تمارین فی درس المقادير الفيزيائية المرتبطة بكمية المادة

تمرین 1

. P=1barنتوفر على حجم V=5L من ثنائي الهيدروجين عند درجة الحرارة heta=0و تحت الضغط الجوي النظامي

- 1. احسب الحجم المولى في نفس الشروط لدرجة الحرارة و الضغط.
 - احسب كمية مادة ثنائي الهيدروجين الموجودة في الحجم.
- نعطی : 1bar=1,013.10⁵Pa , R=8,314 SI

3. استنتج كتلة ثنائي الهيدروجين الموافقة

. Pنتوفر على قنينة سعتها V=2L مملوءة بثنائي الأزوت عند درجة الحرارة $\theta=25^{\circ}C$ تحت الضغط

1. احسب كمية مادة ثنائي الأزوت الموجودة في القنينة

 $V_m = 10L.mol^{-1}$: نعطى الحجم المولى في هذه الظروف

تمرین 3

P=1ندخل2,9و تحت الضغط الضغط الضغط المنان (C_4H_{10}) ندخل المنان البوتان المنان المنا . احسب V_{I} حجم الغاز الذي يوجد داخل الأسطوانة I

- P=1ونسخن الغاز عند القيمة P=1ونسخن الغاز ببطء ماذا يحدث P=1
- . نوقف التسخين عندما تصير درجة حرارة الغاز $heta_2=30^{\circ}$ احسب V_2 حجم الغاز في هذه الحالة .

تمرین 4

نملاً قارورة سعتها $5 \ ^0$ بكمية مادة n_0 لمركب هيدروكربوني غازي صيغته n_0 تحت ضغط عند درجة الحرارة الحرارة الحرارة الحرارة المركب المر

. $P_2 = 5{,}70bar$ و بعد ذلك نضيف في القارورة غاز ثنائي الأكسجين بإفراط فنقيس قيمة الضغط الجديد فنجد $heta = 25^{\circ}C$

نحقق, بواسطة شرارة, الاحتراق لغاز المركب الهيدروكربوني في ثنائي الأكسجين فنحصل على الماء و غاز يعكر ماء الجير.

1. اعط صيغة واسم الغاز الناتج.

- ي نقيس قيمة الضغط للمرة الثالثة فنجد $P_3=3,47bar$. نضيف إلى محتوى القارورة بضع حبيبات الصودا التي تمتص كليا الغاز الناتج و $P_4 = 1{,}24bar$ نقيس الضغط فنجد
 - $^{\mathcal{Y}}$ و $^{\mathcal{X}}$ اكتب المعادلة الكيميائية لهذا التحول مع تحديد معاملات التناسب بدلالة $^{\mathcal{X}}$
 - 2.2. احسب كميات المادة البدئية للمتفاعلات.
 - 2.3. احسب كمية مادة ثنائى الأكسجين النهائية, و استنتج كمية مادة الغاز المتكون.
 - $^{\mathcal{Y}}$. أنشئ الجدول الوصفي للمجموعة و احسب التقدم الأقصى و استنتج قيمتي $^{\mathcal{X}}$ و $^{\mathcal{Y}}$.

 $R = 8,314 Pa.m^3.K^{-1}.mol^{-1}$

تمرین 5

نعتبر قارورتين (1) و(2) ، حجمهما على التوالي V=2L و V=1 ومتصلتين بأنبوب ذي حجم مهمل في البداية القارورة (2) فارغة P=1 وتحت ضغط P=1 على غاز ثنائى الأوكسجين (الذي نعتبره غازا كاملا) عند درجة الحرارة $T=25^{\circ}c$ 1- أعط تعريف الغاز الكامل ؟

- 2- اكتب معادلة الحالة للغازات الكاملة .
- 3- احسب كمية مادة غاز ثنائى الأوكسجين المتواجدة في القارورة (1)
 - 4- نحتفظ بدرجة الحرارة ثابتة ونفتح الصنبور
- 4-1- بتطبيق قانون بويل ماريوط، احسب ضغط غاز ثنائي الأوكسجين في القارورتين .
 - 4-2 احسب كمية مادة غاز ثنائى الأوكسجين المتواجدة فى كل قارورة

 $R = 8.31 \ Pa.m \ .mol. \ k$ نعطى ثابتة الغازات:

تمرین 6

عند درجة حرارة $heta_i=25^0C$ و تحت ضغط $P_i=1,5bar$ ، تحتوي زجاجة محكمة الغلق سعتها V=21 على غاز (X) نعتبره كاملا. d(X)=0,5517 كثافة الغاز (X) بالنسبة للهواء

- 1- أعط تعريف الغاز الكامل.
- 2- بتطبيق معادلة الحالة للغازات الكاملة:
- $n(X) = 1,21.10^{-1} mol$: أتبث أن كمية مادة الغاز (X) المتواجدة في الزجاجة هي:
- V_{m} في الظروف التي يوجد عليها الغاز (X) في الظروف التي يوجد عليها الغاز V_{m}
 - $\theta_f = 60^{0} C$ بيطء إلى أن تصل إلى ورجة حرارة الغاز (X) بيطء إلى أن تصل إلى
 - 1-1: حدد متغيرات الحالة التي يمكن أن تتغير خلال هذا التحول ، علل جوابك.

 P_f ، P_f ، P_f ، P_f . أحسب بالباسكال P_f ، P_f ، الضغط النهائي للغاز P_f . أحسب بالباسكال P_f ، P_f الضغط النهائي للغاز P_f . أحسب بالباسكال P_f ، أحسب بالبا ، نريد تحديد طبيعة الغاز (X) . 1-4: عين طبيعة الغاز (X) معللا جوابك X عين طبيعة الغاز (X) معللا جوابك X علما أن الغازات الثلاثة عديمة اللون و الرائحة . اقترح طريقة عملية تمكن من التمييز بينها. $M(O) = 16g \ / \ mol$ و $M(C) = 12g \ / \ mol$ و $M(H) = 1g \ / \ mol$ و R = 8,314(SI) و $1bar = 10^5 \ Pa$ نعطي:

Www.AdrarPhysic.Com