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Fair use data policy

Carbon Monitor data are made freely available to the public and the scientific community
in the belief that their wide dissemination will lead to greater understanding and new
scientific insights. The availability of these data does not constitute publication of the
data. The data providers rely on the ethics and integrity of the user to ensure that they
receive fair credit for their work. If the data are obtained for potential use in a publication
or presentation, we kindly ask you to inform us at the outset of the nature of this work. If
the Carbon Monitor data are essential to the work, or if an important result or conclusion
depends on the Carbon Monitor data, co-authorship may be appropriate. This should be
discussed at an early stage in the work. Manuscripts using the Carbon Monitor data
should be sent to for review before they are submitted for publication so we can ensure
that the quality and limitations of the data are accurately represented. Contacts about
the data: contact.carbonmonitor@gmail.com or zhuliu@tsinghua.edu.cn ( for Asia and
other regions ), philippe.ciais@lIsce.ipsl.fr ( for Europe ), sjdavis@uci.edu ( for North
America )

Disclaimer

Carbon Monitor data are made freely available to the public with the above fair use open
data_policy. We encourage users to cite the data by
https://doi.org/10.1038/s41467-020-18922-7,
https://doi.org/10.1038/s41597-023-02284-y or https://doi.org/10.31223/X5BS5B.
Carbon Monitor is a living dataset subject to updates and the values are expected to
change, as new data get included. In the process of updating our daily CO2 emission
products, errors may be corrected, revisions may be made in the calculation methods,
and new information may be used. Data files available for download and graphs are
associated to a day of release. In case of questions regarding data and history previous
releases, please contact us at contact.carbonmonitor@gmail.com. All information
displayed and provided can be used at the own responsibility of users, and does not
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engage any responsibility from research institutions supporting Carbon Monitor and
partner institutions.

What is Carbon Monitor?

Carbon Monitor is a frequently-updated daily CO, emission dataset, to monitor the
variations of CO, emissions from fossil fuel combustion and cement production since
January 1% 2019 at national level with near-global coverage. Daily CO, emissions are
estimated from a diverse range of activity data, including: hourly to daily electrical power
generation data of 29 countries, monthly production data and production indices of
industry processes of 62 countries/regions, daily mobility data and mobility indices of
road transportation of 416 cities worldwide. Individual flight location data and monthly
data were utilised for aviation and maritime transportation sectors estimates. In addition,
monthly fuel consumption data that corrected for daily air temperature of 206 countries
were used for estimating the emissions from commercial and residential buildings.
Carbon Monitor data show the dynamic nature of CO, emissions through daily, weekly
and seasonal variations as influenced by workdays and holidays, as well as the
unfolding impacts of the COVID-19 pandemic. Carbon Monitor shows a 7.8% decline of
CO, emission globally from Jan 1% to Apr 30™in 2020 when compared with the same
period in 2019, and detects a re-growth of CO, emissions by late April mainly attributed
to the recovery of economic activities in China and partial easing of lockdowns in other
countries.

Background

The main cause of global climate change is the anthropogenic emission of CO, to the
atmosphere from geological carbon reservoirs, namely fossil fuel burning and cement
production. Dynamic information on those fossil CO, emissions is critical for
understanding the human forcing of climate change. Further, the combustion of fossil
fuels emits short-lived pollutants such as SO,, NO, and CO which affect air quality and
climate. Therefore, information on CO, emissions also allows a more accurate
quantification od the emissions of those pollutants for air quality and climate studies’?.
Estimates of fossil CO, emissions®® rely on activity data (e.g., the amount of fuel burnt or
energy produced) and emission factors (See Methods)®. The sources of these data are
mainly national energy statistics, and organizations such as CDIAC, BP, EDGAR, IEA
and GCP also produce estimates for different groups of countries or for all
countries™'%'2, Fossil CO, emissions are usually on an annual basis lagging the very
year’s emissions by at least one year.

The uncertainty associated with fossil CO, emissions is smaller for large emitters or the
globe, than that of emissions from co-emitted pollutants for which uncertain technological
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factors influence the ratio of emitted pollutants to CO, "', The uncertainty of global
fossil CO, emissions varies between +6% and +10%°>"'®" (+20), reflecting uncertain
activity data and the emission factors. For activity data, the amount of fuel burnt is
recorded by energy production and consumption statistics, hence uncertainties arise
from errors and inconsistencies in reported figures from different sources. For emission
factors, different fuel types, quality and combustion efficiency together contribute to the
uncertainty. For example, coal used in China is of variable quality and so is its emission
factors, EF, both before (raw coal) and after cleaning (cleaned coal) varies, which was
found to cause a 15% uncertainty range for CO, emissions. On the other hand, there is
limited temporal change of emission factors. For example, annual difference of emission
factors for coal was within 2% globally'® while the variation of emission factors, EF, for oil
and gas was found to be much smaller.

Given the fact that uncertainty of fossil CO, emissions production is in general <
+10%'%"°?° and the annual difference of emission factors is < 2%, CO, emissions
during a few years period like Carbon Monitor can be estimated from absolute and
relative change of activity through time, ignoring emissions factors changes. This method
is used for updating changes of CO, emissions’?"? 2* understanding that official and
comprehensive CO, national inventories reported by countries to the UNFCCC only
become available with a lag of two years for Annex-l countries and several years for
non-Annex-1%*. As such, a higher spatial, temporal and sectoral resolution of fossil CO,
emissions than annual and national level can be obtained by using spatial, temporal and
sectoral activity data to disaggregate annual national emissions®'*?*?° The level of
granularity depends on available data, such as location and operations of point sources®
(i.e. power generation for a given plant), regional statistics of energy use (i.e. monthly
fuel consumption) °2°, and of proxies for the distribution of emissions such as population
density, night lights, urban forms and GDP data ...%"%3%,

NEW Release of 8 Oct 2025

1) Using NGHGIs as baseline emissions

Instead of using a single baseline year (2019), we update the baseline emissions to
cover the period 2019-2021. This update mainly relies on the national greenhouse gas
inventories (NGHGIs) submitted to UNFCCC (Table 1), with IPCC sector emissions
systematically mapped to the Carbon Monitor sectors.

Table 1 Data sources of baseline emissions in updated Carbon Monitor data.
Nation/Region Reference Years (UNFCCC Submission)
Brazil, European Union, Japan, Russia, 2019-2022 (BTR1)

United States, United Kingdom
China 2020-2021 (BTR1)

India 2019 (NC3), 2020 (BUR4)

ROW 2019-2022 (EDGAR_2025_GHG)




2) Updated activity data and methodology in the ROW region

We update the estimation for the power and industry sectors in the Rest of the World
(ROW) region. To approximate emission changes in ROW, we use the average emission
variations observed in countries with available data (Table 2). These countries represent
22% and 53% of total CO2 emissions in the ROW region, respectively.

Table 2 Countries with available data in ROW region.

Sector Countries/regions

Power Argentina, Australia, Bangladesh, Bolivia, Chile, Costa Rica, Dominican
Republic, El Salvador, Georgia, Mexico, Moldova, New Zealand, Norway,
Peru, South Africa, Switzerland, Turkey, Uruguay

Industry Argentina, Bosnia and Herzegovina, Canada, Chile, Colombia, Indonesia,
Israel, Republic of Korea, Malaysia, Mexico, Norway, Pakistan, Peru,
Philippines, Qatar, Saudi Arabia, Serbia and Montenegro, Singapore, South
Africa, Sri Lanka, Turkey, Ukraine, Uruguay, Viet Nam

Release of Carbon Monitor Europe

Carbon Monitor Europe daily CO2 emissions have been updated to May 31, 2022.
The detailed dataset could be found at: https://eu.carbonmonitor.org/. The power
sector of CM-EU has been updated to use fuel-specific emission factors.

There are some differences on emissions between EU27&UK and some EU
countries of Global CM and those of CM-EU. The detailed reasons are as follows.

For the power sector, there are four EU countries (Lithuania, Luxembourg, Malta
and Sweden) lacking power generation data. So we assume a linear relationship
between their daily emissions and the total daily emissions of the 23 EU countries
and the United Kingdom. The emissions of EU27&UK in CM-EU are the sum of all
28 countries. While the emissions of EU27&UK in global CM are directly based on
annual emissions in 2019 and daily power generation data.

For the industry sector, the emissions in CM-EU are based on the country-level
industry production index (IPI) from Eurostat. While global CM used the IP| seasonal
adjusted from CEIC.

Release of 7 May 2022
Power sector:
Using fuel-specific emission factors

An update of country level power emission is calculated with country level activity data)
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with fuel specific emission factors (EF*) for list of countries/regions including China,
India, United States, EU27&UK, Japan, Brazil, United Kingdom, France, Germany, ltaly
and Spain, with the following equation:

Emis = ZZ(ADI"" XEF:J)

Where i,j,k are indices for regions and fuel types respectively. The fuel specific emission
factors are calculated by correcting corresponding generic IPCC emission factors (not
country specific) with country specific baseline emissions (from 2019), with the following
equations:

Emisi2019—baselme

Y(ADF™ x EF[F¢)

EFL'; — EF}IPCC %

The fuel sources considered are coal, natural-gas and petroleum. The source for activity
data comes from national grids as specified in the previous method description. The
IPCC emission factors used for this analysis are: 820 gCO2/kWh for coal fired power,
490 gCO2/kWh for natural-gas fired power and 650 gCO2/kWh for petroleum fired
power.

Updating the estimation in ROW countries

STEP1: estimating monthly emissions with available monthly electricity production data
(total production or thermal production data are used, and the fuel-specific EFs are NOT
applied) - 11 ROW countries/regions are available, contributing 46% of the total ROW
CO2 emissions

STEP2: disaggregating monthly emissions to daily level with available daily electricity
production data (the thermal production data are used, and the fuel-specific EFs are
NOT applied) - 2 ROW countries are available, contributing 9% of the total ROW CO2
emissions

Industry sector :
Updating the estimation in ROW countries

STEP1: estimating monthly emissions with available monthly industrial production index
(IP1) data - 23 ROW countries/regions are available, contributing 46% of the total ROW
CO2 emissions

STEP2: disaggregating monthly emissions to daily level by using the updated daily ROW
power emission data

Ground transportation sector:



Updating activity data in China

As TomTom stopped collecting Chinese Data in April, 2020, in the previous versions, we
extrapolated the time series of TomTom congestion level by repeating the data of the last
week available. We are aware that this is a problem for us to track the emissions of
China since that time. Now, we use the congestion level from AutoNavi Software Co.,
Ltd. (Gaode in Chinese) to replace TomTom when its data are not available. We
compared Gaode congestion indices with TomTom ones and derived a method to
harmonize the two products using the data from the common period (from Sep 2020 to
Mar 2021). In the latest version of Carbon Monitor, we combined TomTom data for 2020
and Gaode data since 2021 into a harmonized time series. The emissions from the
ground transportation sector for China were estimated based on this new time series.
Compared with previous releases, the ground transportation emissions of China were
thus changed.

Release of 28 October 2021

International shipping emission data update

The international shipping emissions are included in the ROW in the industry sector.

Release of 7 April 2021
U.S. emission data update
This is the first release of the state-level U.S. Carbon Monitor, using methods as follows:
State-level annual and monthly emissions based on EIA’s energy data.

Annual total energy-related CO2 emissions by sector and source in 2018 for all the
states in the U.S. are directly obtained from State Carbon Dioxide Emissions Data
released by U.S. Energy Information Administration (EIA). We then disaggregate the
state-level annual emissions in 2018 into monthly level based on monthly consumption
data of key fuels (e.g., motor gasoline, diesel, jet fuel and natural gas) which are
updated more frequently at state level from EIA . We assume that the emission factors
remain unchanged for each state in 2019 and 2020 when comparing with 2018. We
estimate state-level monthly emissions by sector in 2019 and 2020 based on the change
of monthly consumption data of key fuels in 2019 and 2020 compared to the same
period of 2018.

For the power sector, we use state-level monthly fuel-specific consumption data from
Electric Power Monthly. For the industrial, residential and commercial sectors, we use
state-level monthly natural gas consumption for each sector, with each fuel type



constrained by the trend of national-level total monthly consumption. For road
transportation sector, we use prime supplier sales volumes of motor gasoline and diesel.
For the aviation sector, we use prime supplier sales volumes of kerosene-type jet fuel.

State-level daily emissions in 2019 and 2020.

For 2019 and 2020, the state-level monthly emissions are allocated to each day by
state-level daily indicators for each sector. For the power sector, we use state-level daily
electricity generation produced by coal, petroleum and gas by summarizing the electricity
produced of 63 balancing authorities from the EIA’'s Hourly Electric Grid Monitor
(representing >93% of US electricity production). We remove the outliers and fill the
missing values by using similar methods of Ruggles et al. (2020). For industrial sector,
we use daily natural gas pipeline deliveries to industrial end users from Genscape.

For road transportation, we use daily distance traveled based on the Trips by Distance
data from Bureau of Transportation Statistics. For the aviation sector, we use daily
kilometers flown of flights (domestic and international) per state collected from the
FlightRadar24 database. We classify the kilometers 255 flown per aircraft class (light,
medium and heavy), with the emission factors per km flown of medium and large
aircrafts are assumed to be 1.5 and 3 times that of small aircrafts. Emissions are
attributed to the state of departure airport and are calculated separately for U.S.
domestic flights and international flights departing from each state, with monthly totals
rescaled according to jet fuel consumption.

For residential and commercial sector, we estimate daily emissions based on heating
degree days (HDDs). We calculate daily and monthly population-weighted HDDs for
each state based on the ERA5 reanalysis of 2-m air temperature. Residential and
commercial emissions are split into heating emissions and cooking 2emissions:
emissions from cooking are assumed to remain independent of temperature; emissions
from heating are assumed to be a linear function of the heating demand (HDDs). A
regression model based on monthly HDDs and monthly residential and commercial
emissions in 2019 is developed to estimate the 9 annual percentage of emissions from
heating demand in each state. We then estimate daily emissions in 2019 and 2020
based on changes in daily HDDs.

We have tried to correct the electricity use data and the natural gas consumption data of
the residential and commercial sector for the temperature effect, i.e., energy
consumption change caused by temperature change from year 2019 to year 2020. This
was achieved by establishing linear regressions between monthly energy consumption
and HDDs and CDDs (cooling degree days) for each state. Linear regression models are
developed based on monthly energy consumption and monthly HDDs and CDDs data in
2019. Similar to previous studies, we include HDDs and CDDs in the regression models
of electricity consumption, and CDDs only in the regression models of residential and
commercial natural gas consumption. We then use the linear regression model and the
temperature change between year 2020 and year 2019 (i.e., changes in HDDs and



CDDs on the same month of these 2 years) to calculate the corrected energy
consumption for year 2020.

Data availability

All data sources for emissions estimates can be found in the Methods of Hong et al.:
https://eartharxiv.org/repository/view/2233/. The energy data are obtained from EIA
(https://www.eia.gov). The GDP data are from U.S. Bureau of Economic Analysis
(https://apps.bea.gov/regional/downloadzip.cfm). The VMT data are from U.S.
Department of Transportation

(https://www.fhwa.dot.gov/policyinformation/travel _monitoring/tvt.cfm).

Data sources for the U.S. Carbon Monitor Project

Sector Data type Source

State-level monthly energy consumption data

Power sector fuel-specific EIA Electricity

consumption data ) .
(https://www.eia.gov/electricity/data/state/)

Industry sector  natural gas EIA Natural Gas

consumption )
(https://www.eia.gov/naturalgas/data.php)

Ground prime supplier sales  EIA Petroleum & Other Liquids
transportation volumes of motor

gasoline and diesel ~ (MPS//ww

w.eia.gov/petroleum/data.php)

Aviation prime supplier sales  EIA Petroleum & Other Liquids
volumes of )
kerosene-type jet (https://www.eia.gov/petroleum/data.php)
fuel

Residential and  natural gas EIA Natural Gas

commercial consumption

(https://www.eia.gov/naturalgas/data.php)

State-level daily indicators



https://eartharxiv.org/repository/view/2233/
https://eartharxiv.org/repository/view/2233/
https://www.eia.gov
https://apps.bea.gov/regional/downloadzip.cfm
https://www.fhwa.dot.gov/policyinformation/travel_monitoring/tvt.cfm
https://www.eia.gov/electricity/data/state/
https://www.eia.gov/naturalgas/data.php
https://www.eia.gov/petroleum/data.php
https://www.eia.gov/petroleum/data.php
https://www.eia.gov/petroleum/data.php
https://www.eia.gov/naturalgas/data.php

Power sector thermal generation EIA Hourly Electric Grid Monitor
produced by coal,

petroleum and gas (https://www.eia.gov/beta/electricity/gridmonitor/)

Industry sector  pipeline deliveries to  Genscape Natural Gas

industrial end users
(https://www.genscape.com)

Ground distance traveled Trips by Distance data from Bureau of Transportation
transportation Statistics

(https://data.bts.gov/Research-and-Statistics/Trips-by
-Distance/w96p-f2qv)

Aviation kilometers flown of FlightRadar24 database

flights ,
(https://www.flightradar24.com)

Residential and  population-weighted ERAS reanalysis of 2-meters air temperature

commercial heating degree days ) .
(https://cds.climate.copernicus.eu/)

Update of baseline emissions in 2019

We update our baseline annual emissions in 2019 of each country and sectors based on

the latest emission data release from EDGAR

(https://edqgar.jrc.ec.europa.eu/overview.php?v=booklet2020).

Release of 17 June 2020

Overview of Carbon Monitor daily CO, emissions production

Gaining from past experiences of constructing annual inventories and newly compiled
activity data, Carbon Monitor is a novel daily dataset of CO, emissions from fossil fuel
burning and cement production at national level. The countries/regions include China,
India, U.S., Europe (EU27 & UK), Russia, Japan, Brazil, and rest of world (ROW), as
well as the emissions from international bunker fuels from ships and aircraft. This
dataset, known as Carbon Monitor, is separated into several key emission sectors:
power sector (39% of total emissions), industrial production (28%), ground transport
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(18%), air transport (3%), ship transport (2%), and residential consumption (10 %). For
the first time, daily emissions estimates are produced for these six sectors, based on
dynamically and regularly updated activity data. This is made possible by the availability
of recent activity data such as hourly electrical power generation, traffic indices, airplane
locations and natural gas distribution, with the assumption that the daily variation of
emissions is driven by the activity data and that the contribution from emission factors is
negligible, as they evolve at longer time scales, e.g. from policy implementation and
technology shifts.

The framework of this study is illustrated in Fig 1. We calculated national CO, emissions
and international aviation and shipping emissions since the Jan 152019, drawing on
hourly datasets of electricity power production and their CO, emissions in 29 countries
(thus including the substantial variations in carbon intensity associated with the variable
mix of electricity production), daily vehicle traffic indices in 416 cities worldwide, monthly
production data for cement, steel and other energy intensive industrial products in 62
countries/regions, daily maritime and aircraft transportation activity data, and either
previous-year fuel use data corrected for air temperature to residential and the
commercial buildings. Together, these data cover almost all fossil fuels and industry
sources of global CO, emissions, except for the emission from land use change (up to
10% of global CO, emissions) and non-fossil fuel CO, emissions of industrial products
(up to 2% of global CO, emissions)? in addition to cement and clinker (i.e. plate glass,
ammonia, calcium carbide, soda ash, ethylene, ferroalloys, alumina, lead and zinc etc.).

While daily emission can be directly calculated using near-real-time activity data and
emission factors for the electricity power sector, such an approach is difficult to apply to
all sectors. For the industry sector, emissions can be estimated monthly in some
countries. For the other sectors, we used proxy data instead of daily real activity data, to
dynamically downscale the annual or monthly CO, emissions totals on a daily basis. For
instance, traffic indices in cities representative of each country were used instead of
actual vehicle counts and categories, combined with annual national total sectoral
emissions, to produce daily road transportation emissions. As such, for the road
transportation, air transportation and residential use of fuels sectors in most countries,
we downscaled monthly or annual total emission data in 2019 to calculate the daily CO,
emission in the very year. Subsequently, we scaled monthly totals of 2019 by daily
proxies of activities to obtain daily CO, emissions data in the first four months of 2020,
during the unprecedented disturbance of the COVID-19 pandemic. The Carbon Monitor
near-real-time CO, emission dataset shows a 7.8% decline of CO, emission globally
from January 1 to April 30" in 2020 when compared with the same period in 2019, and
detects a re-growth of CO2 emissions by late April which are mainly attributed to the
recovery of economy activities in China and partial easing of lockdowns in other
countries.
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Fig 1. Overview of Carbon Monitor data production chain

Annual total and sectoral emissions per country / group of
countries for the baseline year of 2019

According to the IPCC Guidelines for emission reporting*, CO, emissions should be
calculated by multiplying activity data by corresponding emission factors.

_ (1)
Emis = ZZZ(ADU',( . EFi’]_‘k)

Where i, j, k are indices for regions, sectors and fuel types respectively. EF can be
further separated into the net heating values v for each fuel type (the energy obtained
per unit of fuel), the carbon content ¢ per energy output (t C/TJ) and the oxidation rate o
(the fraction (in %) of fuel oxidized during combustion):

(2)

Emis = ZZZ(ADLM ) (vi_j,k ' Ci,j,k ' Oi,j,k)

Due to the lag of more than two years in publishing governmental energy statistics, we
started from the latest CO, emissions estimates up to 2018 from current CO,
databases™'*"2. For 2019, we completed this information to obtain annual total emissions
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based on literature data and disaggregated the annual total into daily emissions (see
below). For 2020, we estimated daily CO, emissions by using daily changes of activity
data in 2020 compared to 2019. The CO, emissions and sectoral structure in 2019 for
countries and regions were extracted from EDGAR V4.3.2"?" and V5.0 for each country,
and national emissions were scaled to the year 2019 based on our own estimate (for
China) and data from the Global Carbon Budget 2019?" (for other countries):

o - Emis

Emlsr,2019 = T 1,2018 (3)

For China, we firstly calculated CO, emissions in 2018 based on the energy
consumption by fuel types and cement production in 2018 from China Energy Statistical
Yearbook?® and the National Bureau Statistics® following Equation 1. We projected the
energy consumption in 2019 from the annual growth rates of coal, oil and gas reported
by Statistical Communiqué®® and applied China-specific emission factors *° to obtain the
annual growth rate of emissions in 2019. For US and Europe (EU27&UK), we used
updated emission growth rates in 2019 published by CarbonBrief
(https://www.carbonbrief.org/guest-post-why-chinas-co2-emissions-grew-less-than-feare
d-in-2019). For countries with no estimates of emission growth rates in 2019 such as
Russia, Japan and Brazil, we assumed their growth rates of emissions was 0.5% based
on the emission growth rate of the rest of world %.

In this study, the EDGAR sectors were aggregated into four sectors (): power sector,
industry sector, transport sector (ground transport, aviation and shipping), and residential
sector. This is consistent with the new activity data we used below to compute daily
variations. We used the sectoral distribution in 2018 from EDGAR to infer the sectoral
emissions in 2019 for each country/region r (Equation 4), assuming that the sectoral
distribution remained unchanged in these two years.

7,5,2019 12019 Emis_, o

Table 1 Scaling factors for the annual emission change in 2019 compared to

2018
Countries/Regions Scaling Factor (%) Source
China 2.8% Estimated in this study
India 1.8% Global Carbon Budget 2019%
us 2.4% Carbon Brief, 2020
EU27&UK -3.9% Carbon Brief, 2020
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Russia 0.5% = ROW

Japan 0.5% = ROW
Brazil 0.5% = ROW
ROW 0.5% Global Carbon Budget 2019%

According to IPCC Guidelines*, CO, emissions for each sector should be calculated by
multiplying sectoral activity data by their corresponding emission factors following
Equation 5:

Emis = AD - EF (5)
N N N

The emissions were calculated following this equation separately for the power sector,
the industry sector, the transport sector, and the residential sector, as explained in the
following.

Daily power sector (electricity production) CO, emissions

The CO, emissions from the power sector were calculated by adapting Equation 5 with
sector specific activity data (i.e. electricity production/thermal electricity production) and
corresponding emission factors (Equation 6).

Emis = AD -EF (6)
power power power

Normally the emission factors change slightly over time but can be assumed to remain

constant over the two years period considered in this study, compared to the huge

changes in activity data. Thus, we assumed that emission factors remained unchanged

in 2019 and 2020, and calculated the daily emissions as follows:

. . ADdaily (7)
Emis, = = Emis .
daily yearly — AD

yearly

The data sources of daily activity data in the power sector are described as Table 2. The
countries/regions listed in Table 2 account for more than 70% of the total CO, emissions
in the power sector. For emissions from other countries (ROW), which are not listed in
Table 2, we estimated the power sector emission changes in 2020 based on the period
of the national lock-down. For daily emission changes of ROW in 2019, we firstly
assumed a linear relationship between daily global emission and daily total emissions of

the ROW countries listed in Table 2. Then we classified each country according to
15



whether they adopted lock-down measures, based on official reports. Based on daily
emission data of the power sector of the countries listed in Table 2, we calculated the
respective average change rates of power sectors in ROW countries between January
and April, assuming changes started since the date of lock-down in each country.
Emissions from countries with no lock-down were left unchanged. We then applied these
country-specific January to April emissions growth rates to estimate daily changes for
each ROW country in 2020, based on their lock-down measures, and aggregated them
into daily emission for ROW.

Table 2 Data sources of activity data for estimating power sector emissions

Country/Reg Data source Sectors included Resolutio

ion n

China National Grid Daily Electric Load Thermal production Daily

India Power System Operation Corporation Thermal production Daily
Limited (summarizing the
(https://posoco.in/reports/daily-reports/) production of Coal,

Lignite, and Gas,
Naphtha & Diesel)

us Energy Information Administration’s Thermal production Hourly
(EIA) Hourly Electric Grid Monitor (summarizing the
(https://www.eia.gov/beta/electricity/grid  production of Coal,
monitor/) Petroleum, and

Natural Gas)

EU27 & UK ENTSO-E Transparency platform Thermal production Croatia,
(https://transparency.entsoe.eu/dashboar (summarizing the Cyprus,
d/show) production of Ireland,

Fossil.Brown.coal.Lig Luxembour
nite, g and
Fossil.Coal.derived.g Malta
as, Fossil.Gas, excluded
Fossil.Hard.coal, due to
Fossil.Oil, unsatisfact
Fossil.Oil.shale, and  ory data
Fossil.Peat.) quality or
missing
data
Russia United Power System of Russia Total generation Hourly

(http://www.so-ups.ru/index.php)
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Japan Summarizing electricity data from 10 Total generation Hourly
electricity providers in Japan (Hokkaido
Electric Power, Tohoku Electric Power
Network, Tokyo Electric Power
Company, Chubu Electric Power Grid,
Hokuriku Electric Power Transmission &
Distribution Company, Kansai Electric
Power, Chugoku Electric Power
Company, Shikoku Electric Power
Company, Kyushu Electric Power and
Okinawa Electric Power Company).

Brazil Operator of the National Electricity Thermal production Hourly
System (http://www.ons.org.br/Paginas/).

Daily industrial production and cement production CO,
emissions

While daily production data is not directly available for industrial and cement production,
the monthly CO, emissions from industry and cement production sector could be
calculated by using monthly statistics of industrial production, and daily data of electricity
generation to disaggregate the monthly CO, emissions into daily values. This calculation
assumes a linear relationship between daily electricity generation for industry and daily
industry production data to compute daily industry production.

The emissions from industrial production during the fossil fuel combustion were
calculated by multiplying activity data (i.e., fossil fuel consumption data in the industrial
sector) by corresponding emission factors by type of fuel. Due to limited data availability,
we assumed a linear relationship between daily industrial production and industrial fossil
fuel use, and the emission factors remaining unchanged. So, the monthly emissions in
2019 in country/region could be calculated by following equation:

Emis = Emis
monthly,2019,r yearly,2019,r

(P /P ) (8)

monthly,2019,r" ~ yearly,2019,i,r
Emissions from cement production during the chemical process of calcination of calcite
were calculated with the same Eq.(8), which is normally used by multiplying the cement
production by the emission factor of this industry.

Specifically, for China, the emissions from the industry sector were further divided into
steel industry, cement industry, chemical industry, and other industries (indicated by
index i):
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. . (9)
Emis =Y Emis

- (P P
monthly,2019,China ,2019,i (monthly,2019,i/ yearly,2019,i)

For monthly emissions in 2020 in country/region r, we used the following equation:

Emis = Emis - (P P
monthly,2019,r monthly,2019,i (monthly,2020,r/ monthly,2019,r)

(10)
where is the industrial production in different industrial sectors (in China) or a total
Industrial Production Index (in other countries) as listed in Table 3. In China’s case, the
January and February estimates were combined as no individual monthly data was
reported by sources listed in Table 3 for these two months. The monthly industrial
emissions were disaggregated to daily emissions using daily electricity data, as
explained above.

Lacking the latest Industrial Production Index in April 2020 for Europe, India, Japan,
Russia and Brazil, we adopted monthly growth rates of industrial output from Trading
Economics (https://tradingeconomics.com) based on preliminary survey data. For other
countries not listed in Table 3, we used the same method as described for the power
sector to calculate the daily industry emissions from ROW.

To allocate monthly emissions into daily emissions, we used the weight of daily electricity
production to monthly electricity production, as daily industry data were not available

Emis = = Emis Y (Elecda”y/Elec ) (11)

daily monthl monthly

Table 3 Data sources for industrial production

Country/Region Sector Data Data source

China Steel Crude steel production WNorld Steel Association website
ndustry ‘https://www.worldsteel.org/)
Cement Cement and clinker \ational Bureau of Statistics
Industry oroduction ‘http://lwww.stats.gov.cn/english/)
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India

Us

EU & UK

Russia

Japan

Brazil

Chemical
ndustry

Other
ndustry

sulfuric acid, caustic soda,
soda ash, ethylene,
chemical fertilizer,
chemical pesticide,
orimary plastic and
synthetic rubber

crude iron ore, phosphate
ore, salt, feed, refined
adible vegetable oil, fresh
and frozen meat, milk
oroducts, liquor, soft
drinks, wine, beer,
‘lobaccos, yarn, cloth, silk
and woven fabric,
machine-made paper and
saperboards, plain glass,
ien kinds of nonferrous
metals, refined copper,
ead, zinc, electrolyzed
aluminum, industrial
doilers, metal smelting
aquipment, and cement
aquipment

Industrial Production Index
‘IPI1)
Industrial Production Index
‘1PI)

Industrial Production Index
‘1PI)

Industrial Production Index
‘1PI)

Industrial Production Index
(PI)

Industrial Production Index
‘PI)

\ational Bureau of Statistics
‘http://lwww.stats.gov.cn/english/)

\ational Bureau of Statistics
‘http://www.stats.gov.cn/english/)

Ministry of Statistics and Programme
Implementation
‘http://www.mospi.nic.in)

=ederal Reserve Board
‘https://www.federalreserve.gov)

Zurostat
‘https://ec.europa.eu/eurostat/home)

~ederal State Statistics Service
‘https://eng.gks.ru)
Trading Economics
‘https://tradingeconomics.com)

Ministry of Economy, Trade and Industry
‘https://www.meti.go.jp)

Trading Economics
thttps://tradingeconomics.com)

3razilian Institute of Geography and
Statistics
‘https://www.ibge.gov.br/en/institutional/the-i
2ge.htm)

Trading Economics
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Daily road transportation CO, emissions

We collected hourly TomTom congestion level data from the TomTom website
(https://www.tomtom.com/en_gb/traffic-index/). The congestion level (called hereafter)
represents the extra time spent on a trip, in percentage, compared to uncongested
condition. TomTom congestion level data were obtained for 416 cities across 57
countries at a temporal resolution of one hour. Of note that a zero-congestion level
means that the traffic is fluid or ‘normal’, but does not mean there was no vehicle and
zero emissions. It is thus important to identify the lower threshold of emissions when the
congestion level is zero. To do so, we compared the time series of daily mean TomTom

congestion level, with the daily mean car flux (called Q hereafter in vehicle per day) from

publicly available real-time data from an average of 60 roads in the Paris megacity.
Those daily mean car counts were reported by the City’s service
(https://opendata.paris.fr/pages/home/). We used a sigmoid function to fit the relationship
between and (Fig 2):

bX* (12)

d+x°

Q=a+

where a, b, ¢ and d are the regression parameters (Table 4). We verified that the
empirical fit from Eq. (12) can reproduce the observed large drop due to the lockdown in
Paris and the recovery afterwards. We assume that daily emissions relative changes
were proportional to the relative change of the function from Eq. (12). Then, we applied
the function established for Paris to other cities included in the TomTom dataset,
assuming that the relative magnitude in car counts (and thus emissions) follow a similar
relationship with TomTom. The emission changes were first calculated for individual
cities, and then weighted by city emissions to aggregate to national changes. For a
specific country i with n cities reported by TomTom, the national daily vehicle flux for day
j was given by:

5.0 (13)

E

Q _ -1 idayj i
country,dayj n

TF,

i=1

Where Ei is the annual road transportation emission of city n taken in the grid point of

each TomTom city from the annual gridded EDGARvV4.3.2 emission map for the “road
transportation” sector (1A3b) (httpiis://edgar.jrc.ec.europa.eu/) for the year 2010,
assuming that the spatial distribution of ground transport did not change significantly
within a country between 2010 and the period of this study. Then, the daily road
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transportation emissions in 2019 and 2020 (E ) for a country were scaled such

country,dayj
that the total road transportation emissions in the first four months of 2019 equaled to

121/365 times the annual emissions of this sector in 2019 (Emuntryzm) estimated in this

study:

121/365XEwuntry,2019 (14)
182

xQ

j=1

country,dayj - Qcountry,dayj

country,dayj(2019)

For countries not included in the TomTom dataset, we assumed that the emission
changes follow the mean changes of other countries. For example, Cyprus, as an EU
member country, had no city reported in TomTom dataset, so its relative emission
change was assumed to follow the same pattern of the total emissions from other EU
countries included in TomTom dataset (which covers 98% of EU total emissions).
Similarly, the relative emission changes of countries in ROW but not reported by
TomTom were assumed to follow the same pattern of the total emissions from all
TomTom reported countries (which cover 85% of global total emissions).

b) —— TomTom-based Q
— actual Q

800 1 800 A

600 - 600 A
400 A

400 4

200 1 200 1

1 T y T T 0 T T T T T T T T T
0 10 20 30 40 1711 Y15 271 2/15 31 3/15 41 4/15 5/1 5/15
TomTom TomTom

Fig 2 (a) Relationship between TomTom congestion level index and actual car counts (Q)
for Paris. The sigmoid fit between and is given by the red line. (b) evaluation of the
function during the period of the lock down in Paris.

Table 4 Regression parameters of the sigmoid function of Eq. (12) that describes the
relationship between car counts () and TomTom congestion level

Parameter Value

a 100.87

b 671.06

c 1.98



d 6.49

Table 5 Cities (416 across 57 countries) with TomTom congestion level data

untry/Region y

stria (5) nna, Salzburg, Graz, Innsbruck, Linz

gium (10) ssels, Antwerp, Namur, Leuven, Ghent, Liege, Kortrijk, Mons, Bruges, Charleroi
garia (1) ia

ach (3) 0, Prague, Ostrava

imark (3) denhagen, Aarhus, Odense

onia (1) inn

land (3) sinki, Turku, Tampere

nce (25) is, Marseille, Bordeaux, Nice, Grenoble, Lyon, Toulon, Toulouse, Montpellier,

ates, Strasbourg, Lille, Clermont-Ferrand, Brest, Rennes, Rouen, Le-havre,
nt-Etienne, Nancy, Avignon, Orleans, Le-mans, Dijon, Reims, Tours

‘many (26) mburg, Berlin, Nuremberg, Bremen, Stuttgart, Munich, Bonn, Frankfurt-am-main,
:sden, Cologne, Wiesbaden, Ruhr-region-west, Leipzig, Hannover, Kiel, Freiburg,
sseldorf, Karlsruhe, Ruhr-region-east, Munster, Augsburg, Monchengladbach,
nnheim, Bielefeld, Wuppertal, Kassel

ece (2) ens, Thessaloniki

1gary (1) japest

and (1) /kjavik

and (3) slin, Cork, Limerick

y (25) ne, Palermo, Messina, Genoa, Naples, Milan, Catania, Bari, Reggio-calabria,

ogna, Florence, Turin, Prato, Cagliari, Pescara, Livorno, Trieste, Verona, Taranto,
jgio-emilia, Ravenna, Padua, Parma, Modena, Brescia

via (1) a

iania (1) lius

:embourg (1) :embourg

‘herlands (17) -hague, Haarlem, Leiden, Arnhem, Amsterdam, Rotterdam, Nijmegen, Groningen,

dhoven, Utrecht, Amersfoort, Tilburg, Breda, Apeldoorn, Zwolle, Den-bosch, Almere
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‘way (4)

and (12)

tugal (5)
nania (1)

ssia (11)

vakia (2)
venia (1)

1in (25)

aden (4)
itzerland (6)
key (10)
aine (4)

(25)

rpt (1)

1th Africa (6)

o, Trondheim, Stavanger, Bergen

Iz, Krakow, Poznan, Warsaw, Wroclaw, Bydgoszcz, Gdansk-gdynia-sopot,
szecin, Lublin, Bialystok, Bielsko-biala, Katowice-urban-area

on, Porto, Funchal, Braga, Coimbra
sharest

scow, Saint-petersburg, Novosibirsk, Yekaterinburg, Nizhny-novgorod, Samara,
stov-on-don, Chelyabinsk, Omsk, Tomsk, Kazan

tislava, Kosice
oljana

‘celona, Palma-de-mallorca, Granada, Madrid, Santa-cruz-de-tenerife, Seville,
oruna, Valencia, Malaga, Murcia, Las-palmas, Alicante, Santander, Pamplona,

n, Cordoba, Zaragoza, Vitoria-gasteiz, Vigo, Cartagena, Valladolid, Bilbao, Oviedo,
1-sebastian, Cadiz

ckholm, Uppsala, Gothenburg, Malmo

neva, Zurich, Lugano, Lausanne, Basel, Bern

inbul, Ankara, Izmir, Antalya, Bursa, Adana, Mersin, Gaziantep, Konya, Kayseri
v, Odessa, Kharkiv, Dnipro

nburgh, London, Bournemouth, Hull, Belfast, Brighton-and-hove, Bristol,
nchester, Leicester, Coventry, Nottingham, Cardiff, Birmingham, Southampton,
:ds-bradford, Liverpool, Sheffield, Swansea, Newcastle-sunderland, Glasgow,
ading, Portsmouth, Stoke-on-trent, Preston, Middlesbrough

ro

de-town, Johannesburg, Pretoria, East-london, Durban, Bloemfontein

Table 5 (continued) Cities (416 across 57 countries) with TomTom level data

Country/Region

City

China (22)

Chongging, Zhuhai, Guangzhou, Beijing, Chengdu, Changchun, Changsha,
Shenzhen, Shenyang, Shanghai, Wuhan, Fuzhou, Shijiazhuang, Xiamen, Nanjing,
Hangzhou, Tianjin, Ningbo, Quanzhou, Dongguan, Suzhou, Wuxi
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Hong Kong (1) Hong Kong

India (4) Mumbai, New-delhi, Bangalore, Pune
Indonesia (1) Jakarta

Israel (1) Tel-aviv

Japan (5) Tokyo, Osaka, Nagoya, Sapporo, Kobe
Kuwait (1) Kuwait-city

Malaysia (1) Kuala-lumpur

Philippines (1) Manila

Saudi Arabia (2) Riyadh, Jeddah

Singapore (1) Singapore

Taiwan (5) Kaohsiung, Taipei, Taichung, Tainan, Taoyuan
Thailand (1) Bangkok

United Arab Dubai, Abu-dhabi

Emirates (2)

Australia (10) Sydney, Melbourne, Brisbane, Adelaide, Gold-coast, Hobart, Newcastle, Perth,
Canberra, Wollongong

New Zealand (6) Auckland, Wellington, Hamilton, Christchurch, Dunedin, Tauranga
Argentina (1) Buenos-aires
Brazil (9) Recife, Sao-paulo, Rio-de-janeiro, Salvador, Fortaleza, Porto-alegre,

Belo-horizonte, Curitiba, Brasilia

Chile (1) Santiago

Columbia (1) Bogota

Peru (1) Lima

Canada (12) Vancouver, Toronto, Montreal, Ottawa, London, Winnipeg, Halifax, Quebec,

Hamilton, Calgary, Edmonton, Kitchener-waterloo

Mexico (1) Mexico-city



USA (80) Los-angeles, New-york, San-francisco, San-jose, Seattle, Miami, Chicago,
Washington, Honolulu, Atlanta, Baton-rouge, San-diego, Boston, Austin, Portland,
Philadelphia, Sacramento, Houston, Riverside, Tampa, Nashville, Orlando,
Charleston, Denver, Cape-coral-fort-myers, Pittsburgh, New-orleans, Las-vegas,
Boise, Fresno, Baltimore, Tucson, Providence, Charlotte, Dallas-fort-worth,
Oxnard-thousand-oaks-ventura, Bakersfield, Greenville, Jacksonville, Detroit,
Albuquerque, Columbus, San-antonio, Salt-lake-city, Phoenix, Mcallen, Raleigh,
Virginia-beach, Hartford, Colorado-springs, Birmingham, New-haven, Louisville,
Minneapolis, Cincinnati, El-paso, Allentown, Buffalo, Memphis, Worcester,
Grand-rapids, Albany, St-louis, Milwaukee, Omaha-council-bluffs, Indianapolis,
Rochester, Columbia, Oklahoma-city, Cleveland, Tulsa, Kansas-city, Knoxuville,
Richmond, Winston-salem, Dayton, Little-rock, Syracuse, Akron,
Greensboro-high-point

Daily commercial aviation CO, emissions

We calculated CO, emissions from commercial aviation following a commonly used
approach: reconstructing the emission inventories from bottom up based on the
knowledge of the parameters of individual flights. We collected the FlightRadar24 data
(https://www.flightradar24.com/) for the departure and landing airports for each flight, the
calculate the distance flown assuming the shortest distance for each flight, and then CO,
emissions per flight*'. Flights were grouped per country, and for each country between
domestic or international traffic. The daily CO, emission was computed as the product of
distance flown, by a CO, emission factor per km flown, according to:

(14)

Daily Emis = = Daily Kilometers Flown = x EF
aviation aviation 2020 aviation 2019

We acquired monthly individual commercial flight information from FlightRadar24.
Individual commercial flights are tracked by FlightRadar24 based on reception of ADS-B
signals emitted by aircraft and received by their network of ADS-B receptors®'.

The are computed assuming great circle distance between the take-off, cruising, descent
and landing points for each flight and are cumulated over all flights. As there is no
sufficient data available to convert the FlightRadar24 database into CO, emissions on a
flight-by-flight basis, we computed CO, emissions by assuming a constant CO, emission
factor per km flown across the whole fleet of aircraft (regional, narrowbody passenger,
widebody passenger and freight operations). This assumption is justified if the mix of
flights between these categories has not changed substantially between 2019 and 2020.

25



Daily Kilometers Flown2020 (1 5)

= Daily Emis X

Dally Emis 2019 Daily Kilometers Flown

2020 2019

EDGAR published an estimate of total CO, emissions from commercial aviation in 2018
of 925 Mt CO,. And the International Council on Clean Transportation (ICCT) implied
annual compound growth rate of total emissions from commercial flights, 5.7%, during
the past five years from 2013 to 2018%*. In the absence of further information, we
considered this increase to be representative of the emission growth rate of commercial
aviation from 2018 to 2019. The FlightRadar24 database has incomplete data for some
flights and may miss altogether a small fraction of actual flights®', so we scaled the
EDGAR estimate of CO, emissions (inflated by 5.7% for the year 2019) with the total
estimated number of kilometers flown in 2019 (67.91 million km) and apply this scaling
factor to 2020 data. We assumed that the fraction of missed flights was the same in
2019 and 2020, which is reasonable.

Daily ship traffic CO, emissions

We collected international CO2 ships emissions from 2016-2018 based on the EDGAR’s
international emissions. We also. collected global shipping emissions during the period
of 2007-2015 from IMO** and ICCT
(https://theicct.org/sites/default/files/publications/Global-shipping-GHG-emissions-2013-2
015_ICCT-Report_17102017_vF.pdf). According to the Third IMO GHG Study*?, CO2
emissions from international shipping accounted for 88% of global shipping emissions,
domestic and fishing accounts for 8% and 4%, respectively. We calculated international
CO2 shipping emissions from 2007-2015 from global shipping emissions and the ratio of
international shipping and global shipping emissions. We extrapolated emissions from
linear fits 2007-2018 to estimate the emissions in 2019. The data sources of shipping
emissions are in Table 6. We obtained emissions for the first quarter of 2019 based on
the assumption the equal distribution of monthly shipping CO, emissions. The equations
are as follows:

donthly Emis = a X Yearly Emis, (16)

international shipping,2019 international shipping,201

a is the increasing rate of international shipping emissions in 2019 based on the linear
extrapolation of data from the period 2007-2018, estimated to be of 3.01%. represents
the ratio of the months to be calculated in the whole year. Given this, we estimated the
shipping emissions for the first quarter of 2019, equals 121/365.

We assumed that the change in shipping emissions was linearly related to the change in
ships. Traffic volume. The change of international shipping emissions for the first four

months of 2020 was calculated according to the following equation:
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Emis = Emis x C 17
period,2020 period,2019 index ( )

Where Cindex represents the ratio of the change in shipping emissions, estimated to the

end of Apr by -15% compared to the same period of last year according to
https://www.theedgemarkets.com/article/global-container-shipments-set-fall-30-next-few-
months.

Table 6. Data sources used to estimate ship emissions

Shipping Emissions Sources
Global shipping Emissions (2007-2012) IM033
Global shipping Emissions (2013-2015) ICCT
International shipping Emissions (2016-2018) EDGAR v5.0

Daily residential sector emissions CO, emissions, from

residential and commercial buildings

Fuel consumption daily data from this sector are not available. Several studies (ref)
showed that the main source of daily and monthly variability of this sector is climate,
namely heating emissions increase when temperature falls below a threshold which
depends on region, building types and people habits. We calculated emissions by
assuming annual totals unchanged from 2019 and using climate daily climate
information, in three steps: 1) estimation of population-weighted heating degree days for
each country and for each day based on the ERA5* reanalysis of 2-meters air
temperature, 2) split residential emissions into two parts: cooking emissions and heating
emissions according to the EDGAR database®, using the EDGAR estimates of 2018
residential emissions as the baseline. Emissions from cooking were assumed to remain
independent of temperature, and those from heating were assumed to be a function of
the heating demand. Based on the change of population-weighted heating degree days
in each country in 2019 and 2020, we downscaled annual EDGAR 2018 residential
emissions to daily values for 2019 and 2020 as described by Eq. 18-20:

YHDD (18)
Emi Emi n__
mlsc,m_ mlsc,m,ZOlB
Y HDD

m,2018 o
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HDD (19)

Emis .= Emis _ X Ratio — + Emis X (1 — Ratio
c,d cm cm

heating,c,m SHDD heating,c
cd
m
(20)
Z(Popgridx(Tgrid,c,d_18))
HDD =
c,d
X(Pop_ )

grid

where c is country, d is day, m is month, Emiscm is the residential emissions of country ¢

in month m of the year 2019 or 2020, Emis is the emissions of country ¢ in month

c,m,2018
m of the year 2018, HDD is the population-weighted heating degree day in country c in

day d, is the residential emissions of country c in day d of the year 2019 or 2020,
Ratio is the percentage of residential emissions from heating demand in country

heating,c,m
¢ in month m, Nm is the number of days in month m, Popg”,d is gridded population data

derived from Gridded Population of the World, Version 4%, T is the daily average air
temperature at 2 meter derived from ERA5.

The main assumption is this approach is that residential emissions did not
change from other factors than heating degree days variations in 2020, when
people time in houses dramatically increased during the lockdown period. In
order to test the validity of this assumption, we compiled natural gas daily
consumption data by residential and commercial buildings for France
(https://www.smart.grtgaz.com/fr/consommation) (unfortunately such data could not
be collected in many countries) during 2019 and 2020. Natural gas consumption
in KWh per day was transformed to CO, emissions using an emission factor of
10.55 kWh per m® and a molar volume of 22.4 10° m® per mole.

Firstly, we verified that the temporal variation of those ‘true’ residential CO,
emissions was similar to that given by equations (18) to (20). Secondly, after
fitting a piecewise model to those natural gas residential emission data using
ERADS5 air temperature data, we removed the effect of temperature to obtain an
emission corrected for temperature effects. Even if the lock down was very strict
in France, we found no significant emission anomaly, meaning that the fact that
nearly the entire population was confined at home did not increase or decrease
emissions. This complementary analysis tentatively suggests that residential
emissions can be well approximated in other countries by equations (18) to (20)
based only on temperature during the lockdown period.
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Fig 3. Residential and commercial building daily natural gas consumption (linearly
related to CO, emissions from this sector) in France for the last 5 years. Temperature
effects have been removed from emissions using a linear piecewise model. When the

effect of variable winter temperature was accounted for, no significant change is seen in

2020 during the very strict lock-down period.

Data Records and list of countries and groups of countries

Currently there are 27484 data records provided in this dataset:

- 268 records are daily mean CO, emissions (from fossil fuel combustion and
cement production process) 1751-2020.

- 4374 records are the daily emissions for 9 countries or groups of countries as
given in Table 7 (China, India, US, EU27&UK, Russia, Japan, Brazil, ROW and
Globe) and 486 days (from January 15t 2019 to April 30" 2020).

- 22842 records are daily emissions in power sector, ground transport sector,
industry sector, residential sector, aviation sector and international shipping sector
respectively, for 9 countries/regions (China, India, US, EU27&UK, Russia, Japan,
Brazil, ROW and Globe) and 486 days (from January 1% 2019 to April 30" 2020).

29



Table 7. Countries or group of countries abbreviations used on the web site

WLD World (all countries or groups of countries)
CHN People’s Republic of China
BRA Brazil
EU28 European Union 27 in 2020
FRA France

DEU Germany

IND India

ITA Italy

JPN Japan

RUS Russia

ESP Spain

USA United States

GBR United Kingdom
ROW Rest of the World

Estimation of CO, emissions uncertainties

We followed the 2006 IPCC Guidelines for National Greenhouse Gas Inventories to
conduct the uncertainty analysis of the data (1-sigma uncertainties).

Power sector: uncertainty is mainly from inter-annual variability of coal emission factors.
Based the UN statistics the inter-annual variability of fossil fuel is within (£1.5%), which
been used as uncertainty of the CO, emissions from this sector.

Industrial sector: uncertainty comes from the monthly production data. Given that CO,
emissions from industry and cement production in China accounts for more than 60% of
world total industrial CO,, and the fact that uncertainty of emission in China is t Uncertainty
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from monthly statistics was derived from 10000 Monte Carlo simulations to estimate a 68%
confidence interval (1-sigma) for China. from monthly statistics was derived from 10000
Monte Carlo simulations to estimate a 68% confidence interval (1-sigma) for China. We
calculated the 68% prediction interval of linear regression models between emissions
estimated from monthly statistics and official emissions obtained from annual statistics at
the end of each year, to deduce the one-sigma uncertainty involved when using monthly
data to represent the whole year’s change. The squared correlation coefficients are within
the range of 0.88 (e.g., coal production) and 0.98 (e.g., energy import and export data),
which represent that only using the monthly data can explain 88% to 98% of the whole
year’s variation®”, while the remaining variation not covered yet reflect the uncertainty
caused by the frequent revisions of China’s statistical data after they are first published.

Road Transportation: emissions from this sector is estimated by assuming that the relative
magnitude in car counts (and thus emissions) follow the similar relationship with TomTom.
Emissions 1-sigma uncertainties were quantified by the prediction interval of the regression.

Commercial Aviation: Uncertainties in the aviation CO2 emissions are difficult to assess.
Sources of uncertainties arise from the ICCT (2018) estimate used to scale emissions, the
lack of completeness of the flight database and the fixed average conversion factor
between kilometers flown and CO, emissions. These last two uncertainties should have a
limited impact as we do not expect a change between 2019 and 2020 in database
completeness and in the average fleet composition. In the study 1-sigma uncertainty of
aviation sector was approximated from the difference of daily emission data estimated
based on the two methods. We calculated the average difference between the daily
emission results estimated based on the flight route distance and the number of flights, and
then divide the average difference by the average of the daily emissions estimated by the
two methods to obtain the uncertainty of CO, from aviation sector.

Shipping: We used the uncertainty analysis from IMO as our uncertainty estimate for
shipping emissions. According to Third IMO Greenhouse Gas study 2014, the uncertainty
of shipping emissions was set to 13% based on this inventory.

Residential sector (commercial and residential buildings): The 1-sigma uncertainty
in daily emissions are estimated as 20%, which is calculated based on the comparison
with daily residential emissions derived from real fuel consumptions in several European
countries including France, Great Britain, Italy, Belgium, and Spain.

Global annual 2019 emissions: The 1-sigma uncertainty of emission projection in 2019
is estimated as 2.2%, by combining the reported uncertainty of the projected growth
rates and the EDGAR estimates in 2018.

Overall uncertainty: We combined all the uncertainties from each sector (Table 8) by
following the error propagation equation from IPCC. Eq. (21) is used to derive for the
uncertainty of the sum, which could be used to combine the uncertainties of all sectors:
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Where and are the percentage uncertainties and the uncertain quantities (daily mean
emissions) of sector respectively. Eq. (22) was used to derive for the uncertainty of the
multiplication, which is used to combine the uncertainties of all sectors and of the
projected emissions in 2019:

(22)
2

— ZUi

overall

Table 8 Percentage 1-sigma uncertainties of all items.

Items Uncertainty Range
Power £1.5%
Ground Transport 19.3%
Industry 1+36.0%
Residential +40.0%
Aviation £10.2%
International Shipping 113.0%
Projection of emission growth 10.8%
rate in 2019

EDGAR emissions in 2018 15.0%
Overall 16.8%

Code Availability

The code generated during and/or analyzed during the current study are available from
the corresponding author. After peer-reviewed the code will be open accessible on the
Carbon Monitor website (www.carbonmonitor.org or www.carbonmonitor.org.cn).
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