
Developer documentation - Mscolab(development version)

Note: Connection class and database model was scrapped because it wasn’t necessary to keep track of

connections.

Dataflow Model

mscolab has four major components:

●​ Data Models / Classes

●​ Main App

●​ APIs

●​ UI

Among these, the first three modules would be developed within mscolab server. UI of this software would

be integrated with msui module of mss software.

Data Models

The project needs six basic models named:

●​ User​
This class represents an user of mscolab.​
id: user-id​
email: email-id of the user​
name: Screen name of the user​
password: bcrypt hashed password​

●​ Permission​
This data represents the authorization of an user to collaborate on a file.​
u_id: user-id​
f_id: file-id​
access_level: enum[“admin”, “collaborator”, “viewer”]​

●​ Message​
Message represents a single message unit, linked with a chat(further linked to a file).​
u_id: user-id​
f_id: file-id​
text: message content​
created_at: used to order the messages in a conversation​

●​ Change​
Change represents a change in .ftml file submitted by an authorized user.​
u_id: user-id​
f_id: file-id​
content: ‘diff’ of file made by the user​
created_at: used to sort the changes w.r.t time​

●​ File​
File represents an .ftml file.​
id: to be used as fileId​
path: filepath - unique​
description: description of the file, stating its purpose of creation.

APIs

Some of the major APIs and their functionalities are listed as follows:

●​ Socket API

○​ connect_user​
Checks email-id and password, if authorized saves user-id and socket-id to Connection table.

○​ disconnect_user​
Removes connection associated to the socket

○​ message​
Notifies main app about incoming message from one of connected socket clients.

○​ emit​
Emits ‘file change’ or ‘message’ events to other users to change their local data in real-time,

sent by main-app.

○​ is_online​
Used to check if an user is online by looking for an entry in connection

●​ User and Authentication API

○​ add_user​
Add email-id, name, and password to ‘User’

○​ remove_user​
Remove user from ‘User’ table.

○​ change_password​
Change password of user

○​ authenticate​
Checks if an email-id and password passed as parameters are valid, and matching with one in

the database.

○​ user_exists​
Checks if an email-id exists in ‘User’​

●​ File API​
File API will be based on fs library, and the storage options can be modified as per need. A configuration

file would be used to control the same.

○​ file_save​
Adds an entry in the ‘Change’ table.​
‘$name.ftml’ is tweaked to append ‘Change-Id’ to change-log attribute inside each <Waypoint/>

tag. This would help to display information specific to this waypoint in UI.​
Saves the new file atomically, (this process will be made efficient by saving only the ‘diff’ at the

right file cursor)

○​ get_file​
Returns file as ASCII string or buffer, as instructed in the parameter.

○​ get_authorized_users​
Returns a list of users who are authorized to collaborate on file identified by f_id/f_name.

○​ get_change_log​
Returns a list of changes by collaborating users sorted by timestamps from Change table with

f_id as key.

○​ exists​
Returns boolean value if the file with ‘file-name’ exists or not.

○​ list​
Returns an array of ‘File’ data with permission level for each file. This data can be used to view

projects dashboard in client’s side, as a list of projects the user is admin of and another list of

projects the user is collaborating on.

○​ delete_file (access_level = admin)​
Deletes file from file-path and ‘File’ table, preferentially delete entries related to this file from

‘Message’, ‘Permission’, ‘Change’.

○​ add_permission (access_level = admin)​
Checks if user with user-id exists. If yes, add user-id and file-id to ‘Permission’ table.

○​ remove_permission (access_level = admin)​
Checks if user with user-id exists. If yes, remove entries of ‘user-id and file-id together’ in

‘Permission’ table.

○​ rename_file (access_level = admin)​
Rename a file, would basically change ‘path’ in ‘File’ table corresponding to file-id.

●​ Chat API

○​ message_save​
Adds an entry in the ‘Message’ table.

https://pyfilesystem2.readthedocs.io

○​ get_messages​
Return an array of messages corresponding to a file_id (chat_id as each file can have one ‘Chat’

entry), sorted by ‘created_at’ values.

Main App

This module orchestrates all other services and APIs and regulates the data-flow.

A pseudo-code of main app is as follows:

import socketManager
import fileManager
import authManager
import chatManager
import Flask
app = Flask(__name__)

@socketManager.sio.on('connect')
def connect(sid, env):

 # check auth here by authmanager
socketManager.connect_user()

@socketManager.sio.on('disconnect')
def connect(sid, env):

socketManager.disconnect_user()

use decorator to check auth
@sio.on('message')
def message(sid, data):

if data.type == "file":
 ​ ​ # fileManager handles file here
 ​ ​ pass
​ else:
 ​ ​ # data.type = message
 ​ ​ # chatManager handles messages here
​ ​ pass

app.route('/user')
def user_handler():
 ​ args = request.args
 ​ # authManager handles the rest
 ​ # would be used to add remove user, etc

UI

UI module of mscolab will be integrated with msui, the core UI module of mss software. The temporary files

would be stored in ‘~/mssdata’ directory or as configured in ‘mss_wms_settings.py’.

A list of projects which the user is working on can be displayed as illustrated below, which can be activate by

clicking on Tools->mscolab projects list, on MSS’ main window.

Double clicking on a project opens the mscolab-ui window as shown on page 11.

Project

●​ A ‘project’ is a data storage model implemented by popular code IDEs, like vscode,pycharm etc.

●​ In this case, instead of treating a ‘$filename.ftml’ as a project, since it won’t be aesthetic to store

configuration data in ftml file, it would be better if we introduce a project as a collection of some files.

●​ To start with, it will have a flightpath related file, and a configuration file, and a contributors file

showing waypoint details and collaborators who contributed to change of the waypoint.

●​ An illustration is shown below.​

●​ To integrate this with mss, create_new_view function can be modified to open a flightpath in a

particular view mode. The attribute self.active_flight_track can be changed to

self.active_project . And each window opened would have a flightpath with some configuration

obtained from project_config.py, and contribution details of each waypoint from project_config.py.

Projects can also be opened/created directly from main-window.

The configuration for a new project can be input by the user in a graphical manner.

https://bitbucket.org/wxmetvis/mss/src/ec33f188fd521f52a6e647fe6cc481d12c5be989/mslib/msui/mss_pyui.py?at=develop&fileviewer=file-view-default#mss_pyui.py-427

This creates a project on mscolab server with a single administrator.

Clicking on ‘mscolab Login’ would show a dialogue-box with email-id and password, for login. If the User with

email-id doesn’t exist in the mscolab database, user registration dialogue-box is opened. Once login is

completed, login button gets replaced by the following display.

Opening a project which the user is administrator of would open the following window. Clicking on a project

which the user is the collaborator of, opens a similar window, without options to add/remove collaborators.

●​ Left side of the window as seen by the user, has a list of users collaborating on the experiment.

●​ Right side of the window as seen by the user, has a log of recent history of changes.

●​ Central space lists the group chat messages which will support important markdown syntax (e.g bold,

italics) during editing.

Once a new file is created or a file is opened with mscolab, say ‘experiment.ftml’, msui window gets updated

with new file in the listing which can be edited in an usual manner and each change gets saved in mscolab

server after a certain duration. The continuous backup can be disabled/enabled by the user by an UI element.

If one opens an old stored file, say ‘old-experiment.ftml’, following API calls are made with filename/file-id as

parameter.

●​ /get_file handled by FileManager​
If file is not found in $data_dir, it’s created in $data_dir as an intermediate save point.

●​ /get_authorized_users handled by FileManager

●​ /get_log handled by FileManager

●​ /get_messages handled by ChatManager

Once this data is received, it is suitably rendered to a new mscolab-ui window as shown in the mock-up.

The overall data-flow diagram in front-end would resemble the following.

SocketManager class would be a simple class, with two major functions:

●​ connect()​
Used to start connection after authentication is complete and the client receives a token

●​ on_message()​
Used to handle messages incoming from mscolab server (when SocketManager.emit() is called). Event

handlers would be written in ‘msui/mscolab_ui.py’.

	Developer documentation - Mscolab(development version)
	Dataflow Model
	Data Models
	APIs
	Main App
	UI

	Project

