Feature spec
Percona XtraDB Cluster Operator

Asynchronous replication from another site for Disaster Recovery

JIRA K8SPXC-308 Author Sergey Pronin
Input Data Marco Tusa blog post on GitHub Public Link
async replication Roadmap
Marco Tusa testing results of
PXC 8.0.22
Review till 11/Jdun/2021 Target release 1.9.0
Spec status Approved Spec ticket ID PSPEC-19

Executive Summary
What is the business value that the feature will deliver

Disaster recovery protocols are the key to business continuity. Running a MySQL database in a single
data center or region might lead to complete data loss. Recovering from backups in another region is
an option, but is not enough for low recovery time objectives (RTO).

To solve these problems a new feature will be added to Percona XtraDB Cluster Operator -
asynchronous replication between two clusters. Setting up asynchronous replication from another site
(Replica) and exposing PXC nodes (Main).

High level functional overview
Provide high level details about the solution, assumptions and other details

1.

We want to invest into the latest and greatest technologies and will build this feature for

MySQL version 8.0 only based on Automatic Asynchronous Replication Connection Failover
a. Iltis possible to deliver this feature for 5.7 as well (see here), but it uses a different

approach that would increase maintenance costs on our end.

This feature handles a manual failover process. This means that we do not introduce new

concepts for external orchestrators and monitoring systems.

This feature automates the configuration of Source and Replica Percona XtraDB Clusters in

Kubernetes. But we keep in mind that either Source or Replica can run outside of Kubernetes

and be out of Operators’ control. In such a case the feature will still work.

We will design this feature with the idea that we will reuse it for our future Percona Server for

MySQL Operator based on Percona Server for MySQL.

Dependencies
List the milestones on which this specification depends on.

https://jira.percona.com/browse/K8SPXC-308
mailto:john.doe@percona.com
https://www.tusacentral.net/joomla/index.php/mysql-blogs/227-mysql-asynchronous-source-auto-failover
https://www.tusacentral.net/joomla/index.php/mysql-blogs/227-mysql-asynchronous-source-auto-failover
https://docs.google.com/document/d/1buExuUXl0Lvb7RZHDJ9KQ8Z5OwLmbddp60ftdaJYhqw/edit#heading=h.fqzj0eg05357
https://docs.google.com/document/d/1buExuUXl0Lvb7RZHDJ9KQ8Z5OwLmbddp60ftdaJYhqw/edit#heading=h.fqzj0eg05357
https://github.com/percona/roadmap/issues/7
https://jira.percona.com/browse/PSPEC-19
https://www.percona.com/doc/kubernetes-operator-for-pxc/index.html
https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://severalnines.com/database-blog/asynchronous-replication-between-mysql-galera-clusters-failover-and-failback

Repl Failover.

early June.

Release of Percona XtraDB Cluster version 8.0.22 (RM-882, March 18th) to support Automatic Async

Also Marco Tusa suggested that 8.0.23 has some enhancements and PXC 8.0.23 should be released in

Requirements

For requirements and further discussion we assume the following scheme:

Source PXC Replica PXC

async
replication

PXC nodes :> PXC nodes

User stories

User stories and notes to them

to configure

and Replica.

User story Notes Priority JIRA
Generic stories
As a user, | want | This is to configure the Source PXC High K8SPXC-308
to configure PXC
through CR to
expose every
node with a
service
As a user, | want | This is to configure Replica PXC with High TBD
to configure asynchronous_connection failover add sou
Replica PXC rce () and
through CR to asynchronous_connection failover add sou
specify sources rce managed () function
for async
replication
As a user, | We cannot control it for the cases when the Replica | High TBD
expect that my Cluster is not controlled by the Operator. See RQ 1
Replica clusteris | for QA team.
read-only
Replication user stories
As a user, | want | User should specify this user on both ends - Source | High TBD

https://jira.percona.com/browse/RM-882
https://jira.percona.com/browse/K8SPXC-308

replication user
through Secret
object

On Source we also create the grants.

As a user, |
expect that
necessary grants
for replication
user will be
created
automatically on
Source PXC

High

TBD

As a user, |
expect that if |
change the user
in Secret object
in Kubernetes
grants are
changed as well

High

TBD

Failover stories

As a user, |
expect that
promoting
Replica to Source
is manual

TBD

As a user, |
expect that
promoting
Replica to Source
disables
replication

mysqgl.replication asynchronous connectio
n failover and

m§sql .replication_asynchronous_connectio
n_failover managed tables should be empty

High

TBD

As a user, |
expect that
promoting
Replica to Source
disables
read-only mode

High

TBD

As a user, |
expect that
promoting
Replica to Source
grants
Replication user
necessary
access

TBD

Documentation stories

As a user, |
expect that
documentation is
updated to
describe the
replication
configuration

e Describe new user in Secret High TBD

e Describe how to perform a failover

e Minimal network requirements should be
covered (as we need to expose the nodes)

As a product
owner, | want to
have a blog post
written about
replication
configuration

Few ideas for blog posts: High TBD
1. Sausage blog post with how we made the
decisions and why
2. Overall review of the feature
3. Highlight use cases:
a. Smooth migration from on-prem to
k8s with replication
b. Disaster recovery

Performance, QA, other
Define SLAs, RTOs, specific to QA and any other requirements

RQ 1 - QA - Test writable Replica PXC

Users might run Replica PXC outside of the Operator. What kind of issues might we face if something is
written to the Replica?

RQ 2 - Recovery Point Objectives

We need to communicate in our documentation what kind of RPO the user can expect at certain
conditions - DB size, QPS, Network performance between the sites, etc. Even if the outcome is highly
parameterized, we expect that RPO in ideal conditions and performance is less than 1 minute.

Important technical decisions

ITD 1.1 - UX - add replication user to Secret object

The problem How does the user configure the password for the replication users?

Options 1. User to create the user manually

considered 2. Create a separate Kubernetes Secret

(decision in 3. Add one more system user into Users Secret

bold) 4. Configure user automatically once replication is enabled

Reasoning Operator is all about automation, so we are going to defer option #1.
Creating a separate Kubernetes secret for each replication channel might be an
option, but introduces additional complexity of user management.

The decision to create one System user through an already existing mechanism
looks like the simplest solution, where all corner cases are already taken care of. The
desire to have separate users per replication channel will not be addressed here.

Implicit automation (option #4) is something that we are trying to avoid in our
Operators.

Details New system user “replication” will appear in default my-cluster-secrets. We will allow
users to change only the password.

The password and grants will be set automatically.

If the user already exists, we are going to set the replication grants to the user.

apiVersion: vl

kind: Secret

metadata:
name: my-cluster-secrets

type: Opaque

stringData:
root: root password
xtrabackup: backup password
monitor: monitory
clustercheck: clustercheckpassword
proxyadmin: admin password
pmmserver: admin
operator: operatoradmin
replication: repl password

Consequences | None

ITD 1.2 - UX - add new section to configure replication to cr.yaml

The problem How to configure replication on Source and Replica for the cluster controlled by the
Operator?

Options 1. Create new Custom Resource in Kubernetes

considered 2. Configure using cluster CR (cr.yaml)

(decision in

bold)

Reasoning Adding a new Custom Resource is a complex process and is also useful if we want to

keep the separate “state” somewhere. Replication is just another configuration
parameter which can fit existing PXC Customer Resource.

Details We add the new section spec.pxc.replicationChannels

spec.pxc.replicationChannels

Type: array

Description: defines the replication configuration for Source or Replica. Array
consists of channels.
Default: None (commented out in cr)

spec.pxc.replicationChannels. [].name

Type: string
Description: defines the name of the channel. Required.
Default: None

spec.pxc.replicationChannels. [].isSource

Type: boolean
Description: defines if this PXC cluster is Source or Replica
Default: None

spec.pxc.replicationChannels. [].sourcesList

Type: array

Description: defines the list of sources from which Replica should get the data.
Ignored if spec.pxc.replicationChannels. [].isSource is True, required - if
False.

Default: None

spec.pxc.replicationChannels. [].sourcesList.[].host

Type: string
Description: host name or IP-address of the source. Required.
Default: None

spec.pxc.replicationChannels. [].sourcesList.[].port

Type: int
Description: port of the source
Default: 3306

spec.pxc.replicationChannels. [].sourcesList.[].weight

Type: int
Description: weight of the source
Default: 100

Example Source:

spec:
pxc:
replicationChannels:
- name: pxcl to pxc2
isSource: true

Example Replica:

spec:
pxc:
replicationChannels:
- name: pxcl to pxc2
isSource: false

sourcesList:
- host: pxcl.source.percona.com
port: 3306

weight: 100
- host: pxc2.source.percona.com
- host: pxc3.source.percona.com

Consequences

None

ITD 1.3 - UX - Expose every PXC node as a service

The problem For Replica cluster to connect to Source every PXC node in Source cluster should be
exposed.

Options 1. User to create Service objects manually

considered 2. Configure exposure through CR

(decision in

bold)

Reasoning We run the Operator which should simplify the operations, so we want to do it with
CR.

Details We are going to add a new section under spec.pxc - expose.

spec.pxc.expose.enabled

Type: boolean
Description: enables or disables the exposure of the PXC nodes
Default: false

spec.pxc.expose.type

Type: inherited from Kubernetes Service spec.type
Description: Service type that will be used
Default: ClusterlP

spec.pxc.expose.loadBalancerSourceRanges

Type: array

Description: network prefix ranges whitelisted for the loadbalancer. Requires
spec.pxc.expose.type to be LoadBalancer

Default: None

spec.pxc.expose.annotations

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

Type: section
Description: annotations applied to the Service object
Default: None

Example:

spec:
pxc:
expose:
enabled: true
type: LoadBalancer
loadBalancerSourceRanges:
- 10.0.0.0/8
annotations:
networking.gke.io/load-balancer-type: "Internal"

This will create the internal LoadBalancer per each PXC node.

Consequences

We will reuse the same expose section structure for other components in the future.
For example, we will replace serviceAnnotations with expose.annotations. This will
be handled by another spec: PSPEC-20 and define the deprecation policy.

https://jira.percona.com/browse/PSPEC-20

	Feature spec
	
	Executive Summary
	High level functional overview
	Dependencies
	Requirements
	User stories
	Performance, QA, other

	Important technical decisions
	ITD 1.1 - UX - add replication user to Secret object
	ITD 1.2 - UX - add new section to configure replication to cr.yaml
	ITD 1.3 - UX - Expose every PXC node as a service

