Developer documentation - Mscolab(development version)

Note: Connection class and database model was scrapped because it wasn’t necessary to keep track of

connections.

Dataflow Model

msuil msui2 msuid

/N /N /N

1.ftml 2F0ml 1 .ftml 3ftml 3ftml 2.5ml

/

) 1 fiml
Y
[Main App }/

Lser and .
Auth AP Chat API File AP

Central File Listing

2.ftml 3.7t

=

User Connection Permission -
Message Change File Database]

N

Data Models f Classes

mscolab has four major components:
e Data Models / Classes
e Main App

e APIs
e Ul

Among these, the first three modules would be developed within mscolab server. Ul of this software would

be integrated with msui module of mss software.

Data Models
Connection =
User = — u_id |string
email string(128) s_id |string(128]
password |string(128) V4 id integer
» |2 |id integer — &5 Add field
I."' name string T :
|| addsield | — .
I Y =5 —,
il T — u_id |integer(128)
id integer
o f id |integer
ange
| : =1 | [Add field
| ~ | |fid integer
I' content text
'- N : ;
| [~ | |u_id string
| |3 Add field
T
A\ Message = |I
S fu_id integer | I."
text text \ o :
- File B
f id text 1miy \ _ .
- Yol path |stringi128)
created_at |datetime il * ” —
—= 2o i integer
&5 Add field _ g
&= Add field

The project needs six basic models named:

e User

This class represents an user of mscolab.

id: user-id

email: email-id of the user

name: Screen name of the user
password: bcrypt hashed password

® Permission

This data represents the authorization of an user to collaborate on afile.

u_id: user-id
f_id: file-id

access_level: enum[“admin”, “collaborator”, “viewer”]

7

APIs

Message

Message represents a single message unit, linked with a chat(further linked to a file).
u_id: user-id
f_id: file-id

text: message content
created_at: used to order the messages in a conversation

Change

Change represents a change in .ftml file submitted by an authorized user.
u_id: user-id

f_id: file-id

content: ‘diff’ of file made by the user

created_at: used to sort the changes w.r.t time

Eile

File represents an .ftml file.

id: to be used as fileld

path: filepath - unique

description: description of the file, stating its purpose of creation.

Some of the major APIs and their functionalities are listed as follows:

Socket API
o connect_user
Checks email-id and password, if authorized saves user-id and socket-id to Connection table.
o disconnect_user
Removes connection associated to the socket

O message
Notifies main app about incoming message from one of connected socket clients.
o emit

Emits ‘file change’ or ‘message’ events to other users to change their local data in real-time,
sent by main-app.
o is_online
Used to check if an user is online by looking for an entry in connection
User and Authentication API
o add_user

Add email-id, name, and password to ‘User’
O remove_user
Remove user from ‘User’ table.

o change_password
Change password of user

o

authenticate

Checks if an email-id and password passed as parameters are valid, and matching with one in
the database.

user_exists

Checks if an email-id exists in ‘User’

e File API
File APl will be based on fs library, and the storage options can be modified as per need. A configuration
file would be used to control the same.

o

file_save

Adds an entry in the ‘Change’ table.

‘Sname.ftml’ is tweaked to append ‘Change-Id’ to change-log attribute inside each <Waypoint/>
tag. This would help to display information specific to this waypoint in Ul.

Saves the new file atomically, (this process will be made efficient by saving only the ‘diff’ at the
right file cursor)

get file
Returns file as ASCII string or buffer, as instructed in the parameter.

get_authorized_users
Returns a list of users who are authorized to collaborate on file identified by f_id/f name.

get change log

Returns a list of changes by collaborating users sorted by timestamps from Change table with
f_id as key.

exists

Returns boolean value if the file with ‘file-name’ exists or not.

list

Returns an array of ‘File’ data with permission level for each file. This data can be used to view
projects dashboard in client’s side, as a list of projects the user is admin of and another list of
projects the user is collaborating on.

delete_file (access_level = admin)

Deletes file from file-path and ‘File’ table, preferentially delete entries related to this file from
‘Message’, ‘Permission’, ‘Change’.

add _permission (access_level = admin)

Checks if user with user-id exists. If yes, add user-id and file-id to ‘Permission’ table.
remove_permission (access_level = admin)

Checks if user with user-id exists. If yes, remove entries of ‘user-id and file-id together’ in
‘Permission’ table.

rename_file (access_level = admin)

Rename a file, would basically change ‘path’ in ‘File’ table corresponding to file-id.

e Chat API

o

message save
Adds an entry in the ‘Message’ table.

https://pyfilesystem2.readthedocs.io

o get_messages
Return an array of messages corresponding to a file_id (chat_id as each file can have one ‘Chat’

entry), sorted by ‘created_at’ values.

Main App

This module orchestrates all other services and APIs and regulates the data-flow.
A pseudo-code of main app is as follows:

import socketManager
import fileManager
import authManager
import chatManager
import Flask

app = Flask(__name__)

dsocketManager.sio.on('connect')

def connect(sid, env):
check auth here by authmanager
socketManager.connect_user()

dsocketManager.sio.on('disconnect"')
def connect(sid, env):
socketManager.disconnect_user()

use decorator to check auth
@sio.on('message')
def message(sid, data):

if data.type == "file":
fileManager handles file here
pass
else:

data.type = message
chatManager handles messages here
pass

app.route('/user"')
def user_handler():
args = request.args
authManager handles the rest
would be used to add remove user, etc

Ul

Ul module of mscolab will be integrated with msui, the core Ul module of mss software. The temporary files
would be stored in “~*/mssdata’ directory or as configured in ‘mss_wms_settings.py’.

A list of projects which the user is working on can be displayed as illustrated below, which can be activate by
clicking on Tools->mscolab projects list, on MSS’ main window.

Mission Support System - ui_mainwindowui

File Views |(Tools| Help Type Here

Trajectory Tool (Lagranto) &

Time Series View (Trajectories) @

-0 Flight T m/4m————————————+—+—+ . .
| e Mscollab projects list ﬁ

Type Here
Add Separator

MamWindew - MemWindow - unttieds

: Projects createdbyyou - -~ - - - oo

projectl
project2
project3

projectd
projects
projects

Double clicking on a project opens the mscolab-ui window as shown on page 11.

Project

e A '‘project’ is a data storage model implemented by popular code IDEs, like vscode,pycharm etc.

e In this case, instead of treating a ‘Sfilename.ftml’ as a project, since it won’t be aesthetic to store
configuration data in ftml file, it would be better if we introduce a project as a collection of some files.

e To start with, it will have a flightpath related file, and a configuration file, and a contributors file
showing waypoint details and collaborators who contributed to change of the waypoint.

® Anillustration is shown below.

Personal Storage of mssuser

projectl project2
collaborators.json collaborators.json
project config.json project config.json
waypoints. ftml waypoints. ftml
project3
collaborators.json
project config.json
waypoints. fiml

e To integrate this with mss, create_new_view function can be modified to open a flightpath in a
particular view mode. The attribute self.active_flight_track can be changed to
self.active_project .And each window opened would have a flightpath with some configuration
obtained from project_config.py, and contribution details of each waypoint from project_config.py.

Projects can also be opened/created directly from main-window.

Mission Support System - ui_mainwindow.ui*

File| Views Tools Help Type Here

Mew Project

- Mscollab Login
Open Project

Close Selected Project

MNew Flight Track

Open Flight Track...

Activate Selected Flight Track
Save Active Flight Track

Save Active Flight Track As...

Close Selected Flight Track

Import Flight Track
Export Active Flight Track

v v

The configuration for a new project can be input by the user in a graphical manner.

https://bitbucket.org/wxmetvis/mss/src/ec33f188fd521f52a6e647fe6cc481d12c5be989/mslib/msui/mss_pyui.py?at=develop&fileviewer=file-view-default#mss_pyui.py-427

MainWindow - unitled. o

CTypeHere
o eoeateme [|
SEETEREEEY 'S

 Flghpathslocaton [st lhpath le |
oo
admin = Add User
s | [emeroea]

This creates a project on mscolab server with a single administrator.

Clicking on ‘mscolab Login” would show a dialogue-box with email-id and password, for login. If the User with
email-id doesn’t exist in the mscolab database, user registration dialogue-box is opened. Once login is
completed, login button gets replaced by the following display.

Opening a project which the user is administrator of would open the following window. Clicking on a project
which the user is the collaborator of, opens a similar window, without options to add/remove collaborators.

Users collaborating Change Log

add
User2 changed the File

line 45 waypoint 5
user 1

—-lat=44.3
+lat=44.56
user 2
User3 changed the File
user 3 User1 line 65 waypoint 6
This is a dummy message weee --height=450
user 4 +height=445

line 45 waypoint 5
--lat=44.56
User 2 +lat=46.60

Okay | agree, but here is another dummy message weeeeeeeee

You

Well, since we are using dummy messages. dum Dum Dum

User 1

Okay, enough. Get back to work!

Send

Left side of the window as seen by the user, has a list of users collaborating on the experiment.

Right side of the window as seen by the user, has a log of recent history of changes.

Central space lists the group chat messages which will support important markdown syntax (e.g bold,
italics) during editing.

Once a new file is created or a file is opened with mscolab, say ‘experiment.ftml’, msui window gets updated
with new file in the listing which can be edited in an usual manner and each change gets saved inmscolab
server after a certain duration. The continuous backup can be disabled/enabled by the user by an Ul element.

File Views Tools Help L

Open Flight Tracks:
experiment

Open Views:

If one opens an old stored file, say ‘old-experiment.ftml’, following API calls are made with filename/file-id as
parameter.
e /get file handled by FileManager
If file is not found in Sdata_dir, it’s created in Sdata_dir as an intermediate save point.
e /get_authorized_users handled by FileManager
e /get log handled by FileManager

e /get_messages handled by ChatManager

Once this data is received, it is suitably rendered to a new mscolab-ui window as shown in the mock-up.
The overall data-flow diagram in front-end would resemble the following.

mscollab server

)

Socket

msui
Manager

h 4

Storage local
to user

SocketManager class would be a simple class, with two major functions:
e connect()

Used to start connection after authentication is complete and the client receives a token
® on_message()

Used to handle messages incoming from mscolab server (when SocketManager.emit() is called). Event
handlers would be written in ‘msui/mscolab_ui.py’.

	Developer documentation - Mscolab(development version)
	Dataflow Model
	Data Models
	APIs
	Main App
	UI

	Project

