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●​ Introduction 

We are implementing an existing paper called Generative Adversarial 

Networks for Image to Illustration Translation[1], which solved the problem that 

existing image-to-image style translation models cannot transfer both style and 

content at the same time. There are actually existing style transfer functions on some 

streaming websites and applications. Many live streaming software has a filter 

function on it. In fact, lots of these filter functions are based on GAN. But it is even 

more interesting to implement a style transfer model on our own. So we chose this 

paper. 

●​ Methodology 

We decided to use the monet2photo dataset, the paper used to test their 
model, to produce our own results. Monet refers to Monet style painting while photo 
refers to real natural photos. This dataset is designed for style transfer and we also 
decreased the size of the dataset in order to decrease the training time.  
​ The edited monet training set includes 100 images in the trainA folder, the 
test set includes 121 images in the testA folder, the photo training set includes 400 
images in the trainB folder, and the test set includes 751 images in the testB folder, 
where the images are all jpg files with size of 256x256. 

GAN is an unsupervised model. So we just need to feed the data into the 
model and let the generator contest with the discriminator. Model collapse is a major 
issue when training GAN models. When a model collapse happens, whatever the 
input is, the model produces the same result. Training of GAN is also highly unstable, 
the losses of generator and discriminator are quite bouncing. It is really important to 
find proper hyper parameters for the model. 
Here are the steps a GAN takes: 

· The generator takes in random numbers and returns an image. 

· This generated image is fed into the discriminator alongside a stream of images 
taken from the actual, ground-truth dataset. 

· The discriminator takes in both real and fake images and returns probabilities, a 
number between 0 and 1, with 1 representing a prediction of authenticity and 0 
representing fake. 



So we have a double feedback loop: 

· The discriminator is in a feedback loop with the ground truth of the images, which 
we know. 

· The generator is in a feedback loop with the discriminator. 
When training the discriminator, we will hold the generator values constant; 

and when training the generator, we will hold the discriminator constant. Each 
should train against a static adversary.  

GANILLA designed a new generator network in such a way that it preserves 
the content and transfers the style at the same time. A high-level architectural 
description of our generator network, GANILLA, is presented in Figure 2 along with 
the current state-of-the-art models and our two ablation models. GANILLA utilizes 
low-level features to preserve content while transferring the style. This model 
consists of two stages (Figure 1): the downsampling stage and the upsampling 
stage. The downsampling stage is a modified ResNet-18 network with the following 
modififications: In order to integrate low-level features at the down sampling stage, 
we concatenate features from previous layers at each layer of down sampling. Since 
low-level layers incorporate information like morphological features, edge and shape, 
they ensure that transferred image has the substructure of the input content. 

 
Figure 1: GANILLA generator network. The model uses concatenative skip 
connections for downsampling (from image up to Layer-IV). Then, the output of 
Layer-IV is sequentially upsampled while lower-level features from the 
downsampling stage are added to it via long, skip connections (blue arrows). The 
final output is a 3-channel stylized image. 

 



Figure 2: High-level architectural description of state-of-the-art models (CycleGAN, 

CartoonGAN, DualGAN), our model (GANILLA) and the two ablation models we 

experimented with. We follow the idea of cycle-consistency to train our GANILLA 

model. Specifically, there are two couples of generator-discriminator models. The first 

set(G) tries to map source images to the target domain, while the second set (F) takes 

input as the target domain images and tries to generate source images in a cyclic 

fashion. 

Due to the limited computing power of our equipment, we simplified the 

model to the following figure3： 

 

Figure 3: simplified model 

Loss function:  

Our loss function consists of two Minimax losses[2] for each Generator and 

Discriminator pair, and one cycle consistency loss[3]. Cycle consistency loss tries to 

ensure that a generated sample could be mapped back to source domain. We use L1 



distance for cycle consistency loss. When we give source domain images to 

generator F , we expect no change on them since they already correspond to source 

domain. A similar situation applies when we feed the generator G with target domain 

images.  

(1). Two Minimax losses:  

The generator tries to minimize the following function while the discriminator tries to 

maximize it: 

 

In this function: D(x) is the discriminator's estimate of the probability that real data 

instance x is real. Ex is the expected value over all real data instances. G(z) is the 

generator's output when given noise z. D(G(z)) is the discriminator's estimate of the 

probability that a fake instance is real. Ez is the expected value over all random 

inputs to the generator (in effect, the expected value over all generated fake 

instances G(z)). The formula derives from the cross-entropy between the real and 

generated distributions. The generator can't directly affect the log(D(x)) term in the 

function, so, for the generator, minimizing the loss is equivalent to minimizing log(1 - 

D(G(z))).  

(2). Cycle consistency loss: 



 

(a) The model contains two mapping functions G : X → Y and F : Y → X, and 

associated adversarial discriminators DY and DX. DY encourages G to translate X 

into outputs indistinguishable from domain Y , and vice versa for DX and F. To further 

regularize the mappings, we introduce two cycle consistency losses that capture the 

intuition that if we translate from one domain to the other and back again we should 

arrive at where we started: (b) forward cycle-consistency loss: x → G(x) → F(G(x)) ≈ 

x, and (c) backward cycle-consistency loss: y → F(y) → G(F(y)) ≈ y Cycle Consistency 

Loss is a type of loss used for generative adversarial networks that performs 

unpaired image-to-image translation. It was introduced with the CycleGAN 

architecture. For two domains X and Y, we want to learn a mapping G:X→Y and 

F:Y→X. We want to enforce the intuition that these mappings should be reverses of 

each other and that both mappings should be bijections. Cycle Consistency Loss 

encourages F(G(x))≈x and G(F(y))≈y. It reduces the space of possible mapping 

functions by enforcing forward and backwards consistency: 

 

(3). Adversarial Loss We apply adversarial losses to both mapping functions. For the 

mapping function G : X → Y and its discriminator DY , we express the objective as: 



 

where G tries to generate images G(x) that look similar to images from domain Y , 

while DY aims to distinguish between translated samples G(x) and real samples y. G 

aims to minimize this objective against an adversary D that tries to maximize it. We 

introduce a similar adversarial loss for the mapping function F : Y → X and its 

discriminator DX as well. 

 (4) The Full object of cycle consistency loss: 

 

where λ controls the relative importance of the two objectives. Our full objective 

function is to minimize the sum of the two Minimax losses function for each 

Generator and Discriminator pair, and one cycle consistency loss function. 

 

●​ Results 

The model output did not meet our expectations. As you can see, the structure 

similarity increases steadily at first, but then starts to fluctuate up and down. Based 

on our analysis of the training process, we believe there are two possible reasons for 

this result: 1. Insufficient training data, as we only used a small portion of the data 

set due to machine limitations. 2. the learning rate was not changed during the 

training process, which caused the network to fail to converge in the backward 

epoch, and we should reduce the learning rate and retrain after a period of training. 



 

 



●​ Challenges 

After thoroughly viewing the code provided with the paper, we found that the 

code is hard to read due to the architecture of the model. In this case, we tried to 

build the model following the instructions given by the paper instead of following the 

code. After roughly building the model, during the training and optimizing process,  

we found that it is difficult to set up the appropriate hyperparameters due to the high 

time cost per training and the frequent collapse of the GAN model.  

 

●​ Reflection 

●​ How do you feel your project ultimately turned out? How did you do relative to your 

base/target/stretch goals? 

Our model is able to switch styles, but due to the omission of the training strategy, 
our model did not achieve the best state that we expected.  

●​ How did your approach change over time? What kind of pivots did you make, if any? 

Would you have done differently if you could do your project over again? 

At first, we decided to re-implement the paper completely, then we found it is 

impossible because the requirement of computation and time is beyond the resources 

we can find. So we reduce the depth of the original network. If we did it over again, 

we may deepen our network and try to use pre-trained weights as our start to 

enhance the result. 

●​ What do you think you can further improve on if you had more time? 

we can train the network with different merged dataset to produce better results. 

●​ What are your biggest takeaways from this project/what did you learn?  

We have a deeper understanding of the GANILLA. We know how to construct a 

GANILLA generator network, how to downsample and upsample in the network. We 

also know how to compute the loss function and the meaning of the loss function. 

We also improved our debugging skills during coding. This project also cultivated our 

ability to cooperate with team members. We have learned a lot from each other. 
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