
Ranger Nodes
version 1.0.0

William R. DeVore

Ranger Nodes
Ranger version 0.1.x



BaseNode
Pooling
Transforms

Translate
Rotate and Base coordinate systems
Scale

Space Mappings
World-space

Timing
Scene

AnchoredScene
Transitions
SceneManager

Push
Replace
Pop

Layers
BackgroundLayer
OverlayLayer
Cascade and Multiplex

Nodes
EmptyNode
GroupNode
Sprites

SpriteImage
Placebo

CanvasSprite
Particles and Particle systems

Particles
Particle Systems

Activation
Timing

Ranger Nodes
Ranger version 0.1.x



BaseNode

The very bottom of the Node tree is the abstract class BaseNode. This class provides four basic
features: Pooling, Transforms, Mappings and Timing; see below.

Pooling

Ranger’s pooling is based on Dartemis’s pooling and it is completely optional to participate in.
Any time you elect not to call a Node’s moveToPool() you are basically saying “I don’t care if the
garbage collector (GC) collects it”. But if you do call moveToPool() then the pool will hold a
reference to it thus it keeping from the prying eyes of the GC. Of course the flipside is that you
are consuming memory. So be conscious of how you use pooling. Some Scenes are temporary
and likely never to be seen again during the lifetime of the game. In that case you can probably
forgo pooling, again simply forget to move the object back to the pool.

Here is a code snippet that occurs in the Ranger-Rocket app where we are performing collision
detection between the ship’s bullet and one of the shapes:

Ranger.Vector2P pw = p.node.convertToWorldSpace(_localOrigin);
Ranger.Vector2P nodeP = _squarePolyNode.convertWorldToNodeSpace(pw.v);

collide = _squarePolyNode.pointInside(nodeP.v);

Ranger Nodes
Ranger version 0.1.x

https://pub.dartlang.org/packages/dartemis


if (collide) {
_handleBulletToSquareCollide();
pw.moveToPool();
nodeP.moveToPool();
return p;

}

pw.moveToPool();
nodeP.moveToPool();

We need to map the bullet that is in GroupNode space into the local space of the Node where
we want to check for a collision. Once the check is complete we don’t need the pooled versions
of the Vector2 objects any longer so we “move them” back to the pool. I chose to move them to
the pool because on the very next “update” I am going to perform the very same check again.
So it makes sense to “reuse” pooled objects rather than giving the GC a colossal migraine; and
when the GC has a migraine you will feel the pain too as your game “pauses” while the GC
takes its revenge.

Here is another scenario. Let’s say that when your bullet hits a square Node it explodes and
disappears never to be seen again. Your code will probably call removeChild(child, true). Pay
attention to the last parameter. In this case Ranger’s scene graph will detach the child AND
move the square Node back to the pool. The question is “when do you use true or false”?. It all
depends on your game. Perhaps squares will appear unending and your player’s task is to
destroy them forever; in this case it may be prudent to use “true”.
If it is a Node that will never appear again and memory is of no concern then “true” is also a
valid choice. But if resources are scarce then probably “false” is better and you just have to deal
with the GC. The less work the GC has to do the less noticeable the pause will be.

Transforms

All Nodes have three basic transforms: Translate, Scale and Rotate.

Skew

Skew is a separate transformation that I felt wasn’t used that often. However, to have
skewing functionality just “mixin” the SkewBehavior class.

Translate

To translate a Node you would call one of several methods from the PositionalBehavior mixin.
You could set the position based on a Vector2 or by component:

Rotate and Base coordinate systems

You can rotate a Node by either Radians (node.rotation = 3.14) or Degrees
(node.rotationByDegrees = 45.0) using the RotationalBehavior’s methods.

Ranger Nodes
Ranger version 0.1.x



The question is which “way” will it rotate, Clockwise or Counter Clockwise. That depends on the
orientation of the base coordinate system which is defined in config.dart:

static const bool base_coordinate_system = LEFT_HANDED_COORDSYSTEM;

I arbitrarily choose the nomenclature of “left/right” even though it really applies to 3D space. It is
more like: left-handed means the left hand’s thumb is “up” and right-handed means that the left
hand’s thumb is “down”:

The default is the “thumb Up” orientation. In this configuration the origin is in the lower-left
corner of the view; unless you center the Node upon construction.

Scale

You can scale a Node uniformly (node.uniformScale = 2.0) or non-uniformly (node.scaleX = 2.0)
by using ScaleBehavior’s scaling properties. Scaling occurs around the Node’s local origin.

Space Mappings

BaseNode also provides mapping methods for moving from one Space to another.

Ranger.Vector2P pw = p.node.convertToWorldSpace(_localOrigin);
Ranger.Vector2P nodeP = _squarePolyNode.convertWorldToNodeSpace(pw.v);

Above we are taking a local-space coordinate--in this case (0, 0)-- and first mapping it to
world-space and then mapping that into the local-space of the square. So what is
“world-space”?

World-space

World-space is the space that bridges Canvas/Design region to the scene graph region; its
vaguely the “root” of the scene graph. You can view world-space coordinates but they will seem
a bit “skewed” and distorted depending on the ratio of Design-to-Device resolutions.

Ranger Nodes
Ranger version 0.1.x



World-space is not a good space to be in but it is a good space to pass through. Whenever you
want to map from one Node to another you do so via World-space and that is because
world-space is a common space for all Nodes.

Timing

Routing timing to your classes (aka targets) is it pretty easy. Ranger has a Scheduler that can
handle two types of “targets”: Functions of type

Ranger Nodes
Ranger version 0.1.x



typedef void UpdateTarget(double dt);

and TimingTargets. Each can be used to route timing to your classes.

TimingTarget type classes are used quite frequently. The TweenAnimation class, BaseNode,
Sprites, Particle Systems.

It is pretty easy to setup a class to receive timing. Just inherit from TimingTarget and schedule it
with the Scheduler. From there on out your class will receive timing data delivered to your
update() method until you unschedule it. Here is an example of a particle system being
scheduled:

ps = new Ranger.ModerateParticleSystem.initWith(maxParticles);
...
app.scheduler.scheduleTimingTarget(ps);

Scene

A Scene is a container for other Nodes because it “mixes”
in the GroupBehavior mixin. Most of the time Scenes will
contain only Layers.
The inverse is if you create Nodes that don’t mixin
grouping behavior then what you have created is a Leaf
Node. A TextNode is an example of a leaf Node.

Most often a Scene will have a 1-to-1 correspondence
with Layer where the Layer supplies the Nodes that are
visible. Scenes for the most part are “transparent”.

There is one very special Scene called BootScene. This
scene is incredibly simple. It simply waits for Ranger and Dartium to finish bootstrapping then
immediately replaces itself with a replacement scene, which in most cases in a Splash scene.

Ranger Nodes
Ranger version 0.1.x



AnchoredScene

The most important scene is the AnchorScene and is also the Scene that just about any scene
you create will inherit from. Above is the inheritance structure of an AnchoredScene. We see
that it is animatable because it implements the Tweenable interface, doing so allows the Scene
to be directly animated by the Universal Tween Engine (UTE). We also see that it creates a
SceneAnchor Node internally and then “binds” your “primary” layer as a child to the anchor;
see image on the right. This creates a perfect arrangement where we can translate, scale and
rotate Scenes all without disturbing the primary layer (aka the layer you created).
It is the AnchoredScene that gives Transitions their ability to function properly.

Transitions

A Scene is also used for is transitions. Transitions operate solely on
Scenes and they themselves are Scenes. But what manages the scenes
and their transitions? The SceneManager.

SceneManager

The SceneManager (SM) controls and managers scenes. Internally the
SM maintains a “stack” and the Scene at the top of the stack is the
scene that is running. During transitions the Outgoing scene is “stopped”
and the Incoming scene is “started”.

When you start coding your own transitions one thing to be aware of is
that the incoming scene becomes active immediately which means its

Ranger Nodes
Ranger version 0.1.x



onEnter() method is called, which also means that the incoming scene will become visible.
Looking at a code snippet of the TransitionMoveInFrom class we can see that the incoming
scene “inScene” has its position placed completely out of view:

switch (_directionFrom) {
case FROM_LEFT:

inScene.setPosition(-Application.instance.designSize.width, 0.0);

Once that is done an animation is created to “move it” back into view thus creating the illusion of
a transition.

The SM also provides methods for pushing, popping and replacing Scenes.

Push

Pushing a scene causes the currently running scene to pause while activating the scene just
pushed onto the scene stack.

Replace

Replacing a scene causes the currently running scene to be destroyed and removed while
activating the new scene and placing it on the stack.

Pop

Popping a scene causes the currently running scene to be destroyed and removed while
activating the next scene available on the stack. If there are no more scenes then Ranger pretty
much stops and shuts down.

Finally the SM’s main job is to “visit” the scene supplying a DrawContext. Some Nodes may
perform a visible check. If the Node determined it wasn’t visible the draw() method is skipped.

Layers

Layers are grouping Nodes that provide a good place to put visual Nodes and code logic. They
pretty much accompany every Scene. Of course there are exceptions, for example BootScene
has no Layer, and none of the Transition scenes because none of them have anything to show.

BackgroundLayer

The most important layer that comes with Ranger is the BackgroundLayer. This Layer
“pre”-mixes all the currently supported Inputs: Mouse, Keyboard and Touch. It also has another
trick up its sleeve, it can constrain the background positional wise. This insures that the
background always fills the viewport no matter where the Layer is translated to.

Setting constrainBackground = false will cause the Layer’s background to “stick” with the
Layer’s origin which isn’t good if the Layer has been moved (for example, centered), in addition,

Ranger Nodes
Ranger version 0.1.x



the actual Canvas surface would be exposed (it is Orange by default). So if you are seeing a lot
of Orange then you have exposed the surface--not really good. Take a look at the image below.

On the left the background isn’t constrained so when the Layer moves so does the background,
which exposes the surface. Most of the time you don’t want to expose the surface which is why
the default is to constrain the background to the view.

Hint: with multiple layers only the bottom most layer should to be constrained.

OverlayLayer
This Layer is almost identical to the BackgroundLayer but it doesn’t have a constrained
background and defaults to a transparent background. You would typically use this as a
Head-Up-Display (HUD).

Of course you are free to create your own custom layers and encouraged to do so.

Cascade and Multiplex

Cascading involves cascading a single color (including alpha) from parent down to child. This
allows for fading in and out on entire scenes as well as individual Nodes.

Multiplex -- not implemented.

Nodes

Node provides a default implementation of BaseNode plus the ability to handle subscribers
looking for notifications when Nodes have become dirty.

There are several other auxiliary Nodes that can come in handy.

Ranger Nodes
Ranger version 0.1.x



EmptyNode

EmptyNode is great as a non-visual placeholder left type node--of course you can always
enable its visual to see a placebo.
A good example can be seen in Rocket-Ranger. EmptyNodes are used as targets for the ships’
exhausts. When the ship is transformed the exhaust (aka _exhaustLeftPort node) changes
relative to the GameLayer (or a grouping layer perhaps) where the particles are to be emitted.
On every update() the exhaust particle system’s position is updated with the position of the
EmptyNode mapped into GameLayer-space. By setting the position of the particle system your
are in effect dictating where the next particle is emitted.

Vector2 gs = _convertToGameLayerSpace(_exhaustLeftPort.position);
_exhaustLeftPS.setPosition(gs.x, gs.y);

GroupNode

GroupNode is also a non-visual Node. Its main job is simply to contain other Nodes.
A good example can be seen in Rocket-Ranger. A GroupNode is used as the primary layer so
that more than one Layer can exist in AnchoredScenes. In this case both a GameLayer and
HudLayer are created.

_group = new Ranger.GroupNode();
_group.tag = 2011;
initWithPrimary(_group);

_controlsPanel = new ControlsDialog.withHideCallback(_panelAction);

...

//---------------------------------------------------------------
// Main game layer where the action is. ddddaa = olive green
//---------------------------------------------------------------
_gameLayer = new GameLayer.withColor(Ranger.color4IFromHex("#666666"), true);
addLayer(_gameLayer, 0, 2010);

//---------------------------------------------------------------
// A layer that overlays on top of the game layer. For example, FPS.
//---------------------------------------------------------------
_hudLayer = new HudLayer.asTransparent(true);
addLayer(_hudLayer, 0, 2012);

Ranger Nodes
Ranger version 0.1.x



Sprites

There are two types of sprites: single frame(SpriteImage) and multi-frame (CanvasSprite).

SpriteImage

A SpriteImage is the Node representation of an ImageElement. First you would load the
ImageElement then create a SpriteImage. The ImageElement should be loaded asynchronously
and upon loading create your SpriteImage Node.

Normally you create a Resource class that handles the asynchronous loading by returning a
Future. Ranger comes with an asynchronous ImageLoader class to assist your Resource
class. The ImageLoader can simulate performance delays by artificially injecting a Future delay
using Future.delayed.

class Resources {
…

Ranger Nodes
Ranger version 0.1.x

https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart-dom-html.ImageElement
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart-async.Future
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart-async.Future#id_Future-delayed


Future<ImageElement> loadImage(String source, int iWidth, int iHeight, [bool
simulateLoadingDelay = false]) {

Ranger.ImageLoader loader = new Ranger.ImageLoader.withResource(source);
loader.simulateLoadingDelay = simulateLoadingDelay;
return loader.load(iWidth, iHeight);

}
…
}

Placebo

However, you may notice in the examples and unit tests a “placebo”. Placebos are lightweight
temporary “stand-ins” that, optionally, you can use immediately--no downloading required. They
are typically embedded Base64 encoded resources. An embedded resource guarantees
immediate availability and is excellent visual while the actual image is downloading.

Ranger comes with two embedded SVG images: spinner and spinner2. These types of
resources are easy to create. Just find a website (or create your own converter using Dart) that
converts text into Base64 encoded strings--the text in this case is an SVG definition. One such
site is: MobileFish, it was used to create both spinners.

TODO: Base64 encoder app

We should create a simple Base64 encoder utility for Ranger-Sack. Dart has the
encoder, we would just need to create a web app using it.

To use a placebo just create a SpriteImage from an embedded resource:

Ranger.SpriteImage placebo = new Ranger.SpriteImage.withElement(resources.spinner);
addChild(placebo, 10, 7000);
// Track this infinite animation.
app.animations.track(placebo, Ranger.TweenAnimation.ROTATE);

UTE.Tween rot = app.animations.rotateBy(
placebo,
1.5,
-360.0,
UTE.Linear.INOUT, null, false);

// v---------^
// Above we set "autostart" to false in order to set the repeat value
// because you can't change the value after the tween has started.
rot..repeat(UTE.Tween.INFINITY, 0.0)

..start();

In the example above we add the “spinner” resource as a child, and we also want the placebo
animated so we attach a Tween animation to it too.

Now we can begin loading the actual image while the placebo animates,

Ranger Nodes
Ranger version 0.1.x

http://www.mobilefish.com/services/base64/base64.php
https://github.com/wdevore/Ranger-Sack


resources.loadImage("resources/grin.svg", 32, 32, true).then((ImageElement ime) {
// Image has finally loaded.
// Terminate placebo's animation.
app.animations.flush(placebo);

// Remove placebo and capture index for insertion of actual image.
int index = removeChild(placebo);

// Now that the image is loaded we can create a sprite from it.
_grin = new Ranger.SpriteImage.withElement(ime);
_grin.uniformScale = 5.0;
// Add the image at the place-order of the placebo.
addChildAt(_grin, index, 10, 101);

});

and once it loads we stop/flush the placebo’s animation and remove it.

All this is done inside an immediately invoked Closure. The closure allows us to “capture” the
placebo within local scope without having to create a class scoped variable. To me closures are
kind of like “pictures in time” or “snapshots of a moment”.

CanvasSprite

CanvasSprite is a simple implementation of a sprite sheet animator. It is almost certain you will
create your own sprite sheet class.

CanvasSprite is similar to a SpriteImage in that it is driven by a single image, but the image is
actually a series of smaller images compacted together in some form of a grid. Typically a JSON
file accompanies the image. This associated file indicates how each smaller image is placed
“on” the sheet image and what the frame-rate should be.

Because CanvasSprite implements the TimingTarget interface it can be registered with the
Scheduler. Once scheduled the sprite receives timing data in the form of fractional seconds.
Ranger only receives “clock ticks” at a resolution of ~1/60 of a second which means simple
math is needed to calculate slower rates. Faster rates result in frame skipping.

Particles and Particle systems

Particle systems are infinite in nature. It is literally impossible for Ranger to provide the
end-all-to-be-all particle system; even the RangerParticles app had to draw a line. Nonetheless,
Ranger does supply a basic starter structure for particle systems, and it comes with two:
BasicParticleSystem and ModerateParticleSystem--hopefully more advanced systems will
show up in Ranger-Sack.

Ranger Nodes
Ranger version 0.1.x

https://www.dartlang.org/docs/dart-up-and-running/contents/ch02.html#ch02-functions-lexical-closures
https://github.com/wdevore/Ranger-Sack


Particles

Particles function off of one basic premise: lifespan, anything
more than this is icing on the cake. Ranger’s Particle class
provides that plus Velocity for extra measure.

But there is more to “life” than just lifespan. The most basic
particle is one that moves (PositionalParticle). It is pretty
boring but it functions.

Considerably more complex particles are TweenParticle and
UniversalParticle. They provide examples of Rotation, Scale
and Color behaviors, and they do it completely different from
each other. TweenParticle uses the Universal Tween Engine
while UniversalParticle uses basic LERP.

But none of these particles are visible, they are just behaviors. Visibility is added by assigning a
Node to the PositionalParticle during construction. RangerRocket has an example of this in the
_populateParticleSystemWithCircles method, here is a snippet:

CircleParticleNode protoVisual = new CircleParticleNode.initWith(Ranger.Color4IBlack)
..visible = false
..uniformScale = 1.0;

Ranger.UniversalParticle prototype = new Ranger.UniversalParticle.withNode(protoVisual);

The UniversalParticle is given a CircleParticleNode to act as its visualization. But the code
looks a bit odd. Why are the particle components implying they are “prototypes”? This is where
Particle Systems come in to play.

Particle Systems

You construct Particle Systems (PS) with two components; a prototype visual and a prototype
particle.

ps.addByPrototype(_gameLayer, prototype);

// The prototype is no longer relevant as it has been cloned. So
// we move it back to the pool.
protoVisual.moveToPool();
prototype.moveToPool();

The PS takes the prototypes and clones them according to how many particles were specified
during the creation of the PS. Shown above, once the prototypes have been cloned they are no
longer needed and can be moved back to the pool. It is also permissible to NOT put them back

Ranger Nodes
Ranger version 0.1.x



in the pool as they will never be needed again plus it would free up resources, use your own
judgement.

Once you have a PS built your PS can start activating individual particles

gunPS.activateByStyle(Ranger.ParticleActivation.UNI_DIRECTIONAL);

or all the particles at once

_contactExplode.explodeByStyle(Ranger.ParticleActivation.OMNI_DIRECTIONAL);

Activation

Particle systems are not coded to activate a particle in any specific way as there is an infinite
number of ways to activate them. Instead you provide a ParticleActivation class that can
generate the configuration for each particle prior to activation.
Ranger comes with two example activators: SimpleParticleActivator and
RandomValueParticleActivator. You allocate one, fill out a bunch of variance values and then
assign it to a PS

Ranger.RandomValueParticleActivator pa =
_configureForExhaustActivation(Ranger.Color4IRed, Ranger.Color4IYellow);

_contactExplode.particleActivation = pa;

With some clever variance values RandomValueParticleActivator can produce some crazy
effects. Both activators barely scratch the surface of what you can do.

Timing

Finally you need to route timing to your newly created awesome PS. You have two ways you
can do that. The first only works if your Layer has scheduled updates for itself (which means it
has called the scheduleUpdate() in the onEnter method and overridden the update() method). If
that is the case then all you need to do is manually call the PS’s update from within your Layer’s
update

_contactExplode.update(dt);

The slight advantage to this is that you don’t need to remember to unschedule your PS.

Option #2 is to actually register your PS with the Scheduler.

Ranger.Application.instance.scheduler.scheduleTimingTarget(_contactExplode);

Ranger Nodes
Ranger version 0.1.x



You can do this because PSs implement the TimingTarget interface. However, you will need to
unschedule it in the onExit() method of your Layer

@override
void onExit() {

super.onExit();
Ranger.Application app = Ranger.Application.instance;
app.animations.stop(_listSprite, Ranger.TweenAnimation.ROTATE);

Ranger.Application.instance.scheduler.unScheduleTimingTarget(_contactExplode);

unScheduleUpdate();
}

Failing to unschedule your PS will simply result is wasted cycles as your PS is feed timing data
uselessly; generally not good.

End.

Ranger Nodes
Ranger version 0.1.x


