success or error panel.

With each event sent from server, there will be a flag that will act as a decision parameter for
whether it is classified as audit event or normal notification to be sent in the notification tray with a
snackbar.

This PR implements the proposed solution.

Another Approach

suggested by Lee Calcote :
Reference: https://en.wikipedia.org/wiki/Syslog#Severity level

Each event would come with a severity factor, unlike any additional flag required in the above
proposed solution, here the same flag for severity can be used as a deciding factor of whether to
classify the event from server as a notification to be sent to the user or as an audit trail.

Value Severity Keyword | Deprecated Description Condition
keywords
0 Emergency |emerg panic[9] System is A panic condition.!1°!

unusable

mailto:lee.calcote@layer5.io
https://github.com/meshery/meshery/pull/6646/files
https://github.com/meshery/meshery/pull/6646/files
https://en.wikipedia.org/wiki/Syslog#Severity_level
https://en.wikipedia.org/wiki/Syslog#cite_note-syslog.conf(5)-9
https://en.wikipedia.org/wiki/Syslog#cite_note-opengroupSyslog-10

AVAVA
AVAVAVA
VAVAVAY

MESHERY

Under Review
1 Alert alert Action must be | A condition that should
taken be corrected immediately,
immediately such as a corrupted
system database.'”
Critical crit Critical Hard device errors 1%
conditions
Warning warning | yarnt Warning
conditions
Error error
Notice notice Normal but Conditions that are not
significant error conditions, but that
conditions may require special
handling.[10]
Informational | info Informational Confirmation that the
messages program is working as
expected.
Debug debug Debug-level Messages that contain
messages information normally of

use only when debugging

a program.[10]

In that case, the update and save, which is considered as audit events would have the severity as
“debug”, basically debug notifications are stored in the event trail but restricted to be seen by end
users.

Sequence Diagram

<here>

https://en.wikipedia.org/wiki/Syslog#cite_note-opengroupSyslog-10
https://en.wikipedia.org/wiki/Syslog#cite_note-opengroupSyslog-10
https://en.wikipedia.org/wiki/Syslog#cite_note-syslog.conf(5)-9
https://en.wikipedia.org/wiki/Syslog#cite_note-opengroupSyslog-10
https://en.wikipedia.org/wiki/Syslog#cite_note-opengroupSyslog-10

Under Review

Use Stories

Epic: Transition notifications through their lifecycle

Story 1: Acknowledgement of a Notification

As an operator,
| need to be able to easily acknowledge a notification,

AVAVA
AVAVAVA
VAVAVAY

so that others know | have seen this issue and so that we can uphold our customer-facing SLAs.

Implementation:
1.

Acceptance Criteria:
1.

Story 2: Scenario - ...<short title>....
As a [developer/integrator/mesheryctl/operator] user,

| would like to ,

Implementation:
1.

Acceptance Criteria:
1.

Appendix

Discussions

Operations Center (August 13th, 2021)
A short demo of Cisco Intersight here -

MESHERY

https://zoom.us/rec/share/9GblejdcRUWPTKET fDhIh1c50ilb003ftx0ValCU2K-L3w8xgAIBIfR8Qky11Hk

.DITyOoVzQV]y-B8e

Vijay Cherukuri (Sat. Feb 27th, 2021)

I have a few thoughts on Notifications and also have a few questions. | do not really have a very good
grasp of this subject. Here are a few assumptions that | am making. Please correct me if any of the

assumptions are incorrect.

https://zoom.us/rec/share/9GbIejdcRUwPfKET_fDhIh1c5oiIb003ftx0VaICU2K-L3w8xqAIBlfR8Qky11Hk.DITyOoVzQVJy-B8e
https://zoom.us/rec/share/9GbIejdcRUwPfKET_fDhIh1c5oiIb003ftx0VaICU2K-L3w8xqAIBlfR8Qky11Hk.DITyOoVzQVJy-B8e

AVAVA
AVAVAVA
VAVAVAY

Under Review

1. Notifications are real-time. Each notification is information about the occurrence of an event.
Therefore its value is temporal.
[Lee] yes, you're right about the need to be event-driven as the first approach (ideally, in all areas
of the architecture). That said, Meshery’s notifications will land on a sliding scale of significance (if
I may borrow from Twitter: from Fleet to Tweet to Medium Post, so to speak), meaning that each
notification will explicitly (ideally) or implicitly carry 1) a severity and 2) have its lifecycle
unmanaged or managed. Examples:

An unmanaged notification: a debug log ‘mesheryctl system logs’
A managed notification: a failed provisioning operation or a policy violation

While the genesis of some notifications will be machine-driven, others will be sourced from a
user’s action performed.
[Michael]

2. Notifications may be meant for the population at large/per group/person.
[Lee] Yes, indeed. A subsequent design specification will be needed to address how policies bear
weight on notifications and how users, roles, groups intertwine with notifications and policies.
[Michael]

3. Because notifications are real-time, they have to be push instead of pull.
[Lee] This is largely true, and while there are minor exceptions (ping me for examples), for the
purposes of the messaging framework and notification center, we can consider this true.
[Michael]

Here are some of my questions:

Notifications are being discussed from the standpoint of cloud native infrastructurees. Therefore, there is
at least one cloud native infrastructure with one or more microservices. These cloud native
infrastructurees preferably would be working silently as one would not want a proliferation of messages.
That would be like a dDoS attack. From what | understand, each of those microservices may or may not be
from the same vendor. Therefore each of these vendors is at liberty to implement the functionality of the
microservice at its own discretion including exception handling. But all that is internal to that
microservice. Are there standards on microservices on how to handle errors and how to report them? If it
is just a black box, how can one make any assumption about an error code that is returned. It would have
meaning only in the microservice. When one categorizes errors into ranges, then one is assuming
responsibility for interpreting the error code/message. This would also be a maintenance nightmare as
one would need to constantly ensure that the error messages are still being correctly interpreted and that
the entire set of messages is accounted for.

Another thing that | wanted to highlight is the idea of a notification center. This requires that the user visit
the notification center to view the notification, unless the notification center is invoked each time a
notification occurs. This could very well be another nightmare scenario as one would be constantly
interrupted. What if the particular device is not available at the time the notification is issued. Should the
point at which one receives notification be configurable? Should it be capable of being routed?

Also, the idea of responding to notification. Because cloud native infrastructurees are touted as the means
of being able to access functionality from disparate sources thus enhancing sharing, there would
presumably be a profusion of microservices. This would, as mentioned earlier, result in innumerable

MESHERY

MESHERY

AVAVA
AVAVAVA
VAVAVAY

A\ /\4

Under Review

responses being required, greatly hampering the productivity of the user. The most effective operation
would be silent.

Another thing | experienced is that notifications tend to get backed up when the device is offline. Therefore
when the device comes online, one is flooded with notifications sometimes making the device inoperable.
Moreover, if notifications are considered to be real-time then the backed-up messages may or may not
have any utility. Another reason why the notification center (or whatever it is abstracted to) should be
routable and configurable.

I do not have the full picture and so some or all of what | put down may be completely irrelevant.
Meeting Minutes

Meshery error code handling #1 (Feb / March 2021)

Participants: Michael Gfeller abishek.kumar@Ilayer5.io
Message
[Type or class (e.g. error, health, operation, policy, registration) - [4 in Attributes
74 Message-ID - [in Attributes
¥4 Sender-ID - [in Attributes
X Related messages: list of IDs -) No, just use correlation id
(%4 correlation id: one id to correlated multiple messages, i.e. from an operation that affects
multiple components - [/ in Attributes
o X "requester”: request/requester/session id or similar needs to end up in messages so that
the right client/ui picks the asynchronous message up and displays it. e.g. add such a uuid to
a ApplyOperation request to an adapter.
- X No just use correlation id, the requestor should know about this, this could be the
operation id in the adapter gRPC call
Message format version
74 timestamp (utc) - [in Attributes
if Error message
o code = component-type.component-name.error-code
m examples:
e adapter.istio.1000 (error.go)
e controllers.meshsync.1000
m component.json
e {"type-name”: “adapter”, “name”: “istio"}
short desc
long desc
severity
cause
o remediation
e if health message
o status

o O O O

mailto:mgfeller@mgfeller.net
mailto:abishek.kumar@layer5.io

Under Review

e If operation message

o Operation-ID

o Operation-Kind

o Payload

o Response-parameters
e If policy message

o Policy-ID

o Policy-Format

o When construct

o Then construct
e if registration message

o component-id: e.g. abaefdc8-6d62-4e8d-bc4c-181ba94f1254

o component-type, e.g. adapter
o component-name, e.g. istio

Hierarchies
e Repositories / Projects
e Path (internal_random_test)
e Functionality

Convention:
<Component-type.Component-name.Code>
Eg: ADAPTER.KUMA.1000

Docs/ -> Which would contain other field descriptions
Eg: ADAPTER.KUMA.1000:

w74

Cause:

V74

Remediation:

Example:

Meeting Minutes

Expanding Notification center (22/08/22) :

- Currently the Ul only sends /theapi/events request when at least one adapter is detected.

This should not be the case.

AVAVA
AVAVAVA
VAVAVAY

A\ 4

- Innextiteration, /api/events should be completely replaced by a graphgl subscription

- Details of a notification should have a timestamp
Action Items:

- [Uzair] Merge adapter library changes -> Release -> Meshery PR merge -> Adapters merge

MESHERY

Meshery Design Document: Messaging System and Notification Center
MESHERY

AVAVA
AVAVAVA
VAVAVAY

4

Status: | Under Review | Approved

- [Ashish] Events package in meshkit. Adapter library PR merge -> adapter library release ->
meshkit changes -> meshkit release -> [Uzair]Meshery changes -> Meshery release

Meshery [stio-Adapter Kubernetes

messaqging system (queues etc_e.qg. nats)

notification center

AVAVA
AVAVAVA
VAVAVAY

A\ /\4

MESHERY
Under Review

"id

mponent-id":
rrelation-id
" requ

us

"remediation"

Meshery error code handling 21 (25 March 2021)

Participants: Michael Gfeller abishek.kumar@Ilayer5.io
Conclusions:

Error codes unique for each component, i.e. no centrally managed error code ranges
No semantic meaning for specific ranges, as for HTTP codes, due to coordination and
maintenance overhead
No component type and name information in the error message, as this is handled by the
cloud event context attributes, specifically the source attribute (see Attributes).
Implementation:
o error.New(...) not error.Default(..)
o ajson file in the root of the repo defining component type and name, and min error
code (e.g. 1000).
Tooling:
o checks that no duplicate error codes are used
o suggesting next free code
o possibly inserting code into error.New() if it is empty there - nice to have
o check notification handler is configured correctly with component type and name,
possibly updating it

mailto:mgfeller@mgfeller.net
mailto:abishek.kumar@layer5.io

Meshery Design Document: Messaging System and Notification Center
y & EINg 2y f MESHERY

AVAVA
AVAVAVA
VAVAVAY

Status: | Under Review | Approved

DRAFT: Meshery Extension (Kanvas)

See design:

store
Vetification 1. errer
Center 2. vorns Actions
7| |3 ke 2T ard mitators
4. success
5. isLoading
6. progress
stofes
UT stote and readers
T L T
comtotProvder + wicRoharr |

All tre roti states ot one place

gving the simplicity to transport ampbere
and availability For any mutations Fro=
anpere nside code

-\
=] [E]]

Ephemeral Votifications, they are trioggered on everts and then undergo reset
state once the saackbar is enaueued.

i s
States

Nots that tracks progress: bke progress bars while
the request is under Fetch state, or the different
states of long tasks, like: [Fetoming, valddating, resderingd

They need manual trigyers For state change
unlike the sphemerals that follew auto reset
policy aPter shown

ul:
The Notification Sources:
1. From Server:
a. The NATS subscriptions that informs about the state of work done in the kubernetes

cluster
b. The graphgl subscriptions that may have been fired from several tasks

2. From Client:
a. The trigger events that are fired by the user’'s interaction with the Ul.

Handling Notifications:
Since the Notifications panel can be fired and be used from any react component, the Notification

State need to be global.

https://excalidraw.com/#json=qQtiJePn_eeDELlTn60t9,E_kAxmjkvI6p6GOMDpxo6g

D0
: w5 MESHERY
Under Review

We are using React-Redux for state management, the same could be used for the Notification
Management.

But using redux-store can further increase the complexity of actions and stores and high chances of
being lost in the code and low scalability.

The solution: The Redux slices:

A Redux Slice is a collection of reducer logic and actions for a single feature in an application. We can
use the redux-slice for the notification center and manage the reducers with ease.

The Functionality:
1. The Server Logs:
a. The server logs whenever comes need to be registered in the Notification center.
Once registered, the Notification center can leverage useEffect to catch the state
change and show notification inside Notification Menu.
2. The Client Logs:
a. Creating a dispatch hook that could ease the use of firing events can be leveraged
here.
b. The Notifications triggered by the client can be on a high level of two types:

i. The Ephemeral Notifications: The Notifications that need to be reset once
they are fired.

ii. The Manual triggers: The notifications that are constantly watching the state
of fired events and informing the user at the same time. This manual
notifications are triggered and reset manually. They may show the active
process, and the a circular progress around the notification icon can be used
to show the progress.

The Store:
The Notification Store Object may look like:
{
“Infos”: 1,
“Warnings": [],
“Errors”: []
}
Each holding the further state of notification item like:
{
g
”Summary”
“Details”: "
“Cause™. ™
“Suggested remediation”: "
“Severity”: "
“Error Code”. “,

“Actions”: []

Meshery Design Document: Messaging System and Notification Center ::Eg::
o<
Status: | Under Review | Approved
}
Severity:
1. Success: The green snackbar + the green card in the notification panel
2. Info (Meshkit Error: None): The Blue snackbar + the blue card in notification panel
3. Warning (Meshkit Error: Alert): The Yellow snackbar + the yellow card in notification panel
4. Errors: ref

1. Emergency: The red snackbar + the notification panel red card with the error
message and some remediation to get corrected as early as possible. The system
may get unusable thus the notification center should force user to follow the
remediation steps.

2. Critical: Red snackbar + red card in notification panel

3. Fatal: Red Snackbar + red card in notification panel

See

Global
Context Provider

Motification
Store —

MeshMap
Notifications

Global
Designer Context Consumer
React React React

Components Components Components Visualizer

‘J

siuang Jandag

Steps to take For Ul:

AW =

U

Create a slice of store for managing Notifications in its own folder/file

Create a reducer to take all the action and payload to mutate the react state

Create another slice of reducer for managing the extensions notification

Create a React-component Wrapper that wraps the global Appjs component which can be
used to show any notification as a text/snackbar/component in the ui.

The current Notification management Ul can be used with minor changes.

Create a function that intercepts the NATS event or any event coming from the Server and
register automatically inside the Ul. The consumer should be created globally to intercept
any future event for the freedom to use code/extend anywhere else.

MESHERY

https://github.com/meshery/meshkit/blob/a3f8d1fd36581cb15e8696407fddf9799a9a83d5/errors/types.go#L16-L21

Meshery Design Document: Messaging System and Notification Center
y & EINg Y f MESHERY

AVAVA
AVAVAVA
VAVAVAY

A\ 4

Status: Draft | Under Review | Approved

7. Create two handler for managing the manual and ephemeral notifications. The ephemeral
notifications should need to be reset with the setTimeout call after their register.

8. Creating a custom hook that exposes the different notification action is a better choice
instead of handling it directly with the reducer.

9. Rest of the actions are already done in the current Ul.

The Meshery Extension:

The hook created in step 9 can be passed as a prop to the meshery notification that can be used to
fire events from extensions to the Meshery Notification Center.

Proposal: Making Meshery Event CloudEvents
Compatible

Proposed Message Schema

gréeen means REQUIRED
orange means Exentension

"specversion": "<version of cloudevent spec> in use", _
"id": "<id of the event>", [(EypPeslString)

"source": "<URI source of the event>", _ //Can be a URI or URN
"type": "dot separated reverse-DNS name", _,
"severitytext":<Defined in the table above>,_

"severitynumber":<Defined in the table above>,_

"traceparent":<traceid>-<spanid>, _

"trace-id":<traceid>,

"parent-id" :<spanid>,

I“category”:<category of the event>, _
"datacontenttype": "JSON", _ /should adhere to REC2046. If

absent, data can be assumed as a JSON. In our use case, we might always default
to JSON and get rid of this field.

"data": {}, (type: Any MIME type, typically JSON for our use cases)

“dataschema” :<>, JSON schema of the data

"time": <timestamp>, [(EYPENSCELNG)
}

https://w3c.github.io/trace-context/#traceparent-header
https://w3c.github.io/trace-context/#traceparent-header
https://www.rfc-editor.org/rfc/rfc2046

Meshery Design Document: Messaging System and Notification Center

AVAVA
AVAVAVA
VAVAVAY

4

Status: | Under Review | Approved

Sample Message

{

"specversion": "1.2",

"id": "9375a672-4568-4cbd-a%9al-325d47d654eb",

"source": "meshery-istio",

"type": "io.meshery.provisioning.istio.virtualservice",

"severitytext": “Error”,

"severitynumber":3,// less than 6 can be considered notification by client
"trace-i1d":d09f5d7e-dabb-4ecb-a5df-81a77£468053",

"parent-id":s0ghtd7e-dabb-4ecb-a5df-81a77f468054",

"datacontenttype": "JSON",
“category”:”system”,
"data": {
"message": "Failed to provision Istio cloud native infrastructure"
"summary": "Could not provision Istio cloud native infrastructure",
"details": "XYZ something"
"error": {
"probableCause": "something",
"suggestedRemediation": "something",
"errorCode": "1000"

by

b
time": "2022-12-07T12:34:56.7892",

"specversion": "1.2",

"id": "9375a672-4568-4cbd-a%9al-325d47d654eb",

"source": "meshery",

"type": "io.meshery.provisioning.istio.virtualservice",

"severitytext": “Error”,

"severitynumber":3,// less than 6 can be considered notification by client
"trace-i1d":d09f5d7e-dabb-4ecb-a5df-81a77£468053",

"parent-id":s0ghtd7e-dabb-4ecb-a5df-81a77f468054",

"datacontenttype": "JSON",

"data": {
"message": "Failed to provision Istio cloud native infrastructure"
"summary": "Could not provision Istio cloud native infrastructure",
"details": "XYZ something"
"error": ({

"probableCause": "something",

MESHERY

https://w3c.github.io/trace-context/#traceparent-header
https://w3c.github.io/trace-context/#traceparent-header
https://w3c.github.io/trace-context/#traceparent-header
https://w3c.github.io/trace-context/#traceparent-header

30
Yoy MESHERY
DK1Y
Under Review
"suggestedRemediation": "something",
"errorCode": "1000"

by
b
"time": "2022-12-07T12:34:56.7892",

}

"specversion": "1.2",

"id": "9375a672-4568-4cbd-a%9al-325d47d654eb",
"source": "meshery-cloud”,

"type": "io.meshery.user.signup",

"severitytext": “Informational”,

"severitynumber":6,// less than 6 can be considered notification by client
"trace-id":d09f5d7e-dabb-4ecb-a5df-81a77£468053",
"parent-id":s0ghtd7e-dabb-4ecb-a5df-81a77f468054",

"datacontenttype": "JSON",
"data": {
"message": "User with username XYZ signed up"
"summary": "XYZ signed up with Meshery Cloud using google as provider",
"details": "XYZ something"
"error": nil,

b
"time": "2022-12-07T12:34:56.789z2",

}

Behaviors:

- All attributes except for data are part of the event context and are used by middlewares on
any routing system to make decisions on that event. In our case, Meshery server is that
central fanout system distributing events based on the context.

- TYPE: An event type contains metadata of the event carrying info that can be used later for
filtering by the client. It follows reverse-DNS name convention and provides a dynamic
type-subtype hierarchy.

- Source: Source can be a URI or URN uniquely identifying the source of the event. For internal
sources, it can be the name of the component like “meshery”, “meshery-istio”. Or for events
in remote providers, it can be “meshery.layer5.i0” or “staging-meshery.layer5.io”.

- ID should be unique per source. Events with the same ID and Source will be considered
duplicates

- Trace ID is unique and represents the ID of a composite user level operation which might
consist (trigger) sequence of other operations. (So basically it's a root level operation ID). A
trace consists of multiple spans and analogously the root operation consists of multiple sub
operations creating a tree. Each node represents a sub operation and the root node
represents the root level operation. Events can emit from any node of this tree.

- From each operation:
- The operation ID will be put into the created Event's "parent-id".

https://w3c.github.io/trace-context/#traceparent-header
https://w3c.github.io/trace-context/#traceparent-header

‘:‘1 [
1414 MESHERY
1
Under Review

- The operation’s trace field will be put into the created Event's ‘trace-id".
- For external events which do not have an associated root level operation,
both these IDs will be null.

- severity text and severity number: To filter on Events of different severities, clients can
use “severitytext” or “severitynumber” from top level fields. This will return all Events of that
severity. The returned event data may or may not consist of an error.

- Reason to keep severity number: The severity levels are present in decreasing order
or urgency as the severitynumber increases. It allows for easy filtering at client side
without like Get all Events where Event.SeverityNumber < 4.

- Reason to keep severitytext: It allows clients to do exact matching like if err=="debug”
without maintaining an extra map of severitynumber to text that matches with the
creator of the event.

- Category of Events:

1. System
2. Performance
3. User

- data: The data is just a JSONB and can be of any form.

- dataschema: The dataschema will be used to figure out the structure of data. Each of the
pre-defined data structs will have a schema. If the schema is missing then data is interpreted
as a generic key-value map.

- Some example structures for data:
1. For system events which carry MeshKit errors or general info for notification

"data": {
"message": "User with username XYZ signed up"
"summary": "XYZ signed up with Meshery Cloud using google as provider",
"details": "XYZ something"

"error": nil,

2. For user(category=user) events in meshery-cloud:
“type”: io.meshery.remote.user.designshare
“category”: “user”

"data": {
“UserID”:<>,
“Email”:<>,
“Provider”:<>,
“First Name”:<>,
“Last Name”:<>,

MESHERY

AVAVA
AVAVAVA
VAVAVAY

A\ /\4

Under Review

Considerations for “Meshery Cloud” Events

Meshery Cloud produces events as well. One of which is currently the category user/system. Under
this category, we have various types such as: signup, login,publish_results....
These types will be part of the Event context, inside of “type” field, such as

VAN

“type”:“io.meshery.remote.user.signup”.

Data: [This data will be inside JSONB under Data and not directly under a column as it can not be
pushed inside of context because this is event specific data]
user_id
Examples: (few of the context fields are omitted)
- In case of publish_results:
“type”: io.meshery.remote.user.publish results
“category”: “user”
"data": |
“userID”:<>,
“publishID”:<>,
“publishedProfile”:<>,

- In case of design_share:
“type”: io.meshery.remote.user.designshare
“category”: “user”
"data": {
“userID” : <>,
“peerID”:<>, //ID of the user the design was shared to
“designID”:<>,
}
- In case of catalog request:
“type”: io.meshery.remote.user.catalog request
“category”: “user”
"data": {
“userID” : <>,

MESHERY

AVAVA
AVAVAVA
VAVAVAY

A\ 4

Under Review

“approvalStatus”:<>,
“catalogID”:<>,

- In case of meshery_server_registeration:
“type”: io.meshery.remote.user.meshery server registration
“category”: “system”
"data": {
“instanceID”:<>,

The code will be generic enough such that new (cloud event compatible) events can be easily added
in Meshery cloud.

Usage of CloudEvents by Keptn

MESHERY

AVAVA
AVAVAVA
VAVAVAY

A\ /\4

Under Review

Keptn has multiple services talking to each other through cloudevents. Like meshkit, they also have
centrally defined the creation of those events and structure of the Event Data.

Source: Just as specified, source is the source/origin of the event. In their case, it is usually the
service name. Similarly for internal components we can have source as “meshery-istio”,
“meshery-linkerd”, “meshery”. For external events, it can be the URI.

url.Pajase ("approval-service")

mmn

if source == {

source = "https://github.com/keptn/keptn/api"”

Type: As specified in the doc, they use dot separated to conform to “SHOULD refixed with
reverse-DNS name”. The actual task is sandwiched between their predefined prefixes and suffixes.
Similar proposal | have, we can predefine suffixes and prefixes in meshkit and operations defined in
adapter-library/adapter/meshery/meshkit (These defined operations will also be used inside the
operations table). An example event type will be <prefix><operation><suffix>. Where
prefix="meshery.event”, suffix=".provisioning”, operation="Istio cloud native infrastructure”/(? Or
maybe “MeshOps")

https://github.com/cloudevents/spec/blob/main/cloudevents/spec.md#type
https://github.com/cloudevents/spec/blob/main/cloudevents/spec.md#type

VAVAVAY
A\ /\4

MESHERY

AVAVA
AVAVAVA

Under Review

keptnEventTypePrefix = "sh.keptn.event."
keptnTriggeredEventSuffix = ".triggered"

keptnStartedEventSuffix = ".started"

keptnStatusChangedEventSuffix = ".status.changed"
keptnFinishedEventSuffix = ".finished"

keptnInvalidatedEventSuffix = ".invalidated"

keptnContextCEExtension = "shkeptncontext"
keptnSpecVersionCEExtension = "shkeptnspecversion"
triggeredIDCEExtension = "triggeredid"

keptnGitCommitIDCEExtension = "gitcommitid"

func EetStartedEventType(task string) string {
return keptnEventTypePrefix + task + keptnStartedEventSuffix

Tracing: They do not use “tracelD" or “spanID” as defined in the extension specification in
CloudEvents. Their events propagate in such a way that one triggers another. They put the id of
parent event in the child event's “triggeredid” field to find the trace. They do not have the concept of
“operation”

Since we have the concept of Operations, | think we should use CloudEvent/OpenTelemetry
distributed-tracing extension to trace at an operation level. And not use this field as it does not fit
our use case.

func (a *ApprovalTriggeredEventHandler) handleApprovalTriggeredEvent (inputEvent keptnv2.ApprovalTriggeredEven
triggeredID, shkeptncontext string) []cloudevents.Event {

outgoingEvents := a.handleApprovalTriggeredEvent(*data, event.Context.GetID(), a.keptn.KeptnContext)

Data: They define the structure of data centrally which is specific to their business logic. We can also
have a generic EventData struct in meshkit which will also encapsulate meshkit errors (if present).
Our Data format is inside of the above proposed message.

MESHERY

AVAVA
AVAVAVA
VAVAVAY

A\ /\4

Under Review

3 ventData struct {
Project string s :"project,omitempty"” "

Stage string " tage,omitempty""

Service string "3 ervice,omitempty" "

Labels map[string]string = j abels,omitempty""

Status StatusType "3 tatus,omitempty" jsonschema:"enum=succeeded,enum=errored, enum=unknown""
Result ResultType "3 esult,omitempty" jsonschema:"enum=pass,enum=warning,enum=fail""

Message string "3 :"message,omitempty" "

An example JSON of Kept CloudEvent context (context means everything except data):
"id": "25ab0f26-e6d8-48d5-a08f-08c8al36al0k",
"source": "lighthouse-service",

"specversion": "1.0",
"time": "2022-02-01T02:46:35.853z2",

"type": "sh.keptn.event.evaluation.finished",
“shkeptncontext®: "8f£884b2a-2197-4e2f-8284-170ealab66579"
"shkeptnspecversion": "0.2.3",

"triggeredid": "991leba72-c520-4da5-ba95-d5876101393c"

Argo Cloud Event structure:

{
"context": {
"type": "type_of_event_source",
"specversion": "cloud_events_version",
"source": "name_of_the_event_source",
"id": "unique_event_id",
"time": "event_time",

"datacontenttype"”: "type_of_data",
"subject": "name_of_the_configuration_within_event_source"

MESHERY

AVAVA
AVAVAVA
VAVAVAY

Y

Under Review

}

"data": {
"header": {},
"body": {},

Argo Architecture:

Architecture

Event Source Event Bus || Sensor

Watch Watch Watch
Event Source Controller Event Bus Controller Sensor Controller
-
oy
Create Create Create _i,‘;,}
f" T N——— ‘\\ v v
.r/ Various events (SNS,) Listen // \ \ Triggers
' sGS GCPPubSub, < (Eg:;‘.;m’ﬁf) o eﬁf:m;nl) %
(‘ 53, Webhooks, etc.) /; \\‘ P / ~— /J/
TN e =
- B Write Read

Events Events
A
Event Bus with NATS Streaming

Action ltems:

2. Using CloudEvent proto file, migrate StreamEvents RPC to return CloudEvents.

w

MESHERY

AVAVA
AVAVAVA
VAVAVAY

Under Review

a. Maeshkit will have central functions to create events based on certain options. This
can be used by any number of components like Meshery server and adapters.
. Meshery server's gRPC client code to receive CloudEvents from Adapters.
c. Adapter's gRPC server code to send out CloudEvents and use the newly defined
StreamEvents RPC.
Ul using the cloud event js SDK to parse cloud events sent over by Meshery.
Add a POST endpoint in Meshery server for /api/events for any external system to be able to
POST cloudevents in Meshery server.
Meshery Cloud database
Mesheryctl considerations

	
	Design Prologue
	Design Goals
	Design Objectives

	Messaging System
	Event format
	Event Attributes
	Event Types

	Error Events
	
	Event Format
	Error Codes
	Code Reuse and Source of Authority
	Implementation
	Repository
	Go Code
	Tooling

	Notification Center
	Architecture Diagram
	Proposal For Audit and Notification Events [PR]
	Another Approach

	Sequence Diagram
	Use Stories
	Epic: Transition notifications through their lifecycle
	Story 1: Acknowledgement of a Notification

	Story 2: Scenario - …<short title>....

	Appendix
	Discussions
	Meeting Minutes
	Meshery error code handling #1 (Feb / March 2021)

	Meeting Minutes
	Expanding Notification center (22/08/22) :
	Meshery error code handling 21 (25 March 2021)

	DRAFT: Meshery Extension (Kanvas)
	Proposal: Making Meshery Event CloudEvents Compatible
	Proposed Message Schema
	 Sample Message
	Considerations for “Meshery Cloud” Events

