Title
Style Transform Based On GAN

Who
Yuyang Wang, Zihan Miao, Chi Zhang
Introduction

We are implementing an existing paper called Generative Adversarial
Networks for Image to lllustration Translation[1], which solved the problem that
existing image-to-image style translation models cannot transfer both style and
content at the same time. There are actually existing style transfer functions on some
streaming websites and applications. Many live streaming software has a filter
function on it. In fact, lots of these filter functions are based on GAN. But it is even

more interesting to implement a style transfer model on our own. So we chose this

paper.
Methodology

We decided to use the monet2photo dataset, the paper used to test their
model, to produce our own results. Monet refers to Monet style painting while photo
refers to real natural photos. This dataset is designed for style transfer and we also
decreased the size of the dataset in order to decrease the training time.

The edited monet training set includes 100 images in the trainA folder, the
test set includes 121 images in the testA folder, the photo training set includes 400
images in the trainB folder, and the test set includes 751 images in the testB folder,
where the images are all jpg files with size of 256x256.

GAN is an unsupervised model. So we just need to feed the data into the
model and let the generator contest with the discriminator. Model collapse is a major
issue when training GAN models. When a model collapse happens, whatever the
input is, the model produces the same result. Training of GAN is also highly unstable,
the losses of generator and discriminator are quite bouncing. It is really important to
find proper hyper parameters for the model.

Here are the steps a GAN takes:

* The generator takes in random numbers and returns an image.
* This generated image is fed into the discriminator alongside a stream of images
taken from the actual, ground-truth dataset.

* The discriminator takes in both real and fake images and returns probabilities, a

number between O and 1, with 1 representing a prediction of authenticity and O
representing fake.

So we have a double feedback loop:

* The discriminator is in a feedback loop with the ground truth of the images, which

we know.

* The generator is in a feedback loop with the discriminator.

When training the discriminator, we will hold the generator values constant;
and when training the generator, we will hold the discriminator constant. Each
should train against a static adversary.

GANILLA designed a new generator network in such a way that it preserves
the content and transfers the style at the same time. A high-level architectural
description of our generator network, GANILLA, is presented in Figure 2 along with
the current state-of-the-art models and our two ablation models. GANILLA utilizes
low-level features to preserve content while transferring the style. This model
consists of two stages (Figure 1): the downsampling stage and the upsampling
stage. The downsampling stage is a modified ResNet-18 network with the following
modififications: In order to integrate low-level features at the down sampling stage,
we concatenate features from previous layers at each layer of down sampling. Since
low-level layers incorporate information like morphological features, edge and shape,
they ensure that transferred image has the substructure of the input content.

Layer-1
Black-1 Black-11 Layer-I1 Layer-III __

Layer-IV
;t | g E

Figure 1: GANILLA generator network. The model uses concatenative skip
connections for downsampling (from image up to Layer-IV). Then, the output of
Layer-IV is sequentially upsampled while lower-level features from the
downsampling stage are added to it via long, skip connections (blue arrows). The
final output is a 3-channel stylized image.

Tl e e

CycleGAN & CartoonGAN DualGAN GANILLA Ablation Model-1 Ablation Model-II

;

concat

cony

conv layers [deconv layers — skip connections m residual layers with additive conn. gy residual layers with concatenative conn. Bfeature pyramid network

Figure 2: High-level architectural description of state-of-the-art models (CycleGAN,
CartoonGAN, DualGAN), our model (GANILLA) and the two ablation models we
experimented with. We follow the idea of cycle-consistency to train our GANILLA
model. Specifically, there are two couples of generator-discriminator models. The first
set(G) tries to map source images to the target domain, while the second set (F) takes
input as the target domain images and tries to generate source images in a cyclic

fashion.

Due to the limited computing power of our equipment, we simplified the

model to the following figure3:

Block- Block-
] 5

Figure 3: simplified model

Loss function:

Our loss function consists of two Minimax losses[2] for each Generator and
Discriminator pair, and one cycle consistency loss[3]. Cycle consistency loss tries to

ensure that a generated sample could be mapped back to source domain. We use L1

distance for cycle consistency loss. When we give source domain images to
generator F , we expect no change on them since they already correspond to source
domain. A similar situation applies when we feed the generator G with target domain

images.
(1). Two Minimax losses:

The generator tries to minimize the following function while the discriminator tries to

maximize it:
mcin max V(D,G) =Egrppn(xyog D(x)] + E..pp, (2 [log(1 — D(G(2)))]

In this function: D(x) is the discriminator's estimate of the probability that real data
instance x is real. Ex is the expected value over all real data instances. G(z) is the
generator's output when given noise z. D(G(z)) is the discriminator's estimate of the
probability that a fake instance is real. Ez is the expected value over all random
inputs to the generator (in effect, the expected value over all generated fake
instances G(z)). The formula derives from the cross-entropy between the real and
generated distributions. The generator can't directly affect the log(D(x)) term in the
function, so, for the generator, minimizing the loss is equivalent to minimizing log(1 -

D(G(2))).

(2). Cycle consistency loss:

c ¥ D ¢
/'_-‘-\ n - - /__\ -
Dx Dy z 4N E: Y |~ X g
G F F
X //_—\ Y X ./—- 1 Y X 1 Y cycle-consistency
_/ cycle-consistency | \ > '——b.\‘ loss
F loss .'-.__ ‘ | _/.

(a) (b) | (©)

() The model contains two mapping functions G : X — Y and F : Y — X, and
associated adversarial discriminators DY and DX. DY encourages G to translate X
into outputs indistinguishable from domain Y, and vice versa for DX and F. To further
regularize the mappings, we introduce two cycle consistency losses that capture the
intuition that if we translate from one domain to the other and back again we should
arrive at where we started: (b) forward cycle-consistency loss: x — G(x) — F(G(x)) =
x, and (c) backward cycle-consistency loss: y — F(y) — G(F(y)) = y Cycle Consistency
Loss is a type of loss used for generative adversarial networks that performs
unpaired image-to-image translation. It was introduced with the CycleGAN
architecture. For two domains X and Y, we want to learn a mapping G:X—Y and
F:Y—X. We want to enforce the intuition that these mappings should be reverses of
each other and that both mappings should be bijections. Cycle Consistency Loss
encourages F(G(x))=x and G(F(y))=y. It reduces the space of possible mapping

functions by enforcing forward and backwards consistency:

Loye(G, F) = Egropyu o) [[|F(G(2)) — 2[|1] + Eyopiuat) ||| G(F () — 9]

(3). Adversarial Loss We apply adversarial losses to both mapping functions. For the

mapping function G : X — Y and its discriminator DY , we express the objective as:

EGAN(Ga Dy, X, Y) = Ey”i‘?data(y) [log Dy (?j)]
+ E:cwpdm(:c) [lOg(l - DY (G(ﬂ?))]

where G tries to generate images G(x) that look similar to images from domainY,
while DY aims to distinguish between translated samples G(x) and real samplesy. G
aims to minimize this objective against an adversary D that tries to maximize it. We
introduce a similar adversarial loss for the mapping function F : Y — X and its

discriminator DX as well.

(4) The Full object of cycle consistency loss:

‘C(GanDXaDY) :‘C’GAN(G’DY’X’ Y)
+ L"GAN(FaDXaan)
+)\Lcyc(G: F):

where A controls the relative importance of the two objectives. Our full objective
function is to minimize the sum of the two Minimax losses function for each

Generator and Discriminator pair, and one cycle consistency loss function.

Results

The model output did not meet our expectations. As you can see, the structure
similarity increases steadily at first, but then starts to fluctuate up and down. Based
on our analysis of the training process, we believe there are two possible reasons for
this result: 1. Insufficient training data, as we only used a small portion of the data
set due to machine limitations. 2. the learning rate was not changed during the
training process, which caused the network to fail to converge in the backward

epoch, and we should reduce the learning rate and retrain after a period of training.

structure similarity in epochs

Udel
0.48 - A
[N
s 0.467
I} WY
0.46 - jj 0\1?8 0.45 q_dﬁg :
[% /s
U \\ ,o, "'4 IJ
=, / 5 4 \ i
2 0.44 1 D.d?.SE 0437 \ i
= \ I
E / "1 J,
[fy]
v 0.42 l." ':
5 1]
0] ‘I
\
£ 0.0 / Vo
750393 Vo)
“~0.387 Voo
[|
0.38 Vo
L
Vi
0.86
0.36 1 ‘é
T T T T T
100 120 140 160 180
epoch
original image epoch 90 epoch 120 epoch 1560 epoch 180
«o""
4?3 ™ '
RN W
¥ " u‘ﬂ.‘
”: » -

|

Challenges

After thoroughly viewing the code provided with the paper, we found that the
code is hard to read due to the architecture of the model. In this case, we tried to
build the model following the instructions given by the paper instead of following the
code. After roughly building the model, during the training and optimizing process,
we found that it is difficult to set up the appropriate hyperparameters due to the high

time cost per training and the frequent collapse of the GAN model.

Reflection
How do you feel your project ultimately turned out? How did you do relative to your
base/target/stretch goals?

Our model is able to switch styles, but due to the omission of the training strategy,
our model did not achieve the best state that we expected.
How did your approach change over time? What kind of pivots did you make, if any?

Would you have done differently if you could do your project over again?

At first, we decided to re-implement the paper completely, then we found it is
impossible because the requirement of computation and time is beyond the resources
we can find. So we reduce the depth of the original network. If we did it over again,
we may deepen our network and try to use pre-trained weights as our start to
enhance the result.

What do you think you can further improve on if you had more time?

we can train the network with different merged dataset to produce better results.
What are your biggest takeaways from this project/what did you learn?

We have a deeper understanding of the GANILLA. We know how to construct a
GANILLA generator network, how to downsample and upsample in the network. We
also know how to compute the loss function and the meaning of the loss function.
We also improved our debugging skills during coding. This project also cultivated our

ability to cooperate with team members. We have learned a lot from each other.

Reference:
[1] Hicsonmez, S., Samet, N., Akbas, E. and Duygulu, P., 2020. GANILLA: Generative adversarial
networks for image to illustration translation. Image and Vision Computing, 95, p.103886.

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y.
Bengio, Generative adversarial nets, in: Advances in Neural Information Processing Systems,
2014, pp. 2672-2680.

[3]J.-Y. Zhu, T. Park, P. Isola, A. A. Efros, Unpaired image-to-image translation using
cycle-consistent adversarial networks, IEEE International Conference on Computer Vision.

	Style Transform Based On GAN

