Уважаемый студент, выполнение указанных заданий строго обязательно!

Группа ТЭК 1/1 Дата:06.03.2023г.

Дисциплина: ОДП химия Преподаватель: Воронкова А.А.

Тема 2.3.1 Спирты. Простые эфиры.

Цель:

- дидактическая:
- сформировать понятие о многоатомных спиртах, познакомиться со строением молекул глицерина и этиленгликоля;
- изучить физические и химические свойства спиртов, способы получения спиртов, применением спиртов;
- познакомиться с классом простых эфиров, на примере диэтилового эфира;
- **развивающая:** развивать химическое мышление, побуждать к научной, творческой деятельности;
- формировать здоровьесберегающие компетентности.

Формируемые компетенции: ОК 1, ОК 2, ОК 4, ОК 8-9

Лекция 13 2часа

2 Taca

План

- 1.Глицерин как представитель многоатомных спиртов. Качественная реакция на многоатомные спирты.
- 2. Применение глицерина. Получение спиртов.
- 3. Простые эфиры. Получение. Физические и химические свойства. Диэтиловый эфир и его использование.

<u>Многоатомные спирты</u> - это органические соединения, в молекулах которых содержится 2 или более гидроксильных групп. Они называются также <u>гликолями</u>. $R-(OH)_n$, n=2,3 и т.д.

 $_{1}^{\text{CH}_{2}\text{-OH}}$ — $_{2}^{\text{ОН}_{2}\text{-OH}}$ — $_{3}^{\text{ОН}_{2}\text{-OH}}$ — $_{3}^{\text{ОН}_{2}\text{-OH}}$ — $_{4}^{\text{ОН}_{2}\text{-OH}}$ — $_{4}^{\text{OH}_{2}\text{-OH}}$ — $_{4}^{\text{OH}_{2}\text{-$

 $CH_2 - OH$ CH - OH $CH_2 - OH$

 $\frac{\Gamma_{1}}{\Gamma_{2}}$ — OH $\frac{\Gamma_{1}}{\Gamma_{2}}$ — $\frac{\Gamma_{1}}{\Gamma_{1}}$ —

Химические свойства:

1 - Взаимодействие Этиленгликоля с натрием:

Взаимодействие глицерина с натрием

глицерат натрия.

2- Качественная реакция на многоатомные спирты

$$CuSO_4 + 2 NaOH = Cu(OH)_2 + Na_2 SO4$$

Наблюдали образование синего осадка гидроксида меди (II). К образовавшемуся осадку гидроксида меди (II) прилейте глицерин и смесь встряхните. Какие изменения произошли? Осадок растворяется и образуется раствор ярко-синего цвета, глицерат меди (II).

$$CH_2 - OH$$
 $H - O$ Cu $CH_2 - O$ Cu $CH_2 - O$ $CH_2 - O$ $CH_2 - OH$ $CH_2 - OH$ $CH_2 - OH$ $CH_2 - OH$

Глицерат меди.

$$2 \stackrel{\text{CH}_2-\text{OH}}{|}_{\text{CH}_2-\text{OH}} + \text{Cu} \stackrel{\text{OH}}{=}_{\text{OH}} \stackrel{\text{CH}_2-\text{O}}{|}_{\text{CH}_2-\text{O}} \stackrel{\text{CH}_2-\text{O}}{|}_{\text{CH}_2-\text{O}} \stackrel{\text{H}}{|}_{\text{CH}_2-\text{O}} \stackrel{\text{H}}{|}_{$$

3 - Взаимодействие глицерина с галогеноводородом (происходит замещение гидроксогрупп).

$$\mathrm{CH_2OH} - \mathrm{CHOH} - \mathrm{CH_2OH} + 3\mathrm{HCI} = \mathrm{CH_2CI} - \mathrm{CHCI} - \mathrm{CH_2CI} + 3\mathrm{H_2O}$$
 Трихлорпропан

4 - Реакция этерификации:

Рассмотрим вопрос о применении глицерина:

1 - Фармацевтической промышленности:

Фенкортозоль - средство противовоспалительное

Ундецен – противогрибковый препарат

Теймурова паста – противопотливая мазь

2 - Парфюмерной промышленности:

Глицерин применяется для смягчения сухой кожи, придает коже мягкость и эластичность. Простейший трехатомный спирт впитывает влагу из воздуха и удерживает её в эпидермисе. Предохраняет кремы от высыхания. Продолжительное использование раствора может вызвать потемнение кожи.

- 3 В кожевенном производстве
- 4 Сорбит и глицерин используется в пищевой промышленности
- 5 В качестве антифризов Водные растворы этиленгликоля и глицерина замерзают при низких температурах, поэтому их используют в качестве

антифризов — жидкостей с низкой температурой замерзания, применяемых для охлаждения двигателей внутреннего сгорания.

СПОСОБЫ ПОЛУЧЕНИЯ МНОГОАТОМНЫХ СПИРТОВ

Гидролиз алкилгалогенидов
$$\begin{array}{c} \text{CICH}_2\text{-CH}_2\text{CI} + 2\text{NaOH} \rightarrow \text{HOCH}_2\text{-CH}_2\text{OH} + \\ + 2\text{NaCI} \\ \\ \text{ОКИСЛЕНИЕ ЭТИЛЕНА ПЕРМАНГАНАТОМ КАЛИЯ (ЭТИЛЕНГЛИКОЛЬ)} \\ \\ \text{ГИДРОЛИЗ ЖИРОВ (ГЛИЦЕРИН)} \\ \\ \text{СИ}_2\text{-O-C} \\ \\ \text{СН}_2\text{-O-C} \\ \\ \text{СН}_2\text{-O-C} \\ \\ \text{СН}_2\text{-O-C} \\ \\ \text{R}_1 \\ \\ \text{СН}_2\text{-O-H} \\ \text{O}_{\text{R}_2} \\ \\ \text{O}_{\text{H}_2\text{C}}\text{-OH} \\ \text{OH-C} \\ \\ \text{R}_2 \\ \\ \text{O}_{\text{CH}_2\text{-O-C}} \\ \\ \text{CH}_2\text{-O-C} \\ \\ \text{R}_3 \\ \\ \text{CH}_2\text{-OH} \\ \text{OH-C} \\ \\ \text{R}_3 \\ \\ \text{CH}_2\text{-OH} \\ \text{OH-C} \\ \\ \text{R}_3 \\ \\ \text{CH}_2\text{-OH} \\ \text{OH-C} \\ \\ \text{R}_3 \\ \\ \text{OH-C} \\ \\ \text{R}_3 \\ \\ \text{CH}_2\text{-OH} \\ \text{OH-C} \\ \\ \text{CH}_2\text{-OH} \\ \\ \\ \\ \text{CH}_2\text{-$$

3.Простыми эфирами называют органические вещества, в которых два углеводородных радикала связаны атомом кислорода: R'—O—R", где R' и R" — различные или одинаковые радикалы.

Простые эфиры могут быть предельными, непредельными, циклическими, ароматическими.

предельные	непредельные
СН3 H ₃ C — СН3 диметиловый эфир СН3 Н ₃ C — С—О— СН СН3 метил-трет-бутилов	
ароматические	циклические
O—CH ₃	
метилфениловый эфир	этиленоксид 1,4-диоксан тетрагидрофур (диоксан)

Простые эфиры рассматриваются как производные спиртов. Названия этих соединений строятся из названий радикалов (в порядке возрастания молекулярной массы) и слова «эфир». Например, CH_3 -O- CH_3 — диметиловый эфир; C_2H_5 -O- CH_3 — метилэтиловый эфир.

Физические свойства

Два первых простейших представителя – диметиловый и метилэтиловый эфиры – при обычных условиях газы, все остальные – жидкости.

Диэтиловый эфир (C_2H_5 -O- C_2H_5)— бесцветная легкокипящая прозрачная жидкость (t кип. 35,5 °C), малорастворимая в воде. С этиловым спиртом смешивается в любых отношениях. Температура воспламенения — 9,4°C, образует с воздухом взрывоопасную смесь. Вызывает набухание резин. Широко применяется в качестве растворителя, в медицине (ингаляционный наркоз), вызывает привыкание человека, ядовит.

Простые эфиры имеют более низкие температуры кипения и плавления, чем изомерные им спирты. Эфиры практически не смешиваются с водой. Это объясняется тем, что простые эфиры не образуют водородных связей, т.к. в их молекулах отсутствуют полярные связи О-Н.

Простые эфиры хорошо растворяют многие органические вещества и поэтому часто используются как растворители. Эфиры имеют приятный запах.

Химические свойства

Простые эфиры — малоактивные соединения, они значительно менее реакционноспособны, чем спирты.

1.Расщепление простых эфиров HJ и HBr

Простые эфиры разлагаются под действием концентрированных иодоводородной или бромоводородной кислот:

$$R-O-R'+HI \rightarrow ROH+R'I$$

2. Образование комплексных соединений

Образование нестойких солей оксония (подобных солям аммония) в результате взаимодействия с сильными кислотами:

$$R_2O + HC1 \rightarrow [R_2OH]^+C1$$

$$C_2H_5 \Rightarrow \ddot{C}_2H_5 \Rightarrow \ddot{C}_2H_5 \Rightarrow \ddot{C}_1$$

$$C_2H_5 \Rightarrow \ddot{C}_2H_5 \Rightarrow \ddot{C}_1$$

3. Окисление эфиров, образование перекисей

Несмотря на относительную химическую инертность, эфиры легко образуют при хранении на воздухе перекиси:

$$CH_3$$
 CH_3 CH_3

Перекиси являются причиной взрывов в конце перегонки эфиров, поэтому эфиры тщательно очищают от перекисей перед перегонкой и применением.

Получение

1. Межмолекулярная дегидратация спиртов

Симметричные простые эфиры \mathbf{R} – \mathbf{O} – \mathbf{R} получают при межмолекулярной дегидратации спиртов:

$$RO-H+HO-R \xrightarrow{H_2SO_4} R-O-R+H_2O$$

При этом в одной молекуле спирта разрывается связь O-H, а в другой — связь C-O. Реакцию можно рассматривать как нуклеофильное замещение группы HO^- (в одной молекуле спирта) на группу RO^- (от другой молекулы):

2. Взаимодействие галогенпроизводных с алкоголятами (реакция Вильямсона)

Эфиры несимметричного строения **R–O–R'** образуются при взаимодействии алкоголята и галогенуглеводорода. Например, метилэтиловый эфир можно получить из этилата натрия и хлорметана:

В этой реакции происходит нуклеофильное замещение галогена (Cl^-) на алкоксигруппу (CH_3O^-):

$$CH_3$$
 CH_3 CH_3 CH_3 CH_5 C_2 CH_5 CH_5 CH_5 CH_5 CH_5 CH_3 CH_3

3. Дегидратация спиртов в присутствии ионов водорода как катализаторов

$$2C_2H_5OH \xrightarrow{H^+} H_5C_2-O-C_2H_5$$

4. Получение гетероцикических кислородсодержащих соединений (циклические простые эфиры)

Применение

Вследствие относительной химической инертности, эфиры часто применяются в качестве органических растворителей (диэтиловый эфир, тетрагидрофуран, диоксан). Эфиры с разветвленными алкильными радикалами (например, метил-трет-бутиловый эфир) используются в последнее время в качестве антидетонационных добавок в моторные топлива (бензины), заменяя чрезвычайно вредный тетраэтилсвинец (ТЭС) — $Pb (CH_3CH_2)_4$.

Простые эфиры фенолов и нафтолов имеют своеобразные запахи и применяются в парфюмерии.

Контрольные вопросы

	1) $C_n H_{2n+2} O_2$ 2) $C_n H_{2n} O_2$		$C_n \mathbf{H}_{2n+2} \mathbf{O}$ $C_n \mathbf{H}_{2n+1} \mathbf{O}_2$
	Общая формула предельных двухатомных спиртов		
	Выберите один вариант ответа:		
	_ 1		
	2		
	□ 3		
1.	4		

	Укажите формулу пропандиола-1,3
	Выберите один вариант ответа:
	CH2OH-CHOH-CH2OH
	CH2OH-CH2-CH2OH
	☐ CH2OH-CHOH-CH3
2	CH2OH-CH2-CHOH-CH3
4.	

- 3. Являются ли двух и трех атомные спирты гомологами?
- **4.** Какое химическое свойство спиртов отражает получение сложных эфиров, которые применяются в изготовлении моющих средств и косметики, придают им фруктовые, цветочные и др. запахи?
- **5.** Водный раствор этиленгликоля замерзает только при -66. Добавка, какого многоатомного спирта удлиняет срок службы водяных насосов автомашин
- 6. Записать химические реакции:

$$C_2H_5OH + HCI =$$

 $C_3H_7OH + CH_3OH =$

7. решить цепочку превращений веществ:

$$X \rightarrow C_2H_5OH \rightarrow C_2H_5OCH_3$$

Задание: 1. Изучите материал лекции

- 2. материал учебника 2)§12
- 3. ответить на контрольные вопросы в тетради

Для максимальной оценки задание нужно прислать до 15.00 ч. 06.03.2023г. Выполненную работу необходимо сфотографировать и отправить на почтовый ящик voronkova20.88@gmail.com, Александра Александровна (vk.com), добавляемся в Блог преподавателя Воронковой А.А. (vk.com) -здесь будут размещены видео материалы

-ОБЯЗАТЕЛЬНО ПОДПИСЫВАЕМ РАБОТУ НА ПОЛЯХ + в сообщении указываем дату/группу/ФИО