Worksheet - Magnetism - F=BIL

Name:

1. Compare F = BIL

$$3I, \frac{1}{3}L -> F$$

2. Compute

$$B = 4x10^{-4} T$$

$$B = 1x10^{-5} T$$

$$I = 3x10^{-4} A$$

$$L = 10 \text{ cm}$$

$$L = 1 \text{ cm}$$

$$F = 2x10^{-6} N$$

B , I up, F out

$$B = T$$

$$B = 0.5 \text{ T}$$

$$I = 10 A$$

$$I = 6 A$$

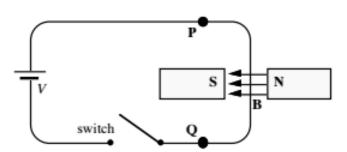
$$L = 2 m$$

$$F = 1.5 \text{ N}$$

$$F = 0.3 N$$

- 3. In order for a wire to experience a magnetic force it must (circle all that apply)
- a. have a current flowing in it.
- b. be charged.
- c. be in a magnetic field.
- d. must be, at least partly, perpendicular to the magnetic field.
- 4. A length of wire 0.5 m carrying a current of 2 A is placed at a right angle to a magnetic field of 0.2 T. Calculate the force on the wire.

5. A magnetic field exerts a force of 0.25 N on an 8.0 cm length of wire carrying a current of 3.0 A. What force would be exerted on a wire 24 cm long carrying the same current?


6. A 2 m long wire with a resistance of 0.020Ω is connected to a 24 V battery and placed in a 0.001 T magnetic field. What is the magnetic force on the wire?

A long, straight wire carries a 6.0-A current that is directed in the positive x direction. When a uniform magnetic field is applied perpendicular to a 3.0-m segment of the wire, the magnetic force on the segment is 0.36 N, directed in the negative y direction, as shown. What are the magnitude and direction of the magnetic field?

- (a) 0.020 T, out of the paper
- (c) 0.060 T, out of the paper
- (b) 0.020 T, into the paper
- (d) 0.060 T, into the paper
- (e) 0.65 T, out of the paper

A long straight vertical segment of wire traverses a magnetic field of magnitude 2.0 T in the direction shown in the diagram. The length of the wire that lies in the magnetic field is 0.060 m. When the switch is closed, a current of 4.0 A flows through the wire from point P to point Q.

Which one of the following statements concerning the effect of the magnetic force on the wire is true?

- (a) The wire will be pushed to the left.
- (b) The wire will be pushed to the right.
- (c) The wire will have no net force acting on it.
- (d) The wire will be pushed into the plane of the paper.
- (e) The wire will be pushed out of the plane of the paper.

What is the magnitude of the magnetic force acting on the wire?

(a) 0.12 N

(c) 0.48 N

(e) zero newtons

(b) 0.24 N

(d) 67 N