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Important notes 

 🆕️ 20251008: We updated the baseline emissions by using data from UNFCCC 
national greenhouse gas inventories. Check details here. 
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Fair use data policy 
Carbon Monitor data are made freely available to the public and the scientific community 
in the belief that their wide dissemination will lead to greater understanding and new 
scientific insights. The availability of these data does not constitute publication of the 
data.  The data providers rely on the ethics and integrity  of the user to ensure that they 
receive fair credit for their work. If the data are obtained for potential use in a publication 
or presentation, we kindly ask you to inform us at the outset of the nature of this work. If 
the Carbon Monitor data are essential to the work, or if an important result or conclusion 
depends on the Carbon Monitor data, co-authorship may be appropriate. This should be 
discussed at an early stage in the work.  Manuscripts using the Carbon Monitor data 
should be sent to for review before they are submitted for publication so we can ensure 
that the quality and limitations of the data are accurately represented.  Contacts about 
the data: contact.carbonmonitor@gmail.com or  zhuliu@tsinghua.edu.cn ( for Asia and 
other regions ),  philippe.ciais@lsce.ipsl.fr ( for Europe ), sjdavis@uci.edu ( for North 
America ) 

  

Disclaimer 
Carbon Monitor data are made freely available to the public with the above fair use open 
data policy. We encourage users to cite the data by 
https://doi.org/10.1038/s41467-020-18922-7, 
https://doi.org/10.1038/s41597-023-02284-y or https://doi.org/10.31223/X5BS5B. 
Carbon Monitor is a living dataset subject to updates and the values are expected to 
change, as new data get included. In the process of updating our daily CO2 emission 
products, errors may be corrected, revisions may be made in the calculation methods, 
and new information may be used. Data files available for download and graphs are 
associated to a day of release. In case of questions regarding data and history previous 
releases, please contact us at contact.carbonmonitor@gmail.com.  All information 
displayed and provided can be used at the own responsibility of users, and does not 

3 

 

https://doi.org/10.1038/s41467-020-18922-7
https://doi.org/10.1038/s41597-023-02284-y
https://doi.org/10.31223/X5BS5B


engage any responsibility from research institutions supporting Carbon Monitor and 
partner institutions. 

  

What is Carbon Monitor? 
Carbon Monitor is a frequently-updated daily CO2 emission dataset, to monitor the 
variations of CO2 emissions from fossil fuel combustion and cement production since 
January 1st 2019 at national level with near-global coverage. Daily CO2 emissions are 
estimated from a diverse range of activity data, including: hourly to daily electrical power 
generation data of 29 countries, monthly production data and production indices of 
industry processes of 62 countries/regions, daily mobility data and mobility indices of 
road transportation of 416 cities worldwide. Individual flight location data and monthly 
data were utilised for aviation and maritime transportation sectors estimates. In addition, 
monthly fuel consumption data that corrected for daily air temperature of 206 countries 
were used for estimating the emissions from commercial and residential buildings. 
Carbon Monitor data show the dynamic nature of CO2 emissions through daily, weekly 
and seasonal variations as influenced by workdays and holidays, as well as the 
unfolding impacts of the COVID-19 pandemic. Carbon Monitor shows a 7.8% decline of 
CO2 emission globally from Jan 1st to Apr 30th in 2020 when compared with the same 
period in 2019, and detects a re-growth of CO2 emissions by late April mainly attributed 
to the recovery of economic activities in China and partial easing of lockdowns in other 
countries. 

 

Background 
The main cause of global climate change is the anthropogenic emission of CO2 to the 
atmosphere from geological carbon reservoirs, namely fossil fuel burning and cement 
production. Dynamic information on those fossil CO2 emissions is critical for 
understanding the human forcing of climate change. Further, the combustion of fossil 
fuels emits short-lived pollutants such as SO2, NO2 and CO which affect air quality and 
climate. Therefore, information on CO2 emissions also allows a more accurate 
quantification od the emissions of those pollutants for air quality and climate studies1,2.  
Estimates of fossil CO2 emissions2-8 rely on activity data (e.g., the amount of fuel burnt or 
energy produced) and emission factors (See Methods)9. The sources of these data are 
mainly national energy statistics, and organizations such as CDIAC, BP, EDGAR, IEA 
and GCP also produce estimates for different groups of countries or for all 
countries1,10-12. Fossil CO2 emissions are usually on an annual basis lagging the very 
year’s emissions by at least one year. 

The uncertainty associated with fossil CO2 emissions is smaller for large emitters or the 
globe, than that of emissions from co-emitted pollutants for which uncertain technological 
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factors influence the ratio of emitted pollutants to CO2 13-15. The uncertainty of global 
fossil CO2 emissions varies between ±6% and ±10%5,7,16,17 (±2σ), reflecting uncertain 
activity data and the emission factors. For activity data, the amount of fuel burnt is 
recorded by energy production and consumption statistics, hence uncertainties arise 
from errors and inconsistencies in reported figures from different sources. For emission 
factors, different fuel types, quality and combustion efficiency together contribute to the 
uncertainty. For example, coal used in China is of variable quality and so is its emission 
factors, EF, both before (raw coal) and after cleaning (cleaned coal) varies, which was 
found to cause a 15% uncertainty range for CO2 emissions. On the other hand, there is 
limited temporal change of emission factors. For example, annual difference of emission 
factors for coal was within 2% globally18 while the variation of emission factors, EF, for oil 
and gas was found to be much smaller. 

Given the fact that uncertainty of fossil CO2 emissions production is in general < 
±10%10,19,20, and the annual difference of emission factors is <  2%18, CO2 emissions 
during a few years period like Carbon Monitor can be estimated from absolute and 
relative change of activity through time, ignoring emissions factors changes. This method 
is used for updating changes of CO2 emissions1,21,22 23, understanding that official and 
comprehensive CO2 national inventories reported by countries to the UNFCCC only 
become available with a lag of two years for Annex-I countries and several years for 
non-Annex-I24. As such, a higher spatial, temporal and sectoral resolution of fossil CO2 
emissions than annual and national level can be obtained by using spatial, temporal and 
sectoral activity data to disaggregate annual national emissions9,14,23,25. The level of 
granularity depends on available data, such as location and operations of point sources23 
(i.e. power generation for a given plant), regional statistics of energy use (i.e. monthly 
fuel consumption) 9,25, and of proxies for the distribution of emissions such as population 
density, night lights, urban forms and GDP data …9,14,23,25. 

 

NEW Release of 8 Oct 2025 
1) Using NGHGIs as baseline emissions 
Instead of using a single baseline year (2019), we update the baseline emissions to 
cover the period 2019–2021. This update mainly relies on the national greenhouse gas 
inventories (NGHGIs) submitted to UNFCCC (Table 1), with IPCC sector emissions 
systematically mapped to the Carbon Monitor sectors. 
 
Table 1 Data sources of baseline emissions in updated Carbon Monitor data. 
Nation/Region Reference Years (UNFCCC Submission) 
Brazil, European Union, Japan, Russia, 
United States, United Kingdom 

2019-2022 (BTR1) 

China 2020-2021 (BTR1) 
India 2019 (NC3), 2020 (BUR4) 
ROW 2019-2022 (EDGAR_2025_GHG) 
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2) Updated activity data and methodology in the ROW region 
We update the estimation for the power and industry sectors in the Rest of the World 
(ROW) region. To approximate emission changes in ROW, we use the average emission 
variations observed in countries with available data (Table 2). These countries represent 
22% and 53% of total CO2 emissions in the ROW region, respectively. 
  
Table 2 Countries with available data in ROW region. 
Sector Countries/regions 
Power Argentina, Australia, Bangladesh, Bolivia, Chile, Costa Rica, Dominican 

Republic, El Salvador, Georgia, Mexico, Moldova, New Zealand, Norway, 
Peru, South Africa, Switzerland, Turkey, Uruguay 

Industry Argentina, Bosnia and Herzegovina, Canada, Chile, Colombia, Indonesia, 
Israel, Republic of Korea, Malaysia, Mexico, Norway, Pakistan, Peru, 
Philippines, Qatar, Saudi Arabia, Serbia and Montenegro, Singapore, South 
Africa, Sri Lanka, Turkey, Ukraine, Uruguay, Viet Nam 

  
 
 

Release of Carbon Monitor Europe 

Carbon Monitor Europe daily CO2 emissions have been updated to May 31, 2022. 
The detailed dataset could be found at: https://eu.carbonmonitor.org/. The power 
sector of CM-EU has been updated to use fuel-specific emission factors. 

There are some differences on emissions between EU27&UK and some EU 
countries of Global CM and those of CM-EU. The detailed reasons are as follows. 

For the power sector, there are four EU countries (Lithuania, Luxembourg, Malta 
and Sweden) lacking power generation data. So we assume a linear relationship 
between their daily emissions and the total daily emissions of the 23 EU countries 
and the United Kingdom. The emissions of EU27&UK in CM-EU are the sum of all 
28 countries. While the emissions of EU27&UK in global CM are directly based on 
annual emissions in 2019 and daily power generation data. 

For the industry sector, the emissions in CM-EU are based on the country-level 
industry production index (IPI) from Eurostat. While global CM used the IPI seasonal 
adjusted from CEIC. 

 

Release of 7 May 2022 

Power sector: 
Using fuel-specific emission factors 

An update of country level power emission is calculated with country level activity data) 
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with fuel specific emission factors (EF*) for list of countries/regions including China, 
India, United States, EU27&UK, Japan, Brazil, United Kingdom, France, Germany, Italy 
and Spain, with the following equation: 

 
Where i,j,k are indices for regions and fuel types respectively. The fuel specific emission 
factors are calculated by correcting corresponding generic IPCC emission factors (not 
country specific) with country specific baseline emissions (from 2019), with the following 
equations: 

 
The fuel sources considered are coal, natural-gas and petroleum. The source for activity 
data comes from national grids as specified in the previous method description. The 
IPCC emission factors used for this analysis are: 820 gCO2/kWh for coal fired power, 
490 gCO2/kWh for natural-gas fired power and 650 gCO2/kWh for petroleum fired 
power. 
 
Updating the estimation in ROW countries 
STEP1: estimating monthly emissions with available monthly electricity production data 
(total production or thermal production data are used, and the fuel-specific EFs are NOT 
applied) - 11 ROW countries/regions are available, contributing 46% of the total ROW 
CO2 emissions 
STEP2: disaggregating monthly emissions to daily level with available daily electricity 
production data (the thermal production data are used, and the fuel-specific EFs are 
NOT applied) - 2 ROW countries are available, contributing 9% of the total ROW CO2 
emissions 
 

Industry sector : 
Updating the estimation in ROW countries 
STEP1: estimating monthly emissions with available monthly industrial production index 
(IPI) data - 23 ROW countries/regions are available, contributing 46% of the total ROW 
CO2 emissions 
STEP2: disaggregating monthly emissions to daily level by using the updated daily ROW 
power emission data 
 

Ground transportation sector: 
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Updating activity data in China 

As TomTom stopped collecting Chinese Data in April, 2020, in the previous versions, we 
extrapolated the time series of TomTom congestion level by repeating the data of the last 
week available. We are aware that this is a problem for us to track the emissions of 
China since that time. Now, we use the congestion level from AutoNavi Software Co., 
Ltd. (Gaode in Chinese) to replace TomTom when its data are not available. We 
compared Gaode congestion indices with TomTom ones and derived a method to 
harmonize the two products using the data from the common period (from Sep 2020 to 
Mar 2021). In the latest version of Carbon Monitor, we combined TomTom data for 2020 
and Gaode data since 2021 into a harmonized time series. The emissions from the 
ground transportation sector for China were estimated based on this new time series. 
Compared with previous releases, the ground transportation emissions of China were 
thus changed. 

 

Release of 28 October 2021 

International shipping emission data update 
The international shipping emissions are included in the ROW in the industry sector. 

 

Release of 7 April 2021 

U.S. emission data update 
This is the first release of the state-level U.S. Carbon Monitor, using methods as follows: 

State-level annual and monthly emissions based on EIA’s energy data. 

Annual total energy-related CO2 emissions by sector and source in 2018 for all the 
states in the U.S. are directly obtained from State Carbon Dioxide Emissions Data 
released by U.S. Energy Information Administration (EIA). We then disaggregate the 
state-level annual emissions in 2018 into monthly level based on monthly consumption 
data of key fuels (e.g., motor gasoline, diesel, jet fuel and natural gas) which are 
updated more frequently at state level from EIA . We assume that the emission factors 
remain unchanged for each state in 2019 and 2020 when comparing with 2018. We 
estimate state-level monthly emissions by sector in 2019 and 2020 based on the change 
of monthly consumption data of key fuels in 2019 and 2020 compared to the same 
period of 2018. 

For the power sector, we use state-level monthly fuel-specific consumption data from 
Electric Power Monthly. For the industrial, residential and commercial sectors, we use 
state-level monthly natural gas consumption for each sector, with each fuel type 
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constrained by the trend of national-level total monthly consumption. For road 
transportation sector, we use prime supplier sales volumes of motor gasoline and diesel. 
For the aviation sector, we use prime supplier sales volumes of kerosene-type jet fuel. 

State-level daily emissions in 2019 and 2020. 

For 2019 and 2020, the state-level monthly emissions are allocated to each day by 
state-level daily indicators for each sector. For the power sector, we use state-level daily 
electricity generation produced by coal, petroleum and gas by summarizing the electricity 
produced of 63 balancing authorities from the EIA’s Hourly Electric Grid Monitor 
(representing >93% of US electricity production). We remove the outliers and fill the 
missing values by using similar methods of Ruggles et al. (2020). For industrial sector, 
we use daily natural gas pipeline deliveries to industrial end users from Genscape. 

For road transportation, we use daily distance traveled based on the Trips by Distance 
data from Bureau of Transportation Statistics. For the aviation sector, we use daily 
kilometers flown of flights (domestic and international) per state collected from the 
FlightRadar24 database. We classify the kilometers 255 flown per aircraft class (light, 
medium and heavy), with the emission factors per km flown of medium and large 
aircrafts are assumed to be 1.5 and 3 times that of small aircrafts. Emissions are 
attributed to the state of departure airport and are calculated separately for U.S. 
domestic flights and international flights departing from each state, with monthly totals 
rescaled according to jet fuel consumption. 

For residential and commercial sector, we estimate daily emissions based on heating 
degree days (HDDs). We calculate daily and monthly population-weighted HDDs for 
each state based on the ERA5 reanalysis of 2-m air temperature. Residential and 
commercial emissions are split into heating emissions and cooking 2emissions: 
emissions from cooking are assumed to remain independent of temperature; emissions 
from heating are assumed to be a linear function of the heating demand (HDDs). A 
regression model based on monthly HDDs and monthly residential and commercial 
emissions in 2019 is developed to estimate the 9 annual percentage of emissions from 
heating demand in each state. We then estimate daily emissions in 2019 and 2020 
based on changes in daily HDDs. 

We have tried to correct the electricity use data and the natural gas consumption data of 
the residential and commercial sector for the temperature effect, i.e., energy 
consumption change caused by temperature change from year 2019 to year 2020. This 
was achieved by establishing linear regressions between monthly energy consumption 
and HDDs and CDDs (cooling degree days) for each state. Linear regression models are 
developed based on monthly energy consumption and monthly HDDs and CDDs data in 
2019. Similar to previous studies, we include HDDs and CDDs in the regression models 
of electricity consumption, and CDDs only in the regression models of residential and 
commercial natural gas consumption. We then use the linear regression model and the 
temperature change between year 2020 and year 2019 (i.e., changes in HDDs and 
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CDDs on the same month of these 2 years) to calculate the corrected energy 
consumption for year 2020. 

Data availability 

All data sources for emissions estimates can be found in the Methods of Hong et al.: 
https://eartharxiv.org/repository/view/2233/. The energy data are obtained from EIA 
(https://www.eia.gov). The GDP data are from U.S. Bureau of Economic Analysis 
(https://apps.bea.gov/regional/downloadzip.cfm). The VMT data are from U.S. 
Department of Transportation 
(https://www.fhwa.dot.gov/policyinformation/travel_monitoring/tvt.cfm). 

  

Data sources for the U.S. Carbon Monitor Project 

Sector Data type Source 

State-level monthly energy consumption data 

Power sector fuel-specific 
consumption data 

EIA Electricity 

(https://www.eia.gov/electricity/data/state/) 

Industry sector natural gas 
consumption 

EIA Natural Gas 

(https://www.eia.gov/naturalgas/data.php) 

Ground 
transportation 

prime supplier sales 
volumes of motor 
gasoline and diesel 

EIA Petroleum & Other Liquids 

(https://ww 

w.eia.gov/petroleum/data.php) 

Aviation prime supplier sales 
volumes of 
kerosene-type jet 
fuel 

EIA Petroleum & Other Liquids 

(https://www.eia.gov/petroleum/data.php) 

Residential and 
commercial 

natural gas 
consumption 

EIA Natural Gas 

(https://www.eia.gov/naturalgas/data.php) 

State-level daily indicators 
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Power sector thermal generation 
produced by coal, 
petroleum and gas 

EIA Hourly Electric Grid Monitor 

(https://www.eia.gov/beta/electricity/gridmonitor/) 

Industry sector pipeline deliveries to 
industrial end users 

Genscape Natural Gas 

(https://www.genscape.com) 

Ground 
transportation 

distance traveled Trips by Distance data from Bureau of Transportation 
Statistics 

(https://data.bts.gov/Research-and-Statistics/Trips-by
-Distance/w96p-f2qv) 

Aviation kilometers flown of 
flights 

FlightRadar24 database 

(https://www.flightradar24.com) 

Residential and 
commercial 

population-weighted 
heating degree days 

ERA5 reanalysis of 2-meters air temperature 

(https://cds.climate.copernicus.eu/) 

  

Update of baseline emissions in 2019 
We update our baseline annual emissions in 2019 of each country and sectors based on 

the latest emission data release from EDGAR 

(https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2020). 

  

  

  

Release of 17 June 2020 

Overview of Carbon Monitor daily CO2 emissions production 
Gaining from past experiences of constructing annual inventories and newly compiled 
activity data, Carbon Monitor is a novel daily dataset of CO2 emissions from fossil fuel 
burning and cement production at national level. The countries/regions include China, 
India, U.S., Europe (EU27 & UK), Russia, Japan, Brazil, and rest of world (ROW), as 
well as the emissions from international bunker fuels from ships and aircraft. This 
dataset, known as Carbon Monitor, is separated into several key emission sectors: 
power sector (39% of total emissions), industrial production (28%), ground transport 
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(18%), air transport (3%), ship transport (2%), and residential consumption (10 %). For 
the first time, daily emissions estimates are produced for these six sectors, based on 
dynamically and regularly updated activity data. This is made possible by the availability 
of recent activity data such as hourly electrical power generation, traffic indices, airplane 
locations and natural gas distribution, with the assumption that the daily variation of 
emissions is driven by the activity data and that the contribution from emission factors is 
negligible, as they evolve at longer time scales, e.g. from policy implementation and 
technology shifts.  

The framework of this study is illustrated in Fig 1. We calculated national CO2 emissions 
and international aviation and shipping emissions since the Jan 1st 2019, drawing on 
hourly datasets of electricity power production and their CO2 emissions in 29 countries 
(thus including the substantial variations in carbon intensity associated with the variable 
mix of electricity production), daily vehicle traffic indices in 416 cities worldwide, monthly 
production data for cement, steel and other energy intensive industrial products in 62 
countries/regions, daily maritime and aircraft transportation activity data, and either 
previous-year fuel use data corrected for air temperature to residential and the 
commercial buildings. Together, these data cover almost all fossil fuels and industry 
sources of global CO2 emissions, except for the emission from land use change (up to 
10% of global CO2 emissions) and non-fossil fuel CO2 emissions of industrial products 
(up to 2% of global CO2 emissions)26 in addition to cement and clinker (i.e. plate glass, 
ammonia, calcium carbide, soda ash, ethylene, ferroalloys, alumina, lead and zinc etc.). 

While daily emission can be directly calculated using near-real-time activity data and 
emission factors for the electricity power sector, such an approach is difficult to apply to 
all sectors. For the industry sector, emissions can be estimated monthly in some 
countries. For the other sectors, we used proxy data instead of daily real activity data, to 
dynamically downscale the annual or monthly CO2 emissions totals on a daily basis. For 
instance, traffic indices in cities representative of each country were used instead of 
actual vehicle counts and categories, combined with annual national total sectoral 
emissions, to produce daily road transportation emissions. As such, for the road 
transportation, air transportation and residential use of fuels sectors in most countries, 
we downscaled monthly or annual total emission data in 2019 to calculate the daily CO2 
emission in the very year. Subsequently, we scaled monthly totals of 2019 by daily 
proxies of activities to obtain daily CO2 emissions data in the first four months of 2020, 
during the unprecedented disturbance of the COVID-19 pandemic. The Carbon Monitor 
near-real-time CO2 emission dataset shows a 7.8% decline of CO2 emission globally 
from January 1st to April 30th in 2020 when compared with the same period in 2019, and 
detects a re-growth of CO2 emissions by late April which are mainly attributed to the 
recovery of economy activities in China and partial easing of lockdowns in other 
countries. 
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Fig 1. Overview of Carbon Monitor data production chain 

  

 

  
Annual total and sectoral emissions per country / group of 
countries for the baseline year of 2019 
According to the IPCC Guidelines for emission reporting4, CO2 emissions  should be 
calculated by multiplying activity data  by corresponding emission factors. 

  
 𝐸𝑚𝑖𝑠 = ∑∑∑(𝐴𝐷

𝑖,𝑗,𝑘
· 𝐸𝐹

𝑖,𝑗,𝑘
)

(1) 

Where  are indices for regions, sectors and fuel types respectively.  can be 𝑖, 𝑗, 𝑘 𝐸𝐹
further separated into the net heating values  for each fuel type (the energy obtained 𝑣
per unit of fuel), the carbon content  per energy output (t C/TJ) and the oxidation rate  𝑐 𝑜
(the fraction (in %) of fuel oxidized during combustion): 

  
 𝐸𝑚𝑖𝑠 = ∑∑∑(𝐴𝐷

𝑖,𝑗,𝑘
· (𝑣

𝑖,𝑗,𝑘
· 𝑐

𝑖,𝑗,𝑘
· 𝑜

𝑖,𝑗,𝑘
)

(2) 

 Due to the lag of more than two years in publishing governmental energy statistics, we 
started from the latest CO2 emissions estimates up to 2018 from current CO2 
databases1,10-12. For 2019, we completed this information to obtain annual total emissions 
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based on literature data and disaggregated the annual total into daily emissions (see 
below). For 2020, we estimated daily CO2 emissions by using daily changes of activity 
data in 2020 compared to 2019.  The CO2 emissions and sectoral structure in 2019 for 
countries and regions were extracted from EDGAR V4.3.21,27 and V5.0 for each country, 
and national emissions were scaled to the year 2019 based on our own estimate (for 
China) and data from the Global Carbon Budget 201921 (for other countries): 

  

   𝐸𝑚𝑖𝑠
𝑟,2019

= α
𝑟

· 𝐸𝑚𝑖𝑠
𝑟,2018

(3) 

  

For China, we firstly calculated CO2 emissions in 2018 based on the energy 
consumption by fuel types and cement production in 2018 from China Energy Statistical 
Yearbook28 and the National Bureau Statistics29 following Equation 1. We projected the 
energy consumption in 2019 from the annual growth rates of coal, oil and gas reported 
by Statistical Communiqué29 and applied China-specific emission factors 30 to obtain the 
annual growth rate of emissions in 2019. For US and Europe (EU27&UK), we used 
updated emission growth rates in 2019 published by CarbonBrief 
(https://www.carbonbrief.org/guest-post-why-chinas-co2-emissions-grew-less-than-feare
d-in-2019). For countries with no estimates of emission growth rates in 2019 such as 
Russia, Japan and Brazil, we assumed their growth rates of emissions was 0.5% based 
on the emission growth rate of the rest of world 22. 

In this study, the EDGAR sectors were aggregated into four sectors (): power sector, 
industry sector, transport sector (ground transport, aviation and shipping), and residential 
sector. This is consistent with the new activity data we used below to compute daily 
variations. We used the sectoral distribution in 2018 from EDGAR to infer the sectoral 
emissions in 2019 for each country/region r (Equation 4), assuming that the sectoral 
distribution remained unchanged in these two years. 

   𝐸𝑚𝑖𝑠
𝑟,𝑠,2019

= 𝐸𝑚𝑖𝑠
𝑟,2019

·
𝐸𝑚𝑖𝑠

𝑟,𝑠,2018

𝐸𝑚𝑖𝑠
𝑟,2018

(4) 

Table 1 Scaling factors for the annual emission change in 2019 compared to 
2018 

Countries/Regions Scaling Factor (%) Source 

China 2.8% Estimated in this study 

India 1.8% Global Carbon Budget 201922 

US 2.4% Carbon Brief, 2020 

EU27&UK -3.9% Carbon Brief, 2020 
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Russia 0.5% = ROW 

Japan 0.5% = ROW 

Brazil 0.5% = ROW 

ROW 0.5% Global Carbon Budget 201922 

  

According to IPCC Guidelines4, CO2 emissions for each sector should be calculated by 
multiplying sectoral activity data  by their corresponding emission factors  following 
Equation 5: 

   𝐸𝑚𝑖𝑠
𝑠

= 𝐴𝐷
𝑠

· 𝐸𝐹
𝑠

(5) 

  

The emissions were calculated following this equation separately for the power sector, 
the industry sector, the transport sector, and the residential sector, as explained in the 
following. 

 

  
Daily power sector (electricity production) CO2 emissions 
The CO2 emissions from the power sector were calculated by adapting Equation 5 with 
sector specific activity data (i.e. electricity production/thermal electricity production) and 
corresponding emission factors (Equation 6). 

   𝐸𝑚𝑖𝑠
𝑝𝑜𝑤𝑒𝑟

= 𝐴𝐷
𝑝𝑜𝑤𝑒𝑟

·𝐸𝐹
𝑝𝑜𝑤𝑒𝑟

(6) 

Normally the emission factors change slightly over time but can be assumed to remain 
constant over the two years period considered in this study, compared to the huge 
changes in activity data. Thus, we assumed that emission factors remained unchanged 
in 2019 and 2020, and calculated the daily emissions as follows: 

  
 𝐸𝑚𝑖𝑠

𝑑𝑎𝑖𝑙𝑦
= 𝐸𝑚𝑖𝑠

𝑦𝑒𝑎𝑟𝑙𝑦
·

𝐴𝐷
𝑑𝑎𝑖𝑙𝑦

𝐴𝐷
𝑦𝑒𝑎𝑟𝑙𝑦

(7) 

 The data sources of daily activity data in the power sector are described as Table 2. The 
countries/regions listed in Table 2 account for more than 70% of the total CO2 emissions 
in the power sector. For emissions from other countries (ROW), which are not listed in 
Table 2, we estimated the power sector emission changes in 2020 based on the period 
of the national lock-down. For daily emission changes of ROW in 2019, we firstly 
assumed a linear relationship between daily global emission and daily total emissions of 
the ROW countries listed in Table 2. Then we classified each country according to 
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whether they adopted lock-down measures, based on official reports. Based on daily 
emission data of the power sector of the countries listed in Table 2, we calculated the 
respective average change rates of power sectors in ROW countries between January 
and April, assuming changes started since the date of lock-down in each country. 
Emissions from countries with no lock-down were left unchanged. We then applied these 
country-specific January to April emissions growth rates to estimate daily changes for 
each ROW country in 2020, based on their lock-down measures, and aggregated them 
into daily emission for ROW. 

 

  
  

Table 2 Data sources of activity data for estimating power sector emissions 

Country/Reg
ion 

Data source Sectors included Resolutio
n 

China National Grid Daily Electric Load Thermal production Daily 

India Power System Operation Corporation 
Limited 
(https://posoco.in/reports/daily-reports/) 

Thermal production 
(summarizing the 
production of Coal, 
Lignite, and Gas, 
Naphtha & Diesel) 

Daily 

US Energy Information Administration’s 
(EIA) Hourly Electric Grid Monitor 
(https://www.eia.gov/beta/electricity/grid
monitor/) 

Thermal production 
(summarizing the 
production of Coal, 
Petroleum, and 
Natural Gas) 

Hourly 

EU27 & UK ENTSO-E Transparency platform 
(https://transparency.entsoe.eu/dashboar
d/show) 

Thermal production 
(summarizing the 
production of 
Fossil.Brown.coal.Lig
nite, 
Fossil.Coal.derived.g
as, Fossil.Gas, 
Fossil.Hard.coal,  
Fossil.Oil, 
Fossil.Oil.shale, and 
Fossil.Peat.) 

Croatia, 
Cyprus, 
Ireland, 
Luxembour
g and 
Malta 
excluded 
due to 
unsatisfact
ory data 
quality or 
missing 
data 

Russia United Power System of Russia 
(http://www.so-ups.ru/index.php) 

Total generation Hourly 
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Japan Summarizing electricity data from 10 
electricity providers in Japan (Hokkaido 
Electric Power, Tohoku Electric Power 
Network, Tokyo Electric Power 
Company, Chubu Electric Power Grid, 
Hokuriku Electric Power Transmission & 
Distribution Company, Kansai Electric 
Power, Chugoku Electric Power 
Company, Shikoku Electric Power 
Company, Kyushu Electric Power and 
Okinawa Electric Power Company). 

Total generation Hourly 

Brazil Operator of the National Electricity 
System (http://www.ons.org.br/Paginas/). 

Thermal production Hourly 

  

 

  
Daily industrial production and cement production CO2 
emissions 
While daily production data is not directly available for industrial and cement production, 
the monthly CO2 emissions from industry and cement production sector could be 
calculated by using monthly statistics of industrial production, and daily data of electricity 
generation to disaggregate the monthly CO2 emissions into daily values. This calculation 
assumes a linear relationship between daily electricity generation for industry and daily 
industry production data to compute daily industry production. 

The emissions from industrial production during the fossil fuel combustion were 
calculated by multiplying activity data (i.e., fossil fuel consumption data in the industrial 
sector) by corresponding emission factors by type of fuel. Due to limited data availability, 
we assumed a linear relationship between daily industrial production and industrial fossil 
fuel use, and the emission factors remaining unchanged. So, the monthly emissions in 
2019 in country/region  could be calculated by following equation: 

   𝐸𝑚𝑖𝑠
𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2019,𝑟

= 𝐸𝑚𝑖𝑠
𝑦𝑒𝑎𝑟𝑙𝑦,2019,𝑟

· (𝑃
𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2019,𝑟

/𝑃
𝑦𝑒𝑎𝑟𝑙𝑦,2019,𝑖,𝑟

) (8) 

Emissions from cement production during the chemical process of calcination of calcite 
were calculated with the same Eq.(8), which is normally used by multiplying the cement 
production by the emission factor of this industry. 

Specifically, for China, the emissions from the industry sector were further divided into 
steel industry, cement industry, chemical industry, and other industries (indicated by 
index ): 𝑖
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 𝐸𝑚𝑖𝑠

𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2019,𝐶ℎ𝑖𝑛𝑎
= ∑ 𝐸𝑚𝑖𝑠

,2019,𝑖
· (𝑃

𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2019,𝑖
/𝑃

𝑦𝑒𝑎𝑟𝑙𝑦,2019,𝑖
)

(9) 

 For monthly emissions in 2020 in country/region r, we used the following equation: 

  

   𝐸𝑚𝑖𝑠
𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2019,𝑟

= 𝐸𝑚𝑖𝑠
𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2019,𝑖

· (𝑃
𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2020,𝑟

/𝑃
𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2019,𝑟

) (10) 
  

where is the industrial production in different industrial sectors (in China) or a total 
Industrial Production Index (in other countries) as listed in Table 3. In China’s case, the 
January and February estimates were combined as no individual monthly data was 
reported by sources listed in Table 3 for these two months. The monthly industrial 
emissions were disaggregated to daily emissions using daily electricity data, as 
explained above. 

Lacking the latest Industrial Production Index in April 2020 for Europe, India, Japan, 
Russia and Brazil, we adopted monthly growth rates of industrial output from Trading 
Economics (https://tradingeconomics.com) based on preliminary survey data. For other 
countries not listed in Table 3, we used the same method as described for the power 
sector to calculate the daily industry emissions from ROW. 

To allocate monthly emissions into daily emissions, we used the weight of daily electricity 
production to monthly electricity production, as daily industry data were not available 

   𝐸𝑚𝑖𝑠
𝑑𝑎𝑖𝑙𝑦

= 𝐸𝑚𝑖𝑠
𝑚𝑜𝑛𝑡ℎ𝑙𝑦

· (𝐸𝑙𝑒𝑐
𝑑𝑎𝑖𝑙𝑦

/𝐸𝑙𝑒𝑐
𝑚𝑜𝑛𝑡ℎ𝑙𝑦

) (11) 

  

 

  
  

Table 3 Data sources for industrial production 

Country/Region Sector Data Data source 

China Steel 
ndustry 

Crude steel production World Steel Association website 
(https://www.worldsteel.org/) 

Cement 
Industry 

Cement and clinker 
production 

National Bureau of Statistics 
(http://www.stats.gov.cn/english/) 
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Chemical 
ndustry 

sulfuric acid, caustic soda, 
soda ash, ethylene, 
chemical fertilizer, 
chemical pesticide, 
primary plastic and 
synthetic rubber 

National Bureau of Statistics 
(http://www.stats.gov.cn/english/) 

Other 
ndustry 

crude iron ore, phosphate 
ore, salt, feed, refined 
edible vegetable oil, fresh 
and frozen meat, milk 
products, liquor, soft 
drinks, wine, beer, 
tobaccos, yarn, cloth, silk 
and woven fabric, 
machine-made paper and 
paperboards, plain glass, 
ten kinds of nonferrous 
metals, refined copper, 
ead, zinc, electrolyzed 
aluminum, industrial 
boilers, metal smelting 
equipment, and cement 
equipment 

National Bureau of Statistics 
(http://www.stats.gov.cn/english/) 

India / Industrial Production Index 
(IPI) 

Ministry of Statistics and Programme 
Implementation 
(http://www.mospi.nic.in) 

US / Industrial Production Index 
(IPI) 

Federal Reserve Board 
(https://www.federalreserve.gov) 

EU & UK / Industrial Production Index 
(IPI) 

Eurostat 
(https://ec.europa.eu/eurostat/home) 

Russia / Industrial Production Index 
(IPI) 

Federal State Statistics Service 
(https://eng.gks.ru) 
Trading Economics 
(https://tradingeconomics.com) 

Japan / Industrial Production Index 
(IPI) 

Ministry of Economy, Trade and Industry 
(https://www.meti.go.jp) 
Trading Economics 
(https://tradingeconomics.com) 

Brazil / Industrial Production Index 
(IPI) 

Brazilian Institute of Geography and 
Statistics 
(https://www.ibge.gov.br/en/institutional/the-i
bge.htm) 
Trading Economics 
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(https://tradingeconomics.com) 

 

  
Daily road transportation CO2 emissions 
We collected hourly TomTom congestion level data from the TomTom website 
(https://www.tomtom.com/en_gb/traffic-index/). The congestion level (called  hereafter) 
represents the extra time spent on a trip, in percentage, compared to uncongested 
condition. TomTom congestion level data were obtained for 416 cities across 57 
countries at a temporal resolution of one hour. Of note that a zero-congestion level 
means that the traffic is fluid or ‘normal’, but does not mean there was no vehicle and 
zero emissions. It is thus important to identify the lower threshold of emissions when the 
congestion level is zero. To do so, we compared the time series of daily mean TomTom 

congestion level, with the daily mean car flux (called Q hereafter in vehicle per day) from 

publicly available real-time  data from an average of 60 roads in the Paris megacity. 
Those daily mean car counts were reported by the City’s service 
(https://opendata.paris.fr/pages/home/). We used a sigmoid function to fit the relationship 
between  and  (Fig 2): 

   𝑄 = 𝑎 + 𝑏𝑋𝑐

𝑑𝑐+𝑋𝑐
(12) 

where a, b, c and d are the regression parameters (Table 4). We verified that the 
empirical fit from Eq. (12) can reproduce the observed large drop due to the lockdown in 
Paris and the recovery afterwards. We assume that daily emissions relative changes 
were proportional to the relative change of the function  from Eq. (12). Then, we applied 
the function established for Paris to other cities included in the TomTom dataset, 
assuming that the relative magnitude in car counts (and thus emissions) follow a similar 
relationship with TomTom. The emission changes were first calculated for individual 
cities, and then weighted by city emissions to aggregate to national changes. For a 
specific country  with  cities reported by TomTom, the national daily vehicle flux for day 𝑖 𝑛
 was given by: 𝑗

  
 𝑄

𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑𝑎𝑦𝑗
= 𝑖=1

𝑛

∑ 𝑄
𝑖,𝑑𝑎𝑦𝑗

𝐸
𝑖

𝑖=1

𝑛

∑ 𝐸
𝑖

(13) 

Where  is the annual road transportation emission of city n taken in the grid point of 𝐸
𝑖

each TomTom city from the annual gridded EDGARv4.3.2 emission map for the “road 
transportation” sector (1A3b) (httpiis://edgar.jrc.ec.europa.eu/) for the year 2010, 
assuming that the spatial distribution of ground transport did not change significantly 
within a country between 2010 and the period of this study. Then, the daily road 
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transportation emissions in 2019 and 2020 ( ) for a country were scaled such 𝐸
𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑𝑎𝑦𝑗

that the total road transportation emissions in the first four months of 2019 equaled to 
121/365 times the annual emissions of this sector in 2019 ( ) estimated in this 𝐸

𝑐𝑜𝑢𝑛𝑡𝑟𝑦,2019

study： 

   𝐸
𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑𝑎𝑦𝑗

= 𝑄
𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑𝑎𝑦𝑗

121/365×𝐸
𝑐𝑜𝑢𝑛𝑡𝑟𝑦,2019

𝑗=1

182

∑ 𝑄
𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑𝑎𝑦𝑗(2019)

(14) 

 For countries not included in the TomTom dataset, we assumed that the emission 
changes follow the mean changes of other countries. For example, Cyprus, as an EU 
member country, had no city reported in TomTom dataset, so its relative emission 
change was assumed to follow the same pattern of the total emissions from other EU 
countries included in TomTom dataset (which covers 98% of EU total emissions). 
Similarly, the relative emission changes of countries in ROW but not reported by 
TomTom were assumed to follow the same pattern of the total emissions from all 
TomTom reported countries (which cover 85% of global total emissions). 

 

Fig 2 (a) Relationship between TomTom congestion level index and actual car counts (Q) 
for Paris. The sigmoid fit between  and  is given by the red line. (b) evaluation of the 

function  during the period of the lock down in Paris. 

Table 4 Regression parameters of the sigmoid function of Eq. (12) that describes the 
relationship between car counts () and TomTom congestion level  

  

Parameter Value 

a 100.87 

b 671.06 

c 1.98 
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d 6.49 

  

Table 5 Cities (416 across 57 countries) with TomTom congestion level data 

untry/Region y 

stria (5) nna, Salzburg, Graz, Innsbruck, Linz 

gium (10) ssels, Antwerp, Namur, Leuven, Ghent, Liege, Kortrijk, Mons, Bruges, Charleroi 

garia (1) fia 

ech (3) o, Prague, Ostrava 

nmark (3) penhagen, Aarhus, Odense 

onia (1) inn 

land (3) sinki, Turku, Tampere 

nce (25) ris, Marseille, Bordeaux, Nice, Grenoble, Lyon, Toulon, Toulouse, Montpellier, 
ntes, Strasbourg, Lille, Clermont-Ferrand, Brest, Rennes, Rouen, Le-havre, 
nt-Etienne, Nancy, Avignon, Orleans, Le-mans, Dijon, Reims, Tours 

rmany (26) mburg, Berlin, Nuremberg, Bremen, Stuttgart, Munich, Bonn, Frankfurt-am-main, 
esden, Cologne, Wiesbaden, Ruhr-region-west, Leipzig, Hannover, Kiel, Freiburg, 
sseldorf, Karlsruhe, Ruhr-region-east, Munster, Augsburg, Monchengladbach, 
nnheim, Bielefeld, Wuppertal, Kassel 

eece (2) ens, Thessaloniki 

ngary (1) dapest 

and (1) ykjavik 

and (3) blin, Cork, Limerick 

y (25) me, Palermo, Messina, Genoa, Naples, Milan, Catania, Bari, Reggio-calabria, 
ogna, Florence, Turin, Prato, Cagliari, Pescara, Livorno, Trieste, Verona, Taranto, 
ggio-emilia, Ravenna, Padua, Parma, Modena, Brescia 

via (1) a 

huania (1) nius 

xembourg (1) xembourg 

therlands (17) e-hague, Haarlem, Leiden, Arnhem, Amsterdam, Rotterdam, Nijmegen, Groningen, 
dhoven, Utrecht, Amersfoort, Tilburg, Breda, Apeldoorn, Zwolle, Den-bosch, Almere 
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rway (4) o, Trondheim, Stavanger, Bergen 

and (12) dz, Krakow, Poznan, Warsaw, Wroclaw, Bydgoszcz, Gdansk-gdynia-sopot, 
czecin, Lublin, Bialystok, Bielsko-biala, Katowice-urban-area 

rtugal (5) bon, Porto, Funchal, Braga, Coimbra 

mania (1) charest 

ssia (11) scow, Saint-petersburg, Novosibirsk, Yekaterinburg, Nizhny-novgorod, Samara, 
stov-on-don, Chelyabinsk, Omsk, Tomsk, Kazan 

vakia (2) atislava, Kosice 

venia (1) bljana 

ain (25) rcelona, Palma-de-mallorca, Granada, Madrid, Santa-cruz-de-tenerife, Seville, 
oruna, Valencia, Malaga, Murcia, Las-palmas, Alicante, Santander, Pamplona, 
on, Cordoba, Zaragoza, Vitoria-gasteiz, Vigo, Cartagena, Valladolid, Bilbao, Oviedo, 
n-sebastian, Cadiz 

eden (4) ckholm, Uppsala, Gothenburg, Malmo 

itzerland (6) neva, Zurich, Lugano, Lausanne, Basel, Bern 

key (10) anbul, Ankara, Izmir, Antalya, Bursa, Adana, Mersin, Gaziantep, Konya, Kayseri 

raine (4) v, Odessa, Kharkiv, Dnipro 

(25) nburgh, London, Bournemouth, Hull, Belfast, Brighton-and-hove, Bristol, 
nchester, Leicester, Coventry, Nottingham, Cardiff, Birmingham, Southampton, 
eds-bradford, Liverpool, Sheffield, Swansea, Newcastle-sunderland, Glasgow, 
ading, Portsmouth, Stoke-on-trent, Preston, Middlesbrough 

ypt (1) ro 

uth Africa (6) pe-town, Johannesburg, Pretoria, East-london, Durban, Bloemfontein 

  

  

  

Table 5 (continued) Cities (416 across 57 countries) with TomTom level data 

Country/Region City 

China (22) Chongqing, Zhuhai, Guangzhou, Beijing, Chengdu, Changchun, Changsha, 
Shenzhen, Shenyang, Shanghai, Wuhan, Fuzhou, Shijiazhuang, Xiamen, Nanjing, 
Hangzhou, Tianjin, Ningbo, Quanzhou, Dongguan, Suzhou, Wuxi 
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Hong Kong (1) Hong Kong 

India (4) Mumbai, New-delhi, Bangalore, Pune 

Indonesia (1) Jakarta 

Israel (1) Tel-aviv 

Japan (5) Tokyo, Osaka, Nagoya, Sapporo, Kobe 

Kuwait (1) Kuwait-city 

Malaysia (1) Kuala-lumpur 

Philippines (1) Manila 

Saudi Arabia (2) Riyadh, Jeddah 

Singapore (1) Singapore 

Taiwan (5) Kaohsiung, Taipei, Taichung, Tainan, Taoyuan 

Thailand (1) Bangkok 

United Arab 
Emirates (2) 

Dubai, Abu-dhabi 

Australia (10) Sydney, Melbourne, Brisbane, Adelaide, Gold-coast, Hobart, Newcastle, Perth, 
Canberra, Wollongong 

New Zealand (6) Auckland, Wellington, Hamilton, Christchurch, Dunedin, Tauranga 

Argentina (1) Buenos-aires 

Brazil (9) Recife, Sao-paulo, Rio-de-janeiro, Salvador, Fortaleza, Porto-alegre, 
Belo-horizonte, Curitiba, Brasilia 

Chile (1) Santiago 

Columbia (1) Bogota 

Peru (1) Lima 

Canada (12) Vancouver, Toronto, Montreal, Ottawa, London, Winnipeg, Halifax, Quebec, 
Hamilton, Calgary, Edmonton, Kitchener-waterloo 

Mexico (1) Mexico-city 
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USA (80) Los-angeles, New-york, San-francisco, San-jose, Seattle, Miami, Chicago, 
Washington, Honolulu, Atlanta, Baton-rouge, San-diego, Boston, Austin, Portland, 
Philadelphia, Sacramento, Houston, Riverside, Tampa, Nashville, Orlando, 
Charleston, Denver, Cape-coral-fort-myers, Pittsburgh, New-orleans, Las-vegas, 
Boise, Fresno, Baltimore, Tucson, Providence, Charlotte, Dallas-fort-worth, 
Oxnard-thousand-oaks-ventura, Bakersfield, Greenville, Jacksonville, Detroit, 
Albuquerque, Columbus, San-antonio, Salt-lake-city, Phoenix, Mcallen, Raleigh, 
Virginia-beach, Hartford, Colorado-springs, Birmingham, New-haven, Louisville, ​
Minneapolis, Cincinnati, El-paso, Allentown, Buffalo, Memphis, Worcester, 
Grand-rapids, Albany, St-louis, Milwaukee, Omaha-council-bluffs, Indianapolis, 
Rochester, Columbia, Oklahoma-city, Cleveland, Tulsa, Kansas-city, Knoxville, 
Richmond, Winston-salem, Dayton, Little-rock, Syracuse, Akron, 
Greensboro-high-point 

  

  

 

  
Daily commercial aviation CO2 emissions 
We calculated CO2 emissions from commercial aviation following a commonly used 
approach: reconstructing the emission inventories from bottom up based on the 
knowledge of the parameters of individual flights. We collected the FlightRadar24 data 
(https://www.flightradar24.com/) for the departure and landing airports for each flight, the 
calculate the distance flown assuming the shortest distance for each flight, and then CO2 
emissions per flight31. Flights were grouped per country, and for each country between 
domestic or international traffic. The daily CO2 emission was computed as the product of 
distance flown, by a CO2 emission factor per km flown, according to: 

   𝐷𝑎𝑖𝑙𝑦 𝐸𝑚𝑖𝑠
𝑎𝑣𝑖𝑎𝑡𝑖𝑜𝑛

= 𝐷𝑎𝑖𝑙𝑦 𝐾𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 𝐹𝑙𝑜𝑤𝑛
𝑎𝑣𝑖𝑎𝑡𝑖𝑜𝑛 2020

× 𝐸𝐹
𝑎𝑣𝑖𝑎𝑡𝑖𝑜𝑛 2019

(14) 

 We acquired monthly individual commercial flight information from FlightRadar24. 
Individual commercial flights are tracked by FlightRadar24 based on reception of ADS-B 
signals emitted by aircraft and received by their network of ADS-B receptors31. 

The are computed assuming great circle distance between the take-off, cruising, descent 
and landing points for each flight and are cumulated over all flights. As there is no 
sufficient data available to convert the FlightRadar24 database into CO2 emissions on a 
flight-by-flight basis, we computed CO2 emissions by assuming a constant CO2 emission 
factor per km flown across the whole fleet of aircraft (regional, narrowbody passenger, 
widebody passenger and freight operations). This assumption is justified if the mix of 
flights between these categories has not changed substantially between 2019 and 2020. 
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   𝐷𝑎𝑖𝑙𝑦 𝐸𝑚𝑖𝑠
2020

= 𝐷𝑎𝑖𝑙𝑦 𝐸𝑚𝑖𝑠
2019

×
𝐷𝑎𝑖𝑙𝑦 𝐾𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 𝐹𝑙𝑜𝑤𝑛

2020

𝐷𝑎𝑖𝑙𝑦 𝐾𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 𝐹𝑙𝑜𝑤𝑛
2019

(15) 

EDGAR published an estimate of total CO2 emissions from commercial aviation in 2018 
of 925 Mt CO2. And the International Council on Clean Transportation (ICCT) implied 
annual compound growth rate of total emissions from commercial flights, 5.7%, during 
the past five years from 2013 to 201832. In the absence of further information, we 
considered this increase to be representative of the emission growth rate of commercial 
aviation from 2018 to 2019. The FlightRadar24 database has incomplete data for some 
flights and may miss altogether a small fraction of actual flights31, so we scaled the 
EDGAR estimate of CO2 emissions (inflated by 5.7% for the year 2019) with the total 
estimated number of kilometers flown in 2019 (67.91 million km) and apply this scaling 
factor to 2020 data. We assumed that the fraction of missed flights was the same in 
2019 and 2020, which is reasonable. 

  

Daily ship traffic CO2 emissions 
We collected international CO2 ships emissions from 2016-2018 based on the EDGAR’s 
international emissions. We also. collected global shipping emissions during the period 
of 2007-2015 from IMO33 and ICCT 
(https://theicct.org/sites/default/files/publications/Global-shipping-GHG-emissions-2013-2
015_ICCT-Report_17102017_vF.pdf). According to the Third IMO GHG Study33, CO2 
emissions from international shipping accounted for 88% of global shipping emissions, 
domestic and fishing accounts for 8% and 4%, respectively. We calculated international 
CO2 shipping emissions from 2007-2015 from global shipping emissions and the ratio of 
international shipping and global shipping emissions. We extrapolated emissions from 
linear fits 2007-2018 to estimate the emissions in 2019. The data sources of shipping 
emissions are in Table 6. We obtained emissions for the first quarter of 2019 based on 
the assumption the equal distribution of monthly shipping CO2 emissions. The equations 
are as follows: 

  𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝐸𝑚𝑖𝑠
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔,2019

= α × 𝑌𝑒𝑎𝑟𝑙𝑦 𝐸𝑚𝑖𝑠
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔,201

(16) 

  
 is the increasing rate of international shipping emissions in 2019 based on the linear α

extrapolation of data from the period 2007-2018, estimated to be of 3.01%.  represents 
the ratio of the months to be calculated in the whole year. Given this, we estimated the 
shipping emissions for the first quarter of 2019,  equals 121/365. 
  
We assumed that the change in shipping emissions was linearly related to the change in 
ships. Traffic volume. The change of international shipping emissions for the first four 
months of 2020 was calculated according to the following equation: 
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   𝐸𝑚𝑖𝑠
𝑝𝑒𝑟𝑖𝑜𝑑,2020

= 𝐸𝑚𝑖𝑠
𝑝𝑒𝑟𝑖𝑜𝑑,2019

× 𝐶
𝑖𝑛𝑑𝑒𝑥

(17) 

  
Where  represents the ratio of the change in shipping emissions, estimated to the 𝐶

𝑖𝑛𝑑𝑒𝑥

end of Apr by -15% compared to the same period of last year according to 
https://www.theedgemarkets.com/article/global-container-shipments-set-fall-30-next-few-
months. 
  

Table 6. Data sources used to estimate ship emissions 
  

Shipping Emissions Sources 

Global shipping Emissions (2007-2012) IMO33 

Global shipping Emissions (2013-2015) ICCT 

International shipping Emissions (2016-2018) EDGAR v5.0 

Daily residential sector emissions CO2 emissions, from 

residential and commercial buildings 

Fuel consumption daily data from this sector are not available. Several studies (ref) 
showed that the main source of daily and monthly variability of this sector is climate, 
namely heating emissions increase when temperature falls below a threshold which 
depends on region, building types and people habits. We calculated emissions by 
assuming annual totals unchanged from 2019 and using climate daily climate 
information,  in three steps: 1) estimation of population-weighted heating degree days for 
each country and for each day based on the ERA534 reanalysis of 2-meters air 
temperature, 2) split residential emissions into two parts: cooking emissions and heating 
emissions according to the EDGAR database35, using the EDGAR estimates of 2018 
residential emissions as the baseline. Emissions from cooking were assumed to remain 
independent of temperature, and those from heating were assumed to be a function of 
the heating demand. Based on the change of population-weighted heating degree days 
in each country in 2019 and 2020, we downscaled annual EDGAR 2018 residential 
emissions to daily values for 2019 and 2020 as described by Eq. 18-20: 

  

 𝐸𝑚𝑖𝑠
𝑐,𝑚

= 𝐸𝑚𝑖𝑠
𝑐,𝑚,2018

× 𝑚
∑𝐻𝐷𝐷

𝑐,𝑑

𝑚,2018
∑ 𝐻𝐷𝐷

𝑐,𝑑

(18) 
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𝐸𝑚𝑖𝑠
𝑐,𝑑

= 𝐸𝑚𝑖𝑠
𝑐,𝑚

× 𝑅𝑎𝑡𝑖𝑜
ℎ𝑒𝑎𝑡𝑖𝑛𝑔,𝑐,𝑚

×
𝐻𝐷𝐷

𝑐,𝑑

𝑚
∑𝐻𝐷𝐷

𝑐,𝑑

+ 𝐸𝑚𝑖𝑠
𝑐,𝑚

× (1 − 𝑅𝑎𝑡𝑖𝑜
ℎ𝑒𝑎𝑡𝑖𝑛𝑔,𝑐

(19) 

 𝐻𝐷𝐷
𝑐,𝑑

=
∑(𝑃𝑜𝑝

𝑔𝑟𝑖𝑑
×(𝑇

𝑔𝑟𝑖𝑑,𝑐,𝑑
−18))

∑(𝑃𝑜𝑝
𝑔𝑟𝑖𝑑

)

(20) 

  

where  is country,  is day,  is month,  is the residential emissions of country  𝑐 𝑑 𝑚 𝐸𝑚𝑖𝑠
𝑐,𝑚

𝑐

in month  of the year 2019 or 2020, is the emissions of country  in month 𝑚 𝐸𝑚𝑖𝑠
𝑐,𝑚,2018

𝑐

 of the year 2018,  is the population-weighted heating degree day in country  in 𝑚 𝐻𝐷𝐷
𝑐,𝑑

𝑐

day ,  is the residential emissions of country  in day  of the year 2019 or 2020, 𝑑 𝑐 𝑑
 is the percentage of residential emissions from heating demand in country 𝑅𝑎𝑡𝑖𝑜

ℎ𝑒𝑎𝑡𝑖𝑛𝑔,𝑐,𝑚

 in month ,  is the number of days in month ,  is gridded population data 𝑐 𝑚 𝑁
𝑚

𝑚 𝑃𝑜𝑝
𝑔𝑟𝑖𝑑

derived from Gridded Population of the World, Version 436,  is the daily average air 𝑇
temperature at 2 meter derived from ERA534. 

The main assumption is this approach is that residential emissions did not 
change from other factors than heating degree days variations in 2020, when 
people time in houses dramatically increased during the lockdown period. In 
order to test the validity of this assumption, we compiled natural gas daily 
consumption data by residential and commercial buildings for France 
(https://www.smart.grtgaz.com/fr/consommation) (unfortunately such data could not 
be collected in many countries) during 2019 and 2020. Natural gas consumption 
in kWh per day was transformed to CO2 emissions using an emission factor of 
10.55 kWh per m3 and a molar volume of 22.4 10-3 m3 per mole. 

Firstly, we verified that the temporal variation of those ‘true’ residential CO2 
emissions was similar to that given by equations (18) to (20). Secondly, after 
fitting a piecewise model to those natural gas residential emission data using 
ERA5 air temperature data, we removed the effect of temperature to obtain an 
emission corrected for temperature effects. Even if the lock down was very strict 
in France, we found no significant emission anomaly, meaning that the fact that 
nearly the entire population was confined at home did not increase or decrease 
emissions. This complementary analysis tentatively suggests that residential 
emissions can be well approximated in other countries by equations (18) to (20) 
based only on temperature during the lockdown period. 

  

28 

 



 

Fig 3. Residential and commercial building daily natural gas consumption (linearly 
related to CO2 emissions from this sector) in France for the last 5 years. Temperature 
effects have been removed from emissions using a linear piecewise model. When the 

effect of variable winter temperature was accounted for, no significant change is seen in 
2020 during the very strict lock-down period. 

 

Data Records and list of countries and groups of countries 
Currently there are 27484 data records provided in this dataset: 

-   ​ 268 records are daily mean CO2 emissions (from fossil fuel combustion and 
cement production process) 1751-2020. 

-   ​ 4374 records are the daily emissions for 9 countries or groups of countries as 
given in Table 7  (China, India, US, EU27&UK, Russia, Japan, Brazil, ROW and 
Globe) and 486 days (from January 1st 2019 to April 30th 2020). 

-   ​ 22842 records are daily emissions in power sector, ground transport sector, 
industry sector, residential sector, aviation sector and international shipping sector 
respectively, for 9 countries/regions (China, India, US, EU27&UK, Russia, Japan, 
Brazil, ROW and Globe) and 486 days (from January 1st 2019 to April 30th 2020). 
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Table 7. Countries or group of countries abbreviations used on the web site 
  

WLD World (all countries or groups of countries) 

CHN People’s Republic of China 

BRA Brazil 

EU28 European Union 27 in 2020 

FRA France 

DEU Germany 

IND India 

ITA Italy 

JPN Japan 

RUS Russia 

ESP Spain 

USA United States 

GBR United Kingdom 

ROW Rest of the World 

  
  

 

  
Estimation of CO2 emissions uncertainties 
We followed the 2006 IPCC Guidelines for National Greenhouse Gas Inventories to 
conduct the uncertainty analysis of the data (1-sigma uncertainties). 

Power sector: uncertainty is mainly from inter-annual variability of coal emission factors. 
Based the UN statistics the inter-annual variability of fossil fuel is within (±1.5%), which 
been used as uncertainty of the CO2 emissions from this sector. 

Industrial sector: uncertainty comes from the monthly production data. Given that CO2 
emissions from industry and cement production in China accounts for more than 60% of 
world total industrial CO2, and the fact that uncertainty of emission in China is t Uncertainty 
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from monthly statistics was derived from 10000 Monte Carlo simulations to estimate a 68% 
confidence interval (1-sigma) for China. from monthly statistics was derived from 10000 
Monte Carlo simulations to estimate a 68% confidence interval (1-sigma) for China. We 
calculated the 68% prediction interval of linear regression models between emissions 
estimated from monthly statistics and official emissions obtained from annual statistics at 
the end of each year, to deduce the one-sigma uncertainty involved when using monthly 
data to represent the whole year’s change. The squared correlation coefficients are within 
the range of 0.88 (e.g., coal production) and 0.98 (e.g., energy import and export data), 
which represent that only using the monthly data can explain 88% to 98% of the whole 
year’s variation37, while the remaining variation not covered yet reflect the uncertainty 
caused by the frequent revisions of China’s statistical data after they are first published. 

Road Transportation: emissions from this sector is estimated by assuming that the relative 
magnitude in car counts (and thus emissions) follow the similar relationship with TomTom. 
Emissions 1-sigma uncertainties were quantified by the prediction interval of the regression. 

Commercial Aviation: Uncertainties in the aviation CO2 emissions are difficult to assess. 
Sources of uncertainties arise from the ICCT (2018) estimate used to scale emissions, the 
lack of completeness of the flight database and the fixed average conversion factor 
between kilometers flown and CO2 emissions. These last two uncertainties should have a 
limited impact as we do not expect a change between 2019 and 2020 in database 
completeness and in the average fleet composition. In the study 1-sigma uncertainty of 
aviation sector was approximated from the difference of daily emission data estimated 
based on the two methods. We calculated the average difference between the daily 
emission results estimated based on the flight route distance and the number of flights, and 
then divide the average difference by the average of the daily emissions estimated by the 
two methods to obtain the uncertainty of CO2 from aviation sector. 

Shipping: We used the uncertainty analysis from IMO as our uncertainty estimate for 
shipping emissions. According to Third IMO Greenhouse Gas study 201433, the uncertainty 
of shipping emissions was set to 13% based on this inventory. 

Residential sector (commercial and residential buildings): The 1-sigma uncertainty 
in daily emissions are estimated as 20%, which is calculated based on the comparison 
with daily residential emissions derived from real fuel consumptions in several European 
countries including France, Great Britain, Italy, Belgium, and Spain. 

Global annual 2019 emissions: The 1-sigma uncertainty of emission projection in 2019 
is estimated as 2.2%, by combining the reported uncertainty of the projected growth 
rates and the EDGAR estimates in 2018. 

Overall uncertainty: We combined all the uncertainties from each sector (Table 8) by 
following the error propagation equation from IPCC. Eq. (21) is used to derive for the 
uncertainty of the sum, which could be used to combine the uncertainties of all sectors: 
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 𝑈
𝑡𝑜𝑡𝑎𝑙

=
∑(𝑈

𝑆
·μ

𝑠
)

∑μ
𝑠

||||

||||

(21) 

  

Where  and  are the percentage uncertainties and the uncertain quantities (daily mean 
emissions) of sector  respectively. Eq. (22) was used to derive for the uncertainty of the 
multiplication, which is used to combine the uncertainties of all sectors and of the 
projected emissions in 2019: 

  
 𝑈

𝑜𝑣𝑒𝑟𝑎𝑙𝑙
= ∑ 𝑈

𝑖
2

(22) 

  

Table 8 Percentage 1-sigma uncertainties of all items. 

Items Uncertainty Range 

Power ±1.5% 

Ground Transport ±9.3% 

Industry ±36.0% 

Residential ±40.0% 

Aviation ±10.2% 

International Shipping ±13.0% 

Projection of emission growth 
rate in 2019 

±0.8% 

EDGAR emissions in 2018 ±5.0% 

Overall ±6.8% 

Code Availability 
The code generated during and/or analyzed during the current study are available from 
the corresponding author. After peer-reviewed the code will be open accessible on the 
Carbon Monitor website (www.carbonmonitor.org or www.carbonmonitor.org.cn). 
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