

Feature spec
Percona XtraDB Cluster Operator

Asynchronous replication from another site for Disaster Recovery

JIRA K8SPXC-308 Author Sergey Pronin

Input Data Marco Tusa blog post on
async replication
Marco Tusa testing results of
PXC 8.0.22

GitHub Public
Roadmap

Link

Review till 11/Jun/2021 Target release 1.9.0

Spec status Approved Spec ticket ID PSPEC-19

Executive Summary
What is the business value that the feature will deliver

Disaster recovery protocols are the key to business continuity. Running a MySQL database in a single
data center or region might lead to complete data loss. Recovering from backups in another region is
an option, but is not enough for low recovery time objectives (RTO).
To solve these problems a new feature will be added to Percona XtraDB Cluster Operator -
asynchronous replication between two clusters. Setting up asynchronous replication from another site
(Replica) and exposing PXC nodes (Main).

High level functional overview
Provide high level details about the solution, assumptions and other details

1.​ We want to invest into the latest and greatest technologies and will build this feature for
MySQL version 8.0 only based on Automatic Asynchronous Replication Connection Failover

a.​ It is possible to deliver this feature for 5.7 as well (see here), but it uses a different
approach that would increase maintenance costs on our end.

2.​ This feature handles a manual failover process. This means that we do not introduce new
concepts for external orchestrators and monitoring systems.

3.​ This feature automates the configuration of Source and Replica Percona XtraDB Clusters in
Kubernetes. But we keep in mind that either Source or Replica can run outside of Kubernetes
and be out of Operators’ control. In such a case the feature will still work.

4.​ We will design this feature with the idea that we will reuse it for our future Percona Server for
MySQL Operator based on Percona Server for MySQL.

Dependencies
List the milestones on which this specification depends on.

https://jira.percona.com/browse/K8SPXC-308
mailto:john.doe@percona.com
https://www.tusacentral.net/joomla/index.php/mysql-blogs/227-mysql-asynchronous-source-auto-failover
https://www.tusacentral.net/joomla/index.php/mysql-blogs/227-mysql-asynchronous-source-auto-failover
https://docs.google.com/document/d/1buExuUXl0Lvb7RZHDJ9KQ8Z5OwLmbddp60ftdaJYhqw/edit#heading=h.fqzj0eg05357
https://docs.google.com/document/d/1buExuUXl0Lvb7RZHDJ9KQ8Z5OwLmbddp60ftdaJYhqw/edit#heading=h.fqzj0eg05357
https://github.com/percona/roadmap/issues/7
https://jira.percona.com/browse/PSPEC-19
https://www.percona.com/doc/kubernetes-operator-for-pxc/index.html
https://dev.mysql.com/doc/refman/8.0/en/replication-asynchronous-connection-failover.html
https://severalnines.com/database-blog/asynchronous-replication-between-mysql-galera-clusters-failover-and-failback

Release of Percona XtraDB Cluster version 8.0.22 (RM-882, March 18th) to support Automatic Async
Repl Failover.
Also Marco Tusa suggested that 8.0.23 has some enhancements and PXC 8.0.23 should be released in
early June.

Requirements
For requirements and further discussion we assume the following scheme:

User stories
User stories and notes to them

User story Notes Priority JIRA

Generic stories

As a user, I want
to configure PXC
through CR to
expose every
node with a
service

This is to configure the Source PXC High K8SPXC-308

As a user, I want
to configure
Replica PXC
through CR to
specify sources
for async
replication

This is to configure Replica PXC with
asynchronous_connection_failover_add_sou
rce() and
asynchronous_connection_failover_add_sou
rce_managed() function

High TBD

As a user, I
expect that my
Replica cluster is
read-only

We cannot control it for the cases when the Replica
Cluster is not controlled by the Operator. See RQ 1
for QA team.

High TBD

Replication user stories

As a user, I want
to configure

User should specify this user on both ends - Source
and Replica.

High TBD

https://jira.percona.com/browse/RM-882
https://jira.percona.com/browse/K8SPXC-308

replication user
through Secret
object

On Source we also create the grants.

As a user, I
expect that
necessary grants
for replication
user will be
created
automatically on
Source PXC

 High TBD

As a user, I
expect that if I
change the user
in Secret object
in Kubernetes
grants are
changed as well

 High TBD

Failover stories

As a user, I
expect that
promoting
Replica to Source
is manual

 TBD

As a user, I
expect that
promoting
Replica to Source
disables
replication

mysql.replication_asynchronous_connectio
n_failover and
mysql.replication_asynchronous_connectio
n_failover_managed tables should be empty

High TBD

As a user, I
expect that
promoting
Replica to Source
disables
read-only mode

 High TBD

As a user, I
expect that
promoting
Replica to Source
grants
Replication user
necessary
access

 TBD

Documentation stories

As a user, I
expect that
documentation is
updated to
describe the
replication
configuration

●​ Describe new user in Secret
●​ Describe how to perform a failover
●​ Minimal network requirements should be

covered (as we need to expose the nodes)

High TBD

As a product
owner, I want to
have a blog post
written about
replication
configuration

Few ideas for blog posts:
1.​ Sausage blog post with how we made the

decisions and why
2.​ Overall review of the feature
3.​ Highlight use cases:

a.​ Smooth migration from on-prem to
k8s with replication

b.​ Disaster recovery

High TBD

Performance, QA, other
Define SLAs, RTOs, specific to QA and any other requirements

RQ 1 - QA - Test writable Replica PXC

Users might run Replica PXC outside of the Operator. What kind of issues might we face if something is
written to the Replica?

RQ 2 - Recovery Point Objectives

We need to communicate in our documentation what kind of RPO the user can expect at certain
conditions - DB size, QPS, Network performance between the sites, etc. Even if the outcome is highly
parameterized, we expect that RPO in ideal conditions and performance is less than 1 minute.

Important technical decisions

ITD 1.1 - UX - add replication user to Secret object

The problem How does the user configure the password for the replication users?

Options
considered
(decision in
bold)

1.​ User to create the user manually
2.​ Create a separate Kubernetes Secret
3.​ Add one more system user into Users Secret
4.​ Configure user automatically once replication is enabled

Reasoning Operator is all about automation, so we are going to defer option #1.
Creating a separate Kubernetes secret for each replication channel might be an
option, but introduces additional complexity of user management.

The decision to create one System user through an already existing mechanism
looks like the simplest solution, where all corner cases are already taken care of. The
desire to have separate users per replication channel will not be addressed here.

Implicit automation (option #4) is something that we are trying to avoid in our
Operators.

Details New system user “replication” will appear in default my-cluster-secrets. We will allow
users to change only the password.
The password and grants will be set automatically.
If the user already exists, we are going to set the replication grants to the user.

apiVersion: v1
kind: Secret
metadata:
 name: my-cluster-secrets
type: Opaque
stringData:
 root: root_password
 xtrabackup: backup_password
 monitor: monitory
 clustercheck: clustercheckpassword
 proxyadmin: admin_password
 pmmserver: admin
 operator: operatoradmin
 replication: repl_password

Consequences None

ITD 1.2 - UX - add new section to configure replication to cr.yaml

The problem How to configure replication on Source and Replica for the cluster controlled by the
Operator?

Options
considered
(decision in
bold)

1.​ Create new Custom Resource in Kubernetes
2.​ Configure using cluster CR (cr.yaml)

Reasoning Adding a new Custom Resource is a complex process and is also useful if we want to
keep the separate “state” somewhere. Replication is just another configuration
parameter which can fit existing PXC Customer Resource.

Details We add the new section spec.pxc.replicationChannels

spec.pxc.replicationChannels

Type: array

Description: defines the replication configuration for Source or Replica. Array
consists of channels.
Default: None (commented out in cr)

spec.pxc.replicationChannels.[].name

Type: string
Description: defines the name of the channel. Required.
Default: None

spec.pxc.replicationChannels.[].isSource

Type: boolean
Description: defines if this PXC cluster is Source or Replica
Default: None

spec.pxc.replicationChannels.[].sourcesList

Type: array
Description: defines the list of sources from which Replica should get the data.
Ignored if spec.pxc.replicationChannels.[].isSource is True, required - if
False.
Default: None

spec.pxc.replicationChannels.[].sourcesList.[].host

Type: string
Description: host name or IP-address of the source. Required.
Default: None

spec.pxc.replicationChannels.[].sourcesList.[].port

Type: int
Description: port of the source
Default: 3306

spec.pxc.replicationChannels.[].sourcesList.[].weight

Type: int
Description: weight of the source
Default: 100

Example Source:

spec:
 pxc:
 replicationChannels:
 - name: pxc1_to_pxc2
 isSource: true

Example Replica:

spec:
 pxc:
 replicationChannels:
 - name: pxc1_to_pxc2
 isSource: false
 sourcesList:
 - host: pxc1.source.percona.com
 port: 3306
 weight: 100
 - host: pxc2.source.percona.com
 - host: pxc3.source.percona.com

Consequences None

ITD 1.3 - UX - Expose every PXC node as a service

The problem For Replica cluster to connect to Source every PXC node in Source cluster should be
exposed.

Options
considered
(decision in
bold)

1.​ User to create Service objects manually
2.​ Configure exposure through CR

Reasoning We run the Operator which should simplify the operations, so we want to do it with
CR.

Details We are going to add a new section under spec.pxc - expose.

spec.pxc.expose.enabled

Type: boolean
Description: enables or disables the exposure of the PXC nodes
Default: false

spec.pxc.expose.type

Type: inherited from Kubernetes Service spec.type
Description: Service type that will be used
Default: ClusterIP

spec.pxc.expose.loadBalancerSourceRanges

Type: array
Description: network prefix ranges whitelisted for the loadbalancer. Requires
spec.pxc.expose.type to be LoadBalancer
Default: None

spec.pxc.expose.annotations

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

Type: section
Description: annotations applied to the Service object
Default: None

Example:

spec:
 pxc:
 expose:
 enabled: true
 type: LoadBalancer
 loadBalancerSourceRanges:
 - 10.0.0.0/8
 annotations:
 networking.gke.io/load-balancer-type: "Internal"

This will create the internal LoadBalancer per each PXC node.

Consequences We will reuse the same expose section structure for other components in the future.
For example, we will replace serviceAnnotations with expose.annotations. This will
be handled by another spec: PSPEC-20 and define the deprecation policy.

https://jira.percona.com/browse/PSPEC-20

	Feature spec
	
	Executive Summary
	High level functional overview
	Dependencies
	Requirements
	User stories
	Performance, QA, other

	Important technical decisions
	ITD 1.1 - UX - add replication user to Secret object
	ITD 1.2 - UX - add new section to configure replication to cr.yaml
	ITD 1.3 - UX - Expose every PXC node as a service

