A
BootUp

Professional Development

Don't Catch Mine!

Minimum experience: Grades 3+, 1st year using Scratch, 4th quarter or later

At a Glance

Coders create a competitive game that keeps track of each player’s score. The purpose of this project is to collaboratively
reinforce variables to keep track of each player’s score. Note: this project builds off the understandings introduced in “Food

Process objective(s):

Product objective(s):

Statement:
o | will learn/review how to keep multiple scores with
different variables.
e | will learn how to collaborate with others to create a
coding project.

Question:
e How can we keep multiple scores with different
variables?

e How can we collaborate with others to create a
coding project?

1B-AP-10 Create programs that include sequences, events,
loops, and conditionals
e Control structures specify the order (sequence) in

which instructions are executed within a program and
can be combined to support the creation of more
complex programs. Events allow portions of a
program to run based on a specific action. For
example, students could write a program to explain
the water cycle and when a specific component is
clicked (event), the program would show information
about that part of the water cycle. Conditionals allow
for the execution of a portion of code in a program
when a certain condition is true. For example,
students could write a math game that asks
multiplication fact questions and then uses a
conditional to check whether or not the answer that
was entered is correct. Loops allow for the repetition
of a sequence of code multiple times. For example, in

Statement:
e | will collaborate with others to create a multiplayer
catching game that keeps track of multiple scores.
Question:
e How can we collaborate with others to create a
multiplayer catching game that keeps track of multiple
scores?

Main standard(s): Reinforced standard(s):

1B-AP-08 Compare and refine multiple algorithms for the same
task and determine which is the most appropriate.

e Different algorithms can achieve the same result,
though sometimes one algorithm might be most
appropriate for a specific situation. Students should be
able to look at different ways to solve the same task
and decide which would be the best solution. For
example, students could use a map and plan multiple
algorithms to get from one point to another. They could
look at routes suggested by mapping software and
change the route to something that would be better,
based on which route is shortest or fastest or would
avoid a problem. Students might compare algorithms
that describe how to get ready for school. Another
example might be to write different algorithms to draw
a regular polygon and determine which algorithm
would be the easiest to modify or repurpose to draw a
different polygon. (source)

https://bootuppd.org/
https://images.ctfassets.net/1devtjk7knks/2WfUa0nPmi9UMW0jvY0iaA/9a4529ec171f2ef10610f755c30e1552/Data.png
https://docs.google.com/document/d/1rsltKKfnm9x81JpMwgMbTiX51jKmDrCUX5n6awItxtw/edit?usp=sharing
https://docs.google.com/document/d/1rsltKKfnm9x81JpMwgMbTiX51jKmDrCUX5n6awItxtw/edit?usp=sharing
http://www.csteachers.org/page/standards

a program that produces an animation about a
famous historical character, students could use a loop
to have the character walk across the screen as they
introduce themselves. (source)
1B-AP-11 Decompose (break down) problems into smaller,
manageable subproblems to facilitate the program
development process.

e Decomposition is the act of breaking down tasks into
simpler tasks. For example, students could create an
animation by separating a story into different scenes.
For each scene, they would select a background,
place characters, and program actions. (source)

1B-AP-16 Take on varying roles, with teacher guidance, when
collaborating with peers during the design, implementation,
and review stages of program development.

e Collaborative computing is the process of performing
a computational task by working in pairs or on teams.
Because it involves asking for the contributions and
feedback of others, effective collaboration can lead to
better outcomes than working independently.
Students should take turns in different roles during
program development, such as note taker, facilitator,
program tester, or “driver” of the computer. (source)

1B-AP-09 Create programs that use variables to store and
modify data.

e Variables are used to store and modify data. At this
level, understanding how to use variables is sufficient.
For example, students may use mathematical
operations to add to the score of a game or subtract
from the number of lives available in a game. The use of
a variable as a countdown timer is another example.
(source)

1B-AP-13 Use an iterative process to plan the development of a
program by including others' perspectives and considering user
preferences.

e Planning is an important part of the iterative process of
program development. Students outline key features,
time and resource constraints, and user expectations.
Students should document the plan as, for example, a
storyboard, flowchart, pseudocode, or story map.
(source)

1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended.

e As students develop programs they should continuously
test those programs to see that they do what was
expected and fix (debug), any errors. Students should
also be able to successfully debug simple errors in
programs created by others. (source)

1B-AP-17 Describe choices made during program development
using code comments, presentations, and demonstrations.

® People communicate about their code to help others
understand and use their programs. Another purpose of
communicating one's design choices is to show an
understanding of one's work. These explanations could
manifest themselves as in-line code comments for
collaborators and assessors, or as part of a summative
presentation, such as a code walk-through or coding
journal. (source)

Main practice(s):

Reinforced practice(s):

Practice 2: Collaborating around computing

e "Collaborative computing is the process of
performing a computational task by working in pairs
and on teams. Because it involves asking for the
contributions and feedback of others, effective
collaboration can lead to better outcomes than
working independently. Collaboration requires
individuals to navigate and incorporate diverse
perspectives, conflicting ideas, disparate skills, and
distinct personalities. Students should use
collaborative tools to effectively work together and to
create complex artifacts." (p. 75)

Practice 1: Fostering an inclusive computing culture

e "Building an inclusive and diverse computing culture
requires strategies for incorporating perspectives from
people of different genders, ethnicities, and abilities.
Incorporating these perspectives involves
understanding the personal, ethical, social, economic,
and cultural contexts in which people operate.
Considering the needs of diverse users during the
design process is essential to producing inclusive
computational products." (p. 74)

e P1.1. Include the unique perspectives of others and
reflect on one’s own perspectives when designing and
developing computational products. (p. 74)

http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.k12cs.org
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=85
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=84
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=84

e P2.1. Cultivate working relationships with individuals
possessing diverse perspectives, skills, and
personalities. (p. 75)

e P2.2. Create team norms, expectations, and
equitable workloads to increase efficiency and
effectiveness (p. 76)

Practice 5: Creating computational artifacts

e "The process of developing computational artifacts
embraces both creative expression and the
exploration of ideas to create prototypes and solve
computational problems. Students create artifacts
that are personally relevant or beneficial to their
community and beyond. Computational artifacts can
be created by combining and modifying existing
artifacts or by developing new artifacts. Examples of
computational artifacts include programs,
simulations, visualizations, digital animations, robotic
systems, and apps." (p. 80)

e P5.2. Create a computational artifact for practical
intent, personal expression, or to address a societal
issue. (p. 80)

e P5.3. Modify an existing artifact to improve or
customize it. (p. 80)

Modularity
e "Modularity involves breaking down tasks into
simpler tasks and combining simple tasks to create
something more complex. In early grades, students
learn that algorithms and programs can be designed
by breaking tasks into smaller parts and recombining
existing solutions. As they progress, students learn
about recognizing patterns to make use of general,
reusable solutions for commonly occurring scenarios
and clearly describing tasks in ways that are widely
usable." (p. 91)
® Grade 5 - "Programs can be broken down into smaller
parts to facilitate their design, implementation, and
review. Programs can also be created by
incorporating smaller portions of programs that have
already been created." (p. 104)
Variables

e P1.2. Address the needs of diverse end users during the
design process to produce artifacts with broad
accessibility and usability. (p. 74)

Practice 6: Testing and refining computational artifacts

e '"Testing and refinement is the deliberate and iterative
process of improving a computational artifact. This
process includes debugging (identifying and fixing
errors) and comparing actual outcomes to intended
outcomes. Students also respond to the changing needs
and expectations of end users and improve the
performance, reliability, usability, and accessibility of
artifacts." (p. 81)

e P6.1. Systematically test computational artifacts by
considering all scenarios and using test cases." (p. 81)

e P6.2. Identify and fix errors using a systematic process.
(p.81)

Practice 7: Communicating about computing

e "Communication involves personal expression and
exchanging ideas with others. In computer science,
students communicate with diverse audiences about
the use and effects of computation and the
appropriateness of computational choices. Students
write clear comments, document their work, and
communicate their ideas through multiple forms of
media. Clear communication includes using precise
language and carefully considering possible audiences."
(p.82)

e P7.2. Describe, justify, and document computational
processes and solutions using appropriate terminology
consistent with the intended audience and purpose. (p.
82)

e P7.3. Articulate ideas responsibly by observing
intellectual property rights and giving appropriate
attribution. (p. 83)

Main concept(s): Reinforced concept(s):

Algorithms
e "Algorithms are designed to be carried out by both
humans and computers. In early grades, students learn
about age-appropriate algorithms from the real world.
As they progress, students learn about the
development, combination, and decomposition of
algorithms, as well as the evaluation of competing
algorithms." (p. 91)
e Grade 5 - "Different algorithms can achieve the same
result. Some algorithms are more appropriate for a
specific context than others." (p. 103)
Control
e "Control structures specify the order in which
instructions are executed within an algorithm or
program. In early grades, students learn about
sequential execution and simple control structures. As
they progress, students expand their understanding to

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=854
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=86
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=84
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=93
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=114
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113

"Computer programs store and manipulate data using
variables. In early grades, students learn that
different types of data, such as words, numbers, or
pictures, can be used in different ways. As they
progress, students learn about variables and ways to
organize large collections of data into data structures
of increasing complexity." (p. 91)

Grade 5 - "Programming languages provide variables,

combinations of structures that support complex
execution." (p. 91)
Grade 5 - "Control structures, including loops, event

handlers, and conditionals, are used to specify the flow

of execution. Conditionals selectively execute or skip
instructions under different conditions." (p. 103)

which are used to store and modify data. The data
type determines the values and operations that can
be performed on that data." (p. 103)

Primary blocks

Supporting blocks

Looks, Operators, Sound

Conditional

A feature of a programming language that performs different computations or actions
depending on whether a programmer-specified Boolean condition evaluates to true or false. (A
conditional could refer to a conditional statement, conditional expression, or conditional
construct.) (source)

Referring to an action that takes place only if a specific condition is met. Conditional expressions
are one of the most important components of programming languages because they enable a
program to act differently each time it is executed, depending on the input. Most programming
languages use the word if for conditional expressions. For example, the conditional statement:
“if x equals 1 exit” directs the program to exit if the variable x is equal to 1. (source)

The computational concept of making decisions based on conditions (e.g., current variable
values). (source)

Iterative

Involving the repeating of a process with the aim of approaching a desired goal, target, or result
(source)

Iteration is a single pass through a group of instructions. Most programs contain loops of
instructions that are executed over and over again. The computer iterates through the loop,
which means that it repeatedly executes the loop. (source)

The computational practice of developing a little bit, then trying it out, then developing some
more. (source)

Modularity

The characteristic of a software/web application that has been divided (decomposed) into
smaller modules. An application might have several procedures that are called from inside its
main procedure. Existing procedures could be reused by recombining them in a new application
(source)

Parallel

Refers to processes that occur simultaneously. Printers and other devices are said to be either
parallel or serial. Parallel means the device is capable of receiving more than one bit at a time
(that is, it receives several bits in parallel). Most modern printers are parallel. (source)

The computational concept of making things happen at the same time. (source)

Variable

A symbolic name that is used to keep track of a value that can change while a program is
running. Variables are not just used for numbers; they can also hold text, including whole
sentences (strings) or logical values (true or false). A variable has a data type and is associated

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=103
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
https://images.ctfassets.net/1devtjk7knks/7dMJwwBnHpCe3L0aIoADxn/308459f813206d7aed7baa2d8bb5c4c9/Control.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/59IZeacJs1FBeLq2dJ13a8/0619c8a65768982c0563cf387a29de62/Motion.png
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://images.ctfassets.net/1devtjk7knks/2WfUa0nPmi9UMW0jvY0iaA/9a4529ec171f2ef10610f755c30e1552/Data.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/5Tk0MEAQopMFuBThtUlJWa/27428a0dbb25f4b7752ac40f5dacd0a7/Operators.png
https://images.ctfassets.net/1devtjk7knks/385tNeMaefAu4i7yiXeUqC/578353cea86a0fcab3963afd6e1999d7/Sound.png
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=271
http://www.webopedia.com/TERM/C/conditional.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=273
http://www.webopedia.com/TERM/I/iteration.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=273
http://www.webopedia.com/TERM/P/parallel.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140

execution. (source)

data. (source)

with a data storage location; its value is normally changed during the course of program

e Variables play an important role in computer programming because they enable programmers
to write flexible programs. Rather than entering data directly into a program, a programmer can
use variables to represent the data. Then, when the program is executed, the variables are
replaced with real data. This makes it possible for the same program to process different sets of

More vocabulary °
words from CSTA

Association

Integration

Potential subjects: Health science, math, media arts, physical education, science

Example(s): This project could be paired with health, physical education, and science lessons that
explore how certain types of food are healthy or unhealthy for different animals. For example, pairing
with lessons on healthy snacks vs unhealthy snacks where a player earns points for collecting healthy
snacks and loses points for collecting unhealthy snacks. This project could also connect with math
standards because of the connections with X and Y coordinates on a coordinate plane, as well as the
use of variables. Click here to see other examples and share your own ideas on our subforum
dedicated to integrating projects or click here for a studio with similar projects.

Vocations

There are a wide range of careers in game development that involve coding. For example, coding
character movement, player controls, particle and game physics, random world or object generators,
sound synthesis, game engines and tools, localization, performance and server optimization, etc. Click
here to visit a website dedicated to exploring potential careers through coding.

Example project

Remix project
Video walkthroughs

Project files

Project Sequence

Suggested preparation

Resources for learning more

Customizing this project for your class (10+ minutes): Remix
the project example to include your own sprites, challenges,
and algorithms.

(10+ minutes) Read through each part of this lesson plan and
decide which sections the coders you work with might be
interested in and capable of engaging with in the amount of
time you have with them. If using projects with sound,
individual headphones are very helpful.

e BootUp Scratch Tips
o Videos and tips on Scratch from our YouTube
channel
o B Facilitation Ti
o Videos and tips on facilitating coding classes
from our YouTube channel
e Scratch Starter Cards
o Printable cards with some sample starter code
designed for beginners
° ratchE

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=265
http://www.webopedia.com/TERM/V/variable.html
https://www.csteachers.org/page/glossary
https://www.csteachers.org/page/glossary
https://training.bootuppd.org/login/index.php
https://scratch.mit.edu/studios/27630799/
https://careerswithstem.com.au/
https://careerswithstem.com.au/
https://scratch.mit.edu/projects/282337044/
https://scratch.mit.edu/projects/303274496/
https://www.youtube.com/playlist?list=PLV4zluvZAlMorcYi4LTqy3lBlBupa5Q35
https://drive.google.com/open?id=1PW5H7IUwHHxe8Y5gv9a0MJNd8z2pAgF6
https://scratch.mit.edu/projects/282337044/
https://www.youtube.com/playlist?list=PLV4zluvZAlMrBWUeo1WMmRE7IQpJ_nOJV
https://youtube.com/bootuppd
https://youtube.com/bootuppd
https://www.youtube.com/playlist?list=PLV4zluvZAlMpHQ0MbOkE52QC9f0SYNJVh
https://youtube.com/bootuppd
https://scratch.mit.edu/info/cards/
http://scratched.gse.harvard.edu/

Download the offline version of Scratch: Although hopefully
infrequent, your class might not be able to access Scratch due
to Scratch’s servers going down or your school losing internet
access. Events like these could completely derail your lesson
plans for the day; however, there is an offline version of
Scratch that coders could use when Scratch is inaccessible.
Click here to download the offline version of Scratch on to
each computer a coder uses and click here to learn more by
watching a short video.

o A Scratch community designed specifically for
educators interested in sharing resources and
discussing Scratch in education

e Scratch Help

o This includes examples of basic projects and
resources to get started

® Scratch Videos

o Introductory videos and tips designed by the
makers of Scratch

e Scratch Wiki

o This wiki includes a variety of explanations and

tutorials

Suggested sequence

Resources, suggestions, and connections

1. Review and demonstration (2+ minutes):

Begin by asking coders to talk with a neighbor for 30 seconds
about something they learned last time; assess for general
understanding of the practices and concepts from the previous
project.

Explain that today we are going to create a multiplayer
catching game where each player scores points if you collect
your own sprites, but lose points if you collect the other
player’s sprites. Display and demonstrate the sample project
(or your own remixed version).

Practices reinforced:
e Communicating about computing

Video: Project Preview (1:34)
Video: Lesson pacing (1:48)

This can include a full class demonstration or guided
exploration in small groups or individually. For small group and
individual explorations, you can use the videos and quick
reference guides embedded within this lesson, and focus on
facilitating 1-on-1 throughout the process.

Example review discussion questions:

e What’s something new you learned last time you

coded?
o Isthere a new block or word you learned?

e What'’s something you want to know more about?

e What’s something you could add or change to your
previous project?

o What’s something that was easy/difficult about your
previous project?

2. Di + min 5

Have coders talk with each other about how they might create
a project like the one demonstrated. If coders are unsure, and
the discussion questions aren’t helping, you can model
thought processes: “I noticed the sprite moved around, so |
think they used a motion block. What motion block(s) might
be in the code? What else did you notice?” Another approach
might be to wonder out loud by thinking aloud different
algorithms and testing them out, next asking coders “what do
you wonder about or want to try?”

After the discussion, coders will divide into small groups
(preferably in pairs) and begin working on their project.

Practices reinforced:
e Communicating about computing

Note: Discussions might include full class or small groups, or
individual responses to discussion prompts. These discussions
which ask coders to predict how a project might work, or think
through how to create a project, are important aspects of
learning to code. Not only does this process help coders think
logically and creatively, but it does so without giving away the
answer.

Example discussion questions:
e What would we need to know to make something like
this in Scratch?
e What kind of blocks might we use?

https://scratch.mit.edu/download
https://youtu.be/M0MoF-OI48A
https://scratch.mit.edu/help/
https://scratch.mit.edu/help/videos/
https://wiki.scratch.mit.edu/wiki/Scratch_Wiki:Table_of_Contents
https://scratch.mit.edu/projects/282337044/
https://youtu.be/ua-bMfGnlLk
https://youtu.be/B2sPAmQxiGc

e What else could you add or change in a project like
this?
e What code from our previous projects might we use in
a project like this?
o What kind of sprites might we see in a food catching
game?
o What kind of code might they have?
e When should you score points and when should you
lose points in a game like this?
o What happens if you lose too many points?
o When might the game end of will it just keep
getting harder and harder?

3. Remix the original project (1-5+ minutes):
If not yet comfortable with logging in, review how to log into
Scratch and remix this project.

If coders continue to have difficulty with logging in, you can
create cards with a coder’s login information and store it in
your desk. This will allow coders to access their account
without displaying their login information to others.

Alternative login suggestion: Instead of logging in at the start
of class, another approach is to wait until the end of class to
log in so coders can immediately begin working on coding;
however, coders may need a reminder to save before leaving
or they will lose their work.

Why the variable length of time? It depends on comfort with
login usernames/passwords and how often coders have signed
into Scratch before. Although this process may take longer
than desired at the beginning, coders will eventually be able to
login within seconds rather than minutes.

What if some coders log in much faster than others? Set a
timer for how long everyone has to log in to their account
(e.g., 5 minutes). If anyone logs in faster than the time limit,
they can open up previous projects and add to them. Your role
during this time is to help out those who are having difficulty
logging in. Once the timer goes off, everyone stops their
process and prepares for the following chunk.

Suggested sequence

1. Revi . | he Food Catcl ject (10-80+
minutes)

If coders have not completed the Food Catcher project, spend
a couple of classes going through the project work and project
extensions to learn how to use variables to create a catching
game.

Otherwise, have coders open their previous catching game
with a partner and give them about ten minutes to read
through their prior comments to review what they created and
compare their code with their partner’s/group’s project.

Resources, suggestions, and connections

Standards reinforced:

e 1B-AP-08 Compare and refine multiple algorithms for
the same task and determine which is the most
appropriate

e 1B-AP-10 Create programs that include sequences,
events, loops, and conditionals

e 1B-AP-16 Take on varying roles, with teacher
guidance, when collaborating with peers during the
design, implementation, and review stages of program
development.

Practices reinforced:

e Communicating about computing

e Testing and refining computational artifacts

e Creating computational artifacts

Concepts reinforced:

® Algorithms

e Control

e Modularity

https://scratch.mit.edu/projects/303274496/
https://docs.google.com/document/d/1rsltKKfnm9x81JpMwgMbTiX51jKmDrCUX5n6awItxtw/edit?usp=sharing
https://images.ctfassets.net/1devtjk7knks/2WfUa0nPmi9UMW0jvY0iaA/9a4529ec171f2ef10610f755c30e1552/Data.png

Suggested questions:
e How did your comments from your previous project
help remind you what your code does?
o What could you change to improve your
comments?
e How do you and your partner’s/group’s projects
differ?
o How are they similar?

r multiplayer hin me (40+ min rth

majority of the class):

Ask partners/groups to take what they learned in the Food
Catcher project and turn it into a multiplayer catching game.
Facilitate by walking around and asking questions and
encouraging coders to try out new project extensions and
review what they previously learned about variables.

Facilitation Suggestion: Make sure one coder isn’t in control of
the mouse the entire time. You can set a timer to alternate
who “drives” the mouse and who “navigates” the program
development, or you could encourage coders to make all
adjustments on their own sprites (i.e., one coder
adds/changes all of the code in the Player 1 and Ball 1 sprites,
and another coder adds/changes all of the code in the Player 2
and Ball 2 sprites).

Standards reinforced:

e 1B-AP-10 Create programs that include sequences,
events, loops, and conditionals

e 1B-AP-12 Modify, remix, or incorporate portions of an
existing program into one's own work, to develop
something new or add more advanced features.

e 1B-AP-16 Take on varying roles, with teacher
guidance, when collaborating with peers during the
design, implementation, and review stages of program
development.

Practices reinforced:

e Communicating about computing

o Creating computational artifacts

e Fostering an inclusive computing culture

e Testing and refining computational artifacts

Concepts reinforced:

e Algorithms
e Control
e Modularity

Video: Challenge demonstration (1:19)

Suggested questions:

e If we change the colors of the sprites will everyone be
able to distinguish between them?

a. What about people who are color blind?

e When can we use the same variable for both players
(e.g., speed) and when do we need separate variables
for each player (e.g., score)?

e How can you create controls for two players?

e How can you keep score for two different players?

A note on using the “Coder Resources” with your class: Young
coders may need a demonstration (and semi-frequent friendly
reminders) for how to navigate a browser with multiple tabs.
The reason why is because kids will have at least three tabs
open while working on a project: 1) a tab for Scratch, 2) a tab
for the Coder Resources walkthrough, and 3) a tab for the
video/visual walkthrough for each step in the Coder Resources
document. Demonstrate how to navigate between these three
tabs and point out that coders will close the video/visual
walkthrough once they complete that particular step of a
project and open a new tab for the next step or extension.
Although this may seem obvious for many adults, we

https://docs.google.com/document/d/1rsltKKfnm9x81JpMwgMbTiX51jKmDrCUX5n6awItxtw/edit?usp=sharing
https://docs.google.com/document/d/1rsltKKfnm9x81JpMwgMbTiX51jKmDrCUX5n6awItxtw/edit?usp=sharing
https://images.ctfassets.net/1devtjk7knks/2WfUa0nPmi9UMW0jvY0iaA/9a4529ec171f2ef10610f755c30e1552/Data.png
https://youtu.be/3UrKW7vjX4A

recommend doing this demonstration the first time kids use
the Coder Resources and as friendly reminders when needed.

6. Play testing (20+ minutes, or an entire class)

5+ minute play testing

Give groups a few minutes to take turns trying out each
other’s games and discussing how they used code and
variables in their game. Encourage groups to compare their
code and discuss similarities and differences with the different
functions they created. In addition, it’s important to encourage
coders to consider whether their project reaches a diverse set
of end users (e.g., people who are color blind, people who are
deaf, people with limited mobility, etc.).

5+ minutes to revise their project and 1-on-1 facilitating
Give groups five or so minutes to revise their projects based
on feedback and ideas they gathered from their peers.
Encourage peer-to-peer assistance and facilitate 1-on-1 as
needed.

| recommend repeating this process several more times to
encourage sharing ideas and getting peer feedback

Standards reinforced:

e 1B-AP-08 Compare and refine multiple algorithms for
the same task and determine which is the most
appropriate.

e 1B-AP-10 Create programs that include sequences,
events, loops, and conditionals

e 1B-AP-13 Use an iterative process to plan the
development of a program by including others'
perspectives and considering user preferences

e 1B-AP-16 Take on varying roles, with teacher
guidance, when collaborating with peers during the
design, implementation, and review stages of program
development

Practices reinforced:

o Collaborating around computing

e Communicating about computing

e Creating computational artifacts

e Fostering an inclusive computing culture

e Testing and refining computational artifacts

Concepts reinforced:

® Algorithms

e Control

e Modularity

Facilitation tip: It may help to model the kind of feedback one
might give to a game like this. To practice this, display the
game | created for this lesson or one of your own games. Ask
coders what’s something they like about the project, what
they might be curious about, and what suggestions they might
have for improving the project(s).

7. Add in comments (the amount of time depends on typing

speed and amount of code):

1 minute demonstration

When the project is nearing completion, bring up some code
for the project and ask coders to explain to a neighbor how the
code is going to work. Review how we can use comments in
our program to add in explanations for code, so others can
understand how our programs work.

Quickly review how to add in comments.

Commenting time

Ask coders to add in comments explaining the code
throughout their project. Encourage coders to write clear and
concise comments, and ask for clarification or elaboration
when needed.

Standards reinforced:

e 1B-AP-17 Describe choices made during program
development using code comments, presentations,
and demonstrations

Practices reinforced:

e Communicating about computing
Concepts reinforced:

e Algorithms

Video: Add in comments (1:45)
Quick reference guide: Click here

Facilitation suggestion: One way to check for clarity of
comments is to have a coder read out loud their comment and
ask another coder to recreate their comment using code
blocks. This may be a fun challenge for those who type fast
while others are completing their comments.

Standards reinforced:

https://scratch.mit.edu/projects/282337044/
https://youtu.be/Fr7jvGfasFM
https://docs.google.com/presentation/d/1dvfo4ChhUWws6GklP8AkoWOwhsMpPqupRFf94XiS0h4/edit?usp=sharing

e 1B-AP-17 Describe choices made during program development using code comments, presentations, and

demonstrations
Practices reinforced:

e Communicating about computing

Although opportunities for assessment in three different forms are embedded throughout each lesson, this page provides
resources for assessing both processes and products. If you would like some example questions for assessing this project, see

below:

Summative

Assessment of Learning

Formative
Assessment for Learning

Ipsative
Assessment as Learning

The debugging exercises, commenting
on code, and projects themselves can all
be forms of summative assessment if a
criteria is developed for each project or
there are “correct” ways of solving,
describing, or creating.

For example, ask the following after a
project:

e Can coders debug the
debugging exercises?

e Did coders create a project
similar to the project preview?

o Note: The project
preview and sample
projects are not
representative of what
all grade levels should
seek to emulate. They
are meant to generate
ideas, but expectations
should be scaled to
match the experience
levels of the coders you
are working with.

e Did coders use a variety of block
types in their algorithms and
can they explain how they work
together for specific purposes?

e Did coders include descriptive
comments for each event in all
of their sprites?

e Can coders explain how they
used broadcast blocks or My
Blocks as functions to make
their code more organized and
easier to read (modularity)?

® Can coders explain what the
different variables blocks do and
how they could potentially use
them in a project?

o Can coders explain
when they might need

The 1-on-1 facilitating during each
project is a form of formative
assessment because the primary role of
the facilitator is to ask questions to
guide understanding; storyboarding can
be another form of formative
assessment.

For example, ask the following while
coders are working on a project:

® What are three different ways
you could change that sprite’s
algorithm?

e What happens if we change the
order of these blocks?

e What could you add or change
to this code and what do you
think would happen?

e How might you use code like
this in everyday life?

e See the suggested questions
throughout the lesson and the

assessment examples for more
questions.

The reflection and sharing section at the
end of each lesson can be a form of
ipsative assessment when coders are
encouraged to reflect on both current
and prior understandings of concepts
and practices.

For example, ask the following after a
project:

® How is this project similar or
different from previous
projects?

e What new code or tools were
you able to add to this project
that you haven’t used before?

e How can you use what you
learned today in future
projects?

e What questions do you have
about coding that you could
explore next time?

e See the reflection guestions at
the end for more suggestions.

https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://images.ctfassets.net/1devtjk7knks/HjHeyX2mU3qbR1TLiTFjj/6a47d646c31e41521dada9bf2dbec63d/More_Blocks.PNG
https://images.ctfassets.net/1devtjk7knks/2WfUa0nPmi9UMW0jvY0iaA/9a4529ec171f2ef10610f755c30e1552/Data.png
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk#heading=h.h5oq13i5ouia

to create a variable?

e Did coders create a catching
game with at least ## different
players and scores for each
player?

o Choose a number
appropriate for the
coders you work with
and the amount of time
available.

Extended Learning

Suggested extensions

Use the example project as a guide (as needed)
At some point, coders might get stuck or run out
of ideas. Rather than explaining to them how to
do something, ask them to open the example
project, read the comments inside the various
sprites and then look at the code to see if they
can figure out how to solve their problem.
Although this is a very open-ended approach, this
models a common coding practice that helps
coders become independent learners.

Resources, suggestions, and connections

Standards reinforced:
e 1B-AP-10 Create programs that include sequences, events, loops,
and conditionals
e 1B-AP-12 Modify, remix, or incorporate portions of an existing
program into one's own work, to develop something new or add
more advanced features
Practices reinforced:
e Creating computational artifacts
e Testing and refining computational artifacts
Concepts reinforced:
e Algorithms
e Control
e Modularity

Resource: Example project

Facilitation Suggestion: Some coders may not thrive in inquiry based
approaches to learning, so we can encourage them to use the Tutorials to
get more ideas for their projects; however, we may need to remind coders
the suggestions provided by Scratch are not specific to our projects, so it
may create some unwanted results unless the code is modified to match
our own intentions.

Add even more (30+ minutes, or at least one
class):

If time permits and coders are interested in this
project, encourage coders to explore what else
they can create in Scratch by trying out new
blocks and reviewing previous projects to get
ideas for this project. When changes are made,
encourage them to alter their comments to reflect
the changes (either in the moment or at the end
of class).

While facilitating this process, monitor to make
sure coders don’t stick with one feature for too

Standards reinforced:
e 1B-AP-10 Create programs that include sequences, events, loops,
and conditionals
Practices reinforced:
e Testing and refining computational artifacts
e Creating computational artifacts
Concepts reinforced:
e Algorithms
e Control

Facilitation Suggestion: Some coders may not thrive in inquiry based
approaches to learning, so we can encourage them to use the Tutorials to
get more ideas for their projects; however, we may need to remind coders

https://images.ctfassets.net/1devtjk7knks/2WfUa0nPmi9UMW0jvY0iaA/9a4529ec171f2ef10610f755c30e1552/Data.png
https://scratch.mit.edu/projects/282337044/
https://scratch.mit.edu/projects/282337044/
https://scratch.mit.edu/projects/282337044/
https://images.ctfassets.net/1devtjk7knks/7u6NLdHVQaloVJlTvUBnMH/916c33045c4822ed485a070c08d223e7/scratchBlockHelp.gif
https://images.ctfassets.net/1devtjk7knks/7u6NLdHVQaloVJlTvUBnMH/916c33045c4822ed485a070c08d223e7/scratchBlockHelp.gif

long. In particular, coders like to edit their
sprites/backgrounds by painting on them or
taking photos, or listen to the built-in sounds in
Scratch. It may help to set a timer for creation
processes outside of using blocks so coders focus
their efforts on coding.

the suggestions provided by Scratch are not specific to our projects, so it
may create some unwanted results unless the code is modified to match
our own intentions.

Suggested questions:

e What else can you do with Scratch?

e What do you think the other blocks do?

a. Canyou make your projectdo _ ?

e What other sprites can you add to your project?
What have you learned in other projects that you could use in this
project?
Can you add more user control than demonstrated?
What other variables blocks might you use in your project?
Could you add in other sprites as enemies or power ups?
Could you add even more players to your game?

Simil . .
Have coders explore the code of other peers in
their class, or on a project studio dedicated to this
project. Encourage coders to ask questions about
each other’s code. When changes are made,
encourage coders to alter their comments to
reflect the changes (either in the moment or at
the end of class).

Watch this video (3:20) if you are unsure how to
use a project studio.

Standards reinforced:
e 1B-AP-10 Create programs that include sequences, events, loops,
and conditionals
e 1B-AP-12 Modify, remix, or incorporate portions of an existing
program into one's own work, to develop something new or add
more advanced features
Practices reinforced:
e Testing and refining computational artifacts
Concepts reinforced:
e Algorithms

Note: Coders may need a gentle reminder we are looking at other projects
to get ideas for our own project, not to simply play around. For example,
“look for five minutes,” “look at no more than five other projects,” “find
three projects that each do one thing you would like to add to your
project,” or “find X number of projects that are similar to the project we
are creating.”

Generic questions:

e What are some ways you can expand this project beyond what it
can already do?

® How is this project similar (or different) to something you worked
on today?

e What blocks did they use that you didn’t use?

a. What do you think those blocks do?

e What'’s something you like about their project that you could add
to your project?

e How might we add player controls to this project?

e How might you use variables blocks in this project?

e If the projectis not a game, could you turn this project into a
game?

e |[f the project is a game, could you turn it into a different kind of
game?

micro:bit extensions:

Note: the micro:bit requires installation of Scratch
Link and a HEX file before it will work with a
computer. Watch this video (2:22) and use this
guide to learn how to get started with a micro:bit

Standards reinforced:
e 1B-AP-09 Create programs that use variables to store and modify
data
e 1B-AP-10 Create programs that include sequences, events, loops,
and conditionals

https://images.ctfassets.net/1devtjk7knks/2WfUa0nPmi9UMW0jvY0iaA/9a4529ec171f2ef10610f755c30e1552/Data.png
https://youtu.be/hudasCRlwLI
https://images.ctfassets.net/1devtjk7knks/2WfUa0nPmi9UMW0jvY0iaA/9a4529ec171f2ef10610f755c30e1552/Data.png
https://youtu.be/LO6m6bBmxW8
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4

before encouraging coders to use the micro:bit
blocks.

Much like the generic Scratch Tips folder linked in
each Coder Resources document, the micro:bit
Tips folder contains video and visual walkthroughs
for project extensions applicable to a wide range
of projects. Although not required, the micro:bit
Tips folder uses numbers to indicate a suggested
order for learning about using a micro:bit in
Scratch; however, coders who are comfortable
with experimentation can skip around to topics
relevant to their project.

e 1B-AP-11 Decompose (break down) problems into smaller,
manageable subproblems to facilitate the program development
process

e 1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended

Practices reinforced:

® Recognizing and defining computational problems

e Creating computational artifacts

e Developing and using abstractions

e Fostering an inclusive computing culture

e Testing and refining computational artifacts

Concepts reinforced:

e Algorithms

e Control

e Modularity

® Program Development
e \Variables

Folder with all micro:bit quick reference guides: Click here
Additional Resources:
® Printable micro:bit cards
o Cards made by micro:bit
o Cards made by Scratch

® Micro:bit’s Scratch account with example projects

Generic questions:

e How can you use a micro:bit to add news forms of user
interaction?

e What do the different micro:bit event blocks do and how could you
use them in a project?

e How could you use the LED display for your project?

e What do the tilt blocks do and how could you use them in your
project?

e How could you use the buttons to add user/player controls?

e How might you use a micro:bit to make your project more
accessible?

Less experienced coders

More experienced coders

Demonstrate the example remix project or your own version,
and walk through how to experiment changing various
parameters or blocks to see what they do. Give some time for
them to change the blocks around. When it appears a coder
might need some guidance or has completed an idea,
encourage them to add more to the project or begin following
the steps for creating the project on their own (or with BootUp
resources). Continue to facilitate one-on-one using
guestioning techniques to encourage tinkering and trying new
combinations of code.

If you are working with other coders and want to get less
experienced coders started with remixing, have those who are

Demonstrate the project without showing the code used to
create the project. Challenge coders to figure out how to
recreate a similar project without looking at the code of the
original project. If coders get stuck reverse engineering, use
guiding questions to encourage them to uncover various
pieces of the project. Alternatively, if you are unable to work
with someone one-on-one at a time of need, they can access
the quick reference guides and video walkthroughs above to
learn how each part of this project works.

If you are working with other coders and want to get more
experienced coders started with reverse engineering, have

https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://drive.google.com/open?id=0B342uiaCLSS3X0JZNHVSOEJVR1E
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://microbit.org/scratch/
http://bit.ly/scratchmicrobitcards
https://scratch.mit.edu/users/microbit_edu/
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://images.ctfassets.net/1devtjk7knks/6xukI0qxtxVps8phXPRdee/02256c3b384d98eb3999343e2695bd42/microbit.png
https://scratch.mit.edu/projects/282337044/

how to remix a project.

interested in remixing a project watch this video (2:42) to learn

those who are interested watch this video (2:30) to learn how
to reverse engineer a project.

Debugging exercises

Resources and suggestions

Why doesn't Player 1's score reset each time the

game restarts?
e \We need to set the score to 0 in our

It

o This is a process known as
initializing a variable
m We are declaring there’s a
variable called “Player 2
Score” and are initializing
(setting) that variable to 0

Why does Ball 1 stay at the bottom of the screen
instead of disappearing like Ball 2?

® Our “Make the clone fall to the ground”
function is repeating until the x position is

less than -160; however, we want it to
repeat until the v position is less than -160
because it’s only going to move down, not

left to right)

Why does Ball 2 stay at the bottom of the screen
instead of disappearing like Ball 1?

e We need to delete this clone at the end of
each chunk of code that starts with when |
start as a clone, otherwise the clone will
remain on the screen when it finishes

running its code

micro:bit required Why is the LED timer taking
more than one second before switching?

e The “display text” block will not move to
the next block until it finishes displaying
the entire text, so taking a couple of
seconds to scroll and then wait one second
before switching to the next value

o We can fix this using a variety of
methods; however, the easiest is
to send a message (not an “and
wait” message) to change the LED
value

Even more debugging exercises

Standards reinforced:
e 1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended
Practices reinforced:
e Testing and refining computational artifacts
Concepts reinforced:
e Algorithms
e Control

Suggested guiding questions:
e What should have happened but didn’t?
e Which sprite(s) do you think the problem is located in?
e What code is working and what code has the bug?
e Can you walk me through the algorithm (steps) and point out
where it’s not working?
Are there any blocks missing or out of place?
e How would you code this if you were coding this algorithm from
Scratch?
® Another approach would be to read the question out loud and
give hints as to what types of blocks (e.g., motion, looks, event,
etc.) might be missing.

Reflective questions when solved:
e What was wrong with this code and how did you fix it?
® |sthere another way to fix this bug using different code or tools?
® [fthis is not the first time they’ve coded: How was this exercise
similar or different from other times you’ve debugged code in
your own projects or in other exercises?

https://youtu.be/_NY8SOengc0
https://youtu.be/jjrFkZo0T20
https://scratch.mit.edu/projects/303274628/
https://scratch.mit.edu/projects/303274628/
https://images.ctfassets.net/1devtjk7knks/70tB21CrbM8rHhOv2CtiRy/80dde38c68e892506fe40482c7fba13d/Don-t_Catch_Mine_-_Debugging_1.png
https://images.ctfassets.net/1devtjk7knks/70tB21CrbM8rHhOv2CtiRy/80dde38c68e892506fe40482c7fba13d/Don-t_Catch_Mine_-_Debugging_1.png
https://scratch.mit.edu/projects/303274674/
https://scratch.mit.edu/projects/303274674/
https://images.ctfassets.net/1devtjk7knks/4DrajQhAp8ltSgwDEo00oZ/c92ded315a11a2e76198ae34035d3d1a/Don-t_Catch_Mine_-Debugging_2.png
https://images.ctfassets.net/1devtjk7knks/4DrajQhAp8ltSgwDEo00oZ/c92ded315a11a2e76198ae34035d3d1a/Don-t_Catch_Mine_-Debugging_2.png
https://images.ctfassets.net/1devtjk7knks/4DrajQhAp8ltSgwDEo00oZ/c92ded315a11a2e76198ae34035d3d1a/Don-t_Catch_Mine_-Debugging_2.png
https://images.ctfassets.net/1devtjk7knks/4DrajQhAp8ltSgwDEo00oZ/c92ded315a11a2e76198ae34035d3d1a/Don-t_Catch_Mine_-Debugging_2.png
https://images.ctfassets.net/1devtjk7knks/4DrajQhAp8ltSgwDEo00oZ/c92ded315a11a2e76198ae34035d3d1a/Don-t_Catch_Mine_-Debugging_2.png
https://images.ctfassets.net/1devtjk7knks/4DrajQhAp8ltSgwDEo00oZ/c92ded315a11a2e76198ae34035d3d1a/Don-t_Catch_Mine_-Debugging_2.png
https://scratch.mit.edu/projects/303274726/
https://scratch.mit.edu/projects/303274726/
https://images.ctfassets.net/1devtjk7knks/3UJ5IU2W8vji10mV6OPJrR/73eb1ed12f4d9c371a598fc26444ef63/Don-t_Catch_Mine_-Debugging_3.png
https://images.ctfassets.net/1devtjk7knks/3UJ5IU2W8vji10mV6OPJrR/73eb1ed12f4d9c371a598fc26444ef63/Don-t_Catch_Mine_-Debugging_3.png
https://images.ctfassets.net/1devtjk7knks/3UJ5IU2W8vji10mV6OPJrR/73eb1ed12f4d9c371a598fc26444ef63/Don-t_Catch_Mine_-Debugging_3.png
https://images.ctfassets.net/1devtjk7knks/3UJ5IU2W8vji10mV6OPJrR/73eb1ed12f4d9c371a598fc26444ef63/Don-t_Catch_Mine_-Debugging_3.png
https://images.ctfassets.net/1devtjk7knks/3UJ5IU2W8vji10mV6OPJrR/73eb1ed12f4d9c371a598fc26444ef63/Don-t_Catch_Mine_-Debugging_3.png
https://scratch.mit.edu/projects/309295272/
https://scratch.mit.edu/projects/309295272/
https://images.ctfassets.net/1devtjk7knks/7PlyBoMwG9HDS9b4gYmLH/4d8ace2a9f774d0f533feb39d6aa4b1f/Don-t_Catch_Mine_-_microbit_Debugging.png
https://images.ctfassets.net/1devtjk7knks/7PlyBoMwG9HDS9b4gYmLH/4d8ace2a9f774d0f533feb39d6aa4b1f/Don-t_Catch_Mine_-_microbit_Debugging.png
https://images.ctfassets.net/1devtjk7knks/7PlyBoMwG9HDS9b4gYmLH/4d8ace2a9f774d0f533feb39d6aa4b1f/Don-t_Catch_Mine_-_microbit_Debugging.png
https://images.ctfassets.net/1devtjk7knks/7PlyBoMwG9HDS9b4gYmLH/4d8ace2a9f774d0f533feb39d6aa4b1f/Don-t_Catch_Mine_-_microbit_Debugging.png
https://images.ctfassets.net/1devtjk7knks/7PlyBoMwG9HDS9b4gYmLH/4d8ace2a9f774d0f533feb39d6aa4b1f/Don-t_Catch_Mine_-_microbit_Debugging.png
https://scratch.mit.edu/studios/4149066/
https://images.ctfassets.net/1devtjk7knks/59IZeacJs1FBeLq2dJ13a8/0619c8a65768982c0563cf387a29de62/Motion.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png

Although each project lesson includes suggestions for the amount of class time to spend on a project, BootUp encourages
coding facilitators to supplement our project lessons with resources created by others. In particular, reinforcing a variety of
standards, practices, and concepts through the use of unplugged lessons. Unplugged lessons are coding lessons that teach
core computational concepts without computers or tablets. You could start a lesson with a short, unplugged lesson relevant to
a project, or use unplugged lessons when coders appear to be struggling with a concept or practice.

List of 100+ unplugged lessons and resources

Incorporating unplugged lessons in the middle of a multi-day project situates understandings within an actual project;
however, unplugged lessons can occur before or after projects with the same concepts. An example for incorporating

unplugged lessons:

Lesson 1. Getting started sequence and beginning project work

Lesson 2. Continuing project work

Lesson 3. Debugging exercises and unplugged lesson that reinforces concepts from a project
Lesson 4. Project extensions and sharing

Reflection suggestions

Sharing suggestions

Coders can either discuss some of the following prompts with
a neighbor, in a small group, as a class, or respond in a physical
or digital journal. If reflecting in smaller groups or individually,
walk around and ask questions to encourage deeper responses
and assess for understanding. Here is a sample of a digital
journal designed for Scratch (source) and here is an example of
a printable journal useful for younger coders.

Sample reflection questions or journal prompts:
e How did you use computational thinking when
creating your project?
e What's something we learned while working on this
project today?
o What are you proud of in your project?
o How did you work through a bug or difficult
challenge today?
e What other projects could we do using the same
concepts/blocks we used today?
e What’s something you had to debug today, and what
strategy did you use to debug the error?
e What mistakes did you make and how did you learn
from those mistakes?
e How did you help other coders with their projects?
o What did you learn from other coders today?
e What questions do you have about coding?
o What was challenging today?
e Why are comments helpful in our projects?
e How is this project similar to other projects you've
worked on?
o How is it different?
e How did someone else’s game differ from your group
project?
e What did you learn by working with another coder?

Standards reinforced:

e 1B-AP-17 Describe choices made during program
development using code comments, presentations,
and demonstrations

Practices reinforced:
e Communicating about computing
e Fostering an inclusive culture
Concepts reinforced:

o Algorithms

e Control

e Modularity

® Program development

Peer sharing and learning video: Click here (1:33)

At the end of class, coders can share with each other
something they learned today. Encourage coders to ask
guestions about each other’s code or share their journals with
each other. When sharing code, encourage coders to discuss
something they like about their code as well as a suggestion
for something else they might add.

Publicly sharing Scratch projects: If coders would like to
publicly share their Scratch projects, they can follow these
steps:
1. Video: Share your project (2:22)
a. Quick reference guide
2. Video (Advanced): Create a thumbnail (4:17)

a. Quick reference guide

https://docs.google.com/spreadsheets/d/1IRAs7iRxQnUmpH9aJ2q4INx8f3JOWwSzJl8sRnI7lVA/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
http://scratched.gse.harvard.edu/ct/assessing.html
https://drive.google.com/file/d/0B4AcYgnkzzHOd0ExdWJUYWZIbm8/view
https://drive.google.com/file/d/0B4AcYgnkzzHOd0ExdWJUYWZIbm8/view
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://youtu.be/WC4qykY3OPI
https://youtu.be/hgaLsGbe2gA
https://docs.google.com/presentation/d/1nmV0T4i6DwsW3QWYSxOzhOTkskPVHW1Kb-RuTqMJoPg/edit?usp=sharing
https://youtu.be/ZSmeRyaWITc
https://docs.google.com/presentation/d/1Kl3a_Y_ahtOVNn-Wm4CgGC2L3ep6cdaM49KzC262tag/edit?usp=sharing

How else could you use variables blocks in other
projects?

How could you add variables blocks to previously
created projects?

More sample prompts

https://images.ctfassets.net/1devtjk7knks/2WfUa0nPmi9UMW0jvY0iaA/9a4529ec171f2ef10610f755c30e1552/Data.png
https://images.ctfassets.net/1devtjk7knks/2WfUa0nPmi9UMW0jvY0iaA/9a4529ec171f2ef10610f755c30e1552/Data.png
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf

	 ​​​ ​
	Don't Catch Mine!
	At a Glance
	Overview and Purpose
	Objectives and Standards
	Process objective(s):
	Practices and Concepts
	Scratch Blocks
	Vocabulary
	Connections
	Resources

	Project Sequence
	Preparation (20+ minutes)
	Getting Started (6-10+ minutes)
	Project Work (70-140+ minutes; 2+ classes)
	Assessment

	Extended Learning
	Project Extensions
	Differentiation
	Debugging Exercises (1-5+ minutes each)
	Unplugged Lessons and Resources
	Reflection and Sharing

	

