Le centenu

Remarques

- I. Equations et inéquations du premier degré à une inconnue
- 1) Généralité

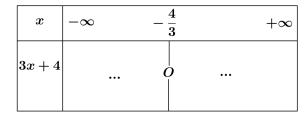
Activité 1

1) Résoudre dans les équations suivantes :

$$(E_1)$$
: $6x + 7 = 2x - 1$

 (E_2) : (x-1)(x+3)=0

2) Résoudre dans les inéquations suivantes :


$$(I_1): 2x + 1 \le 2 + x$$

 $(I_2): 4x - 2 > 2x - 4 | (I_3): -3x - 1 \ge 0$

2) Signe du binôme ax + b; $(a \neq 0)$

Activité 2

- 1) Résoudre dans les inéquations suivantes : $3x + 4 \le 0$ et $3x + 4 \ge 0$
- 2) Compléter le tableau suivant en utilisant "+" ou "-" .

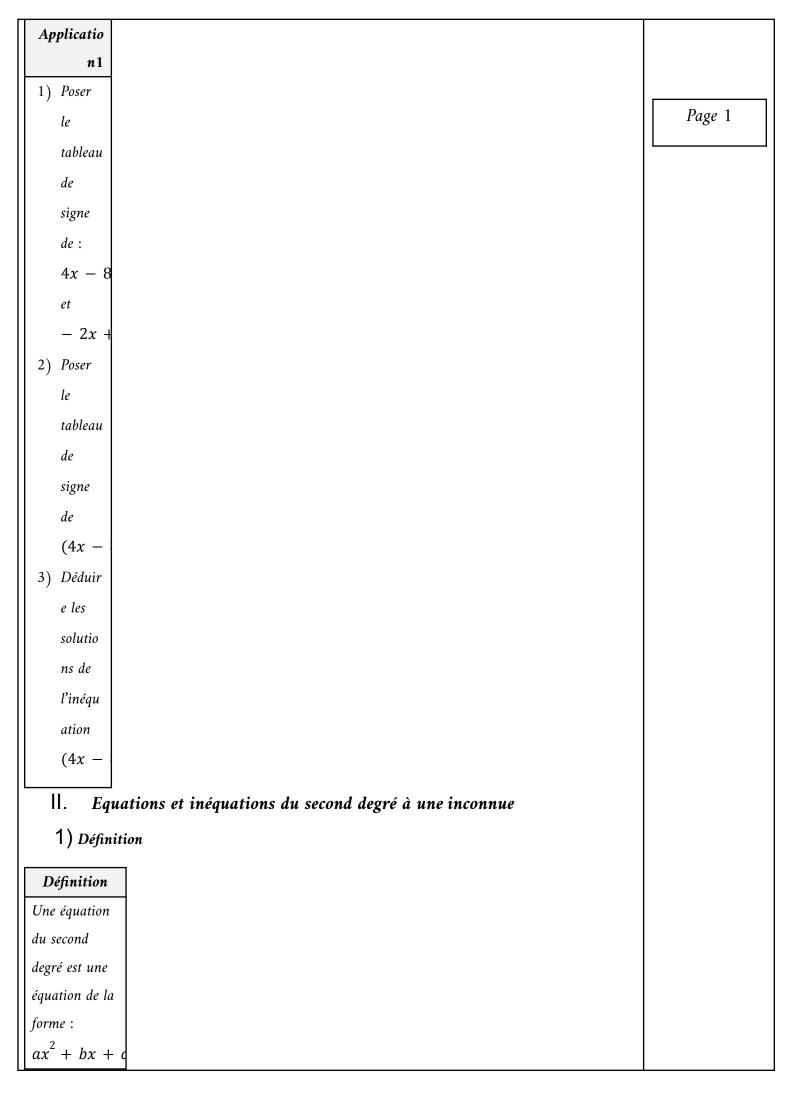
Le tableau au-dessus est appelé tableau de signe du binôme 3x + 4.

Propriété

Le

tableau

de signe

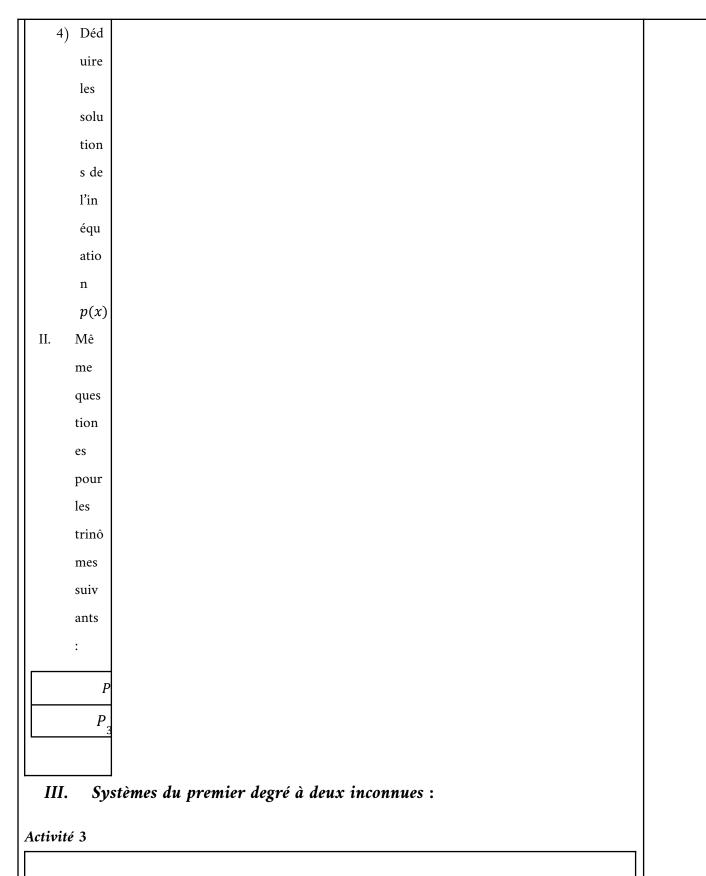

de

ax + b

est:

 \boldsymbol{x}

ax


Т	
où a, b et c	
sont des réels	
avec $a\neq 0$.	
On appelle	
discriminant	
de l'équation	
$\int ax^2 + bx + d$	Daga 2
le nombre réel,	Page 2
noté	
$\Delta = b^2 - 4ac$	
Exemple	
l'équation	
$3x^2 - 7x + 2$	
est une	
équation de	
seconde degré	
et ona: $a = 3$	
et b = -7et	
c = 2	
Le	
discriminant	
de l'équation	
$3x^2 - 7x + 2$	
est	
$\Delta = \left(-7\right)^2 -$	
Propriété	
Pour Résoudre	
l'équation	
$(a \neq 0) (E):$	
on calcule <i>le</i>	
discriminant	
$\Delta = b^2 - 4ac$	
• On a les cas	
suivants:	
$-\operatorname{Si} \Delta \boxtimes 0$,	
alors	

l'équation	
(E) n'a pas	
de solution	
dans 🛚 et on	
$ \text{écrit:} S = \emptyset $	
$-\operatorname{Si} \Delta = 0$,	
alors	
l'équation	
(E) a une	Page 3
unique	
solution dans	
$x = -\frac{b}{2a}$ et	
on écrit	
$S = \{-\frac{b}{2a}\}$ $-\operatorname{Si} \Delta \boxtimes 0,$	
$-\operatorname{Si} \Delta \boxtimes 0$,	
alors	
l'équation	
$(E)_{\text{admet}}$	
deux solutions	
distinctes	
$x_1 = \frac{-b + x_2}{2a}$	
et on	
écrit:	
$S = \{\frac{-b - 1}{2a}\}$	
Exemple	
Résoudre dans	
l'équations suivante:	
$3x^2 - 7x + 2$ Application 2	

Résoudre dans les équations suivantes: $3x^{2} + 2x$ et $4x^{2} + 12x + et$ $x^{2} - 5x + 6$	
équations suivantes: $3x^{2} + 2x$ et $4x^{2} + 12x + $ et	
suivantes: $3x^{2} + 2x$ et $4x^{2} + 12x + et$	
$3x^{2} + 2x$ et $4x^{2} + 12x +$ et	
$\begin{vmatrix} \mathbf{et} \\ 4x^2 + 12x + \\ \mathbf{et} \end{vmatrix}$	
$\begin{vmatrix} \mathbf{et} \\ 4x^2 + 12x + \\ \mathbf{et} \end{vmatrix}$	
$\begin{vmatrix} 4x^2 + 12x + \\ et \end{vmatrix}$	
et	
$\begin{bmatrix} et \\ x^2 - 5x + 6 \end{bmatrix}$	
$x^2 - 5x + 6$	
2) Factorisation d'un trinôme du second degré $ax^2 + bx + c$	
Propriété	
- Si	
$oxedsymbol{\Delta}oxedsymbol{\mathbb{Z}}$	
, alors	
le	
trinô	
me	ļ
$\left ax^2 + \right $	
n'adm	
et pas	
de	
factori	
sation	
dans	ļ
	ļ
- Si	
$\Delta = 0$	
,	
alors	
$ax^2 + k$	
- Si	
$oxedsymbol{\Delta}oxedsymbol{\mathbb{Z}}$	
, alore .	
alors:	
$ax^2 + 1$	

П	<u> </u>
avec	
$x_1 = \frac{-l}{l}$	
Applicatio	
n 3	
Factoriser,	
si possible,	
les trinômes	
suivants :	
$\begin{vmatrix} 3x^2 + 2x \\ et \end{vmatrix}$	
et	
$4x^2 + 12x$	
$\begin{array}{c} 4x^2 + 12x \\ \textbf{et} \end{array}$	
$x^2 - 5x +$	
Propriété	
Si	
l'équation	
$a \neq 0$ (E	
admet deux	
solutions	
$x_1 et x_2$	
alors:	
alors.	
\r \pm \r \r \	
$\begin{vmatrix} x_1 + x_2 = -1 \\ et \end{vmatrix}$	
$x_1 \times x_2 = \frac{1}{6}$	
Exemple	
Pour	
l'équations	
$x^2 - 5x + 6$	
on a:	
$x_1 + x_2 = 5$	
et	
$x_1 \times x_2 = 6$	
Exercice 1	

I.		
1) Rés		
ouc		
re		
dar		
S		
l'éq		
uat		
ons		
sui		
ant		
e: x ²		
2) Fac		
oris		
er,		
le		
trir		
ôm		
e sui	,	
ant		
:		
p(x)		
3) Pos		
er		
le		
tab		
eau		
de		
sign		
e		
du		
trir		
ôm		
e		
p(z)		

Résoudre dans 2 le système suivant : $\{x + 3y = 4 \ 2x + y = 4 \}$ par deux méthodes différentes

Application 4

Résoudre dans ² les système suivant :

$$(S_1)$$
: $\{x - 2y = -12x - 3y = 1 \text{ et } (S_2): \{2x - 3y = -1x + y = 7\}$

	Exercice2
	Un premier
	bouquet de
	fleur est
	composé de 3
	iris et 4 roses
	jaunes, il
	coûte 48 Dh.
	Un second
	bouquet est
	composé de 5
	iris et de 6
	roses jaunes, il
	coûte 75 Dh.
	Calculer le
	prix d'un iris
Ш	et celui d'une
	rose jaune.
L	
ı	

Pr.LATRACH Abdelkbir

Equations - Inéquations - Systèmes

TRCSHF

Activité 1

1) Résoudre dans les équations suivantes :

$$(E_1)$$
: $6x + 7 = 2x - 1 | (E_2)$: $(x - 1)(x + 3) = 0$

2) Résoudre dans les inéquations suivantes :

$ (I_1): 2x + 1 \le 2 + x $
$(I_2): 4x - 2 > 2x - 4$
$(I_3): -3x - 1 \ge 0$

Activité 2

1) Résoudre dans les inéquations suivantes :

$$3x + 4 \le 0$$
 et $3x + 4 \ge 0$

2) Compléter le tableau suivant en utilisant

Propriété

Pour

Résoudre

l'équation

 $(a \neq 0)$ (E

on calcule

le

discriminan

t

$$\Delta = b^2 - 4ac$$

• On a les

cas suivants:

x	$-\infty$		$-rac{4}{3}$		$+\infty$
3x + 4		•••	o	•••	

Application 1

- 1) Poser le tableau de signe de : 4x 8 et -2x + 6
- 2) Poser le tableau de signe de (4x 8)(-2x + 6)
- 3) Déduire les solutions de l'inéquation :

$$(4x - 8)(-2x + 6) > 0$$

Activité 3

Résoudre dans ² le système suivant :

 ${3x + y = 8 \ 2x - y = 2}$ par deux méthodes différentes

Définition

-Une équation du second degré est une équation de la forme : $ax^2 + bx + c = 0$ où a, b et c sont des réels avec $a \neq 0$.

On appelle discriminant de l'équation

$$ax^2 + bx + c = 0$$
 le nombre réel, noté

$$\Delta = b^2 - 4ac$$

Application 2

Résoudre dans les équations suivantes :

$$3x^{2} + 2x + 1 = 0$$
 et
 $4x^{2} + 12x + 9 = 0$ et
 $x^{2} - 5x + 6 = 0$

Application3

Factoriser, si possible, les trinômes suivants :

$$3x^{2} + 2x + 1 = 0$$

$$4x^{2} + 12x + 9 = 0$$

$$x^{2} - 5x + 6 = 0$$
et

-Si
$$\Delta \ \square \ 0$$
 ,

l'équation

alors

$$(E)_{n'a}$$

pas de solution

dans [∞] et

on écrit:
$$S = \emptyset$$

$$-Si \Delta = 0$$

alors

l'équation

$$(E)$$
 a une

unique

solution

dans 🛚 :

$$x = -\frac{b}{2a}$$

et on écrit

$$S = \{-\frac{b}{2a}\}$$

-Si $\Delta \boxtimes 0$

alors

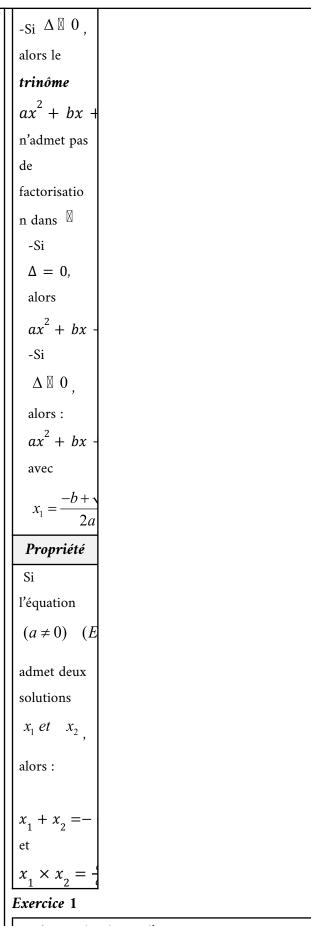
l'équation

(E) admet

deux

solutions

distinctes d


ans 🛚 :

$$x_1 = \frac{-b + \sqrt{}}{2}$$

et on écrit:

$$S = \{\frac{-b - \sqrt{a}}{2a}\}$$

Propriété

I- 1)Résoudre dans l'équations suivante :

$$x^2 - 2x - 3 = 0$$

- 2) Factoriser, le trinôme suivant : $p(x) = x^2 2x 3$
- 3) Poser le tableau de signe du trinôme p(x)
- 4)Déduire les solutions de l'inéquation p(x) > 0

l	L		
		$P_1(x) = -3x^2 + 7x - 2$	$P_2(x) = 2x^2 - 2x + 4$
		$P_1(x) = -3x^2 + 7x - 2$ $P_3(x) = 2x^2 + 2x - 12$	$P_5(x) = 5x^2 + 3x + 2$

Même questiones pour les trinômes suivants :

II-

Exercice2 Ahmed souhaite offrir un bouquet de fleurs à sa femme. Le fleuriste lui propose un bouquet composé de 35 roses; des roses rouges et des roses blanches

Sachant que les roses rouges sont vendues à 5,2DH l'unité et les roses blanches à 2,8DH l'unité Au total, Ahmed paiera 131,6DH Déterminer le nombre de roses blanches et de roses rouges achetées par Ahmed ?