
Anatomy of Chromium MessageLoop (PUBLIC)

kinuko@chromium.org
Apr 12, 2015
(Originally written for MessageLoop refactoring for making Thread startup non-blocking. If you
find anything wrong please let kinuko@ know!)

Overview

MessageLoop is one of the very core primitives of Chromium, whose role is to process events
and tasks for a particular thread. It has two types of important methods: PostTask and Run, 1

and its basic functionality (that is observable from outside the class) is to accept posted tasks
and to run them on the associated thread. Normally (e.g. if it is not for testing code) the current
thread’s MessageLoop instance can be retrieved via MessageLoop::current() static method, but
typically most production code does not (and should not) work directly with the MessageLoop. 2

PostTask methods family

PostTask can be used to schedule a new task to run on the thread that is associated to the
MessageLoop. It is not encouraged to directly call the MessageLoop’s methods to post tasks,
as we are deprecating those old PostTask interfaces in favor of newer, more generic
TaskRunner. The current thread’s TaskRunner can be retrieved by calling
ThreadTaskRunnerHandle::Get().

Run method

Run method tells the MessageLoop’s internal message pump to start processing native events
(messages) as well as executing tasks that are posted on to the MessageLoop. Chromium’s
thread class (base::Thread) calls this method in its thread function, so most production code
does not need to call it explicitly. In testing code it is encouraged to run a message loop via
RunLoop interface.

Classes that work closely with MessageLoop

MessageLoop class work very closely with a few classes, namely: MessagePump,
IncomingTaskQueue and MessageLoopProxyImpl. Instances of these classes are created
when MessageLoop is instantiated, and they are owned (or referenced) by the MessageLoop.

2 As described below, directly calling MessageLoop::PostTask and MessageLoop::Run is strongly
discouraged.

1 There are actually four methods of “PostTask” family (with and without delay x nestable and
non-nestable): PostTask, PostDelayedTask, PostNonNestableTask and PostNonNestableDelayedTask.

mailto:kinuko@chromium.org
https://docs.google.com/a/chromium.org/document/d/1o1vUUOjX3tC7pV5-nxchaGtElo4NwtzKOAb4Zm09ezw/edit
https://code.google.com/p/chromium/codesearch#chromium/src/base/message_loop/message_loop.h&q=MessageLoop&sq=package:chromium&l=77&type=cs
https://code.google.com/p/chromium/codesearch#chromium/src/base/task_runner.h&q=TaskRunner&sq=package:chromium&l=58
https://code.google.com/p/chromium/codesearch#chromium/src/base/run_loop.h&q=RunLoop&sq=package:chromium&l=31

MessagePump

Internally a MessageLoop is paired with a MessagePump, that is a platform-specific message
pump implementation and is responsible for processing native events (e.g. Windows messages,
IO events etc). MessagePump provides Delegate interface, which has a set of DoWork
methods that are to be called within the platform’s native message/event loop. MessageLoop 3

implements this Delegate interface and run the posted tasks in the DoWork methods.
MessagePump’s single most important method is Run, that starts processing native events and
calling MessageLoop::Delegate’s DoWork methods. (MessagePump is another beast that
probably needs a separate document to explain its details)

IncomingTaskQueue

IncomingTaskQueue is a thread-safe task queue that accumulates tasks for its corresponding
MessageLoop. IncomingTaskQueue has two important methods, AddToIncomingQueue and
ReloadWorkQueue. AddToIncomingQueue enqueues a given task to its internal thread-safe
task queue, and ReloadWorkQueue swaps a given task queue with its internal task queue.
Typically tasks posted to a MessageLoop are enqueued to the IncomingTaskQueue (via
MessageLoopProxyImpl) by AddToIncomingQueue. The tasks queued into the
IncomingTaskQueue are then eventually loaded into the MessageLoop’s internal work queue by
ReloadWorkQueue.

MessageLoopProxyImpl

MessageLoopProxyImpl extends MessageLoopProxy (which extends
SingleThreadTaskRunner), which provides MessageLoopProxy and TaskRunner interfaces on
top of IncomingTaskQueue. MessageLoopProxyImpl provides a set of PostTask methods,
which basically just forward posted tasks to IncomingTaskQueue.

3 MessagePump::Delegate defines three DoWork methods: DoWork, DoDelayedWork and DoIdleWork.

MessageLoop::message_loop_proxy() and MessageLoop::task_runner() return an instance of
this class. (In another word, this class provides TaskRunner interface for its corresponding
MessageLoop.)

PostTask Flow

A task passed to MessageLoop::PostTask() is forward to MessageLoopProxyImpl::PostTask(),
which in turn calls IncomingTaskQueue::AddToIncomingQueue() to queue the task to
IncomingTaskQueue’s internal thread-safe task queue.

PostTask flow with TaskRunner Overriding

If we start to allow customers of MessageLoop to override its TaskRunner interface (as
proposed in "Proxying MessageLoop tasks to the Scheduler") the PostTask flow with overriding
TaskRunner would look like following:

https://docs.google.com/document/d/1qxdh2I61_aB_Uzh1QgNqvdWFBCL_E65G2smoSySw7KU/edit#heading=h.u9qu5v718qyp

Run Loop Flow

Tasks queued to the IncomingTaskQueue’s internal queue are eventually loaded to the
MessageLoop’s work queue by ReloadWorkQueue() and then run in one of DoWork() methods
family, that are called within MessagePump’s native event loop. Note that the work queue
reloading only happens when the local work queue becomes completely empty, this means that
the cost of reloading the queue (i.e. taking a lock) is amortized by doing the reload as seldom as
possible.

	Anatomy of Chromium MessageLoop (PUBLIC)
	Overview
	PostTask methods family
	Run method

	Classes that work closely with MessageLoop
	MessagePump
	IncomingTaskQueue
	MessageLoopProxyImpl

	PostTask Flow
	PostTask flow with TaskRunner Overriding

	
	Run Loop Flow

