
RFC 254 IMPLEMENTED: Search query
extension: selectors and filter predicates
Editor: rijnard@sourcegraph.com
Status: Implemented

Requested reviewers: Loïc Guychard Stefan Hengl Keegan Carruthers-Smith Thorsten Ball

 Camden Cheek
Approvals: Thorsten Ball, , , Keegan Carruthers-Smith Erik Seliger Loïc Guychard
Team: Search

Explicit tag for people who might like to selectively read up and provide feedback, not required to do a full
review or give approval unless they want to: Juliana Peña Rok Novosel Eric Fritz Stephen Gutekanst

 Beyang Liu Felix Becker Quinn Keast Olaf Geirsson

Problem

We’ve seen recurring requests where users want to:

1.​ select and display only certain kinds of results
2.​ filter search results by various conditions

While we support various filters and some ways to display results, there are useful functional searches that we
don’t support directly: 1

-​ Find matches for foo inside a repository, and only show the matching repositories
-​ Show file content matches for a pattern inside a repository, but only if that repository contains a

particular file (i.e., the file does not have to contain matches, it just needs to exist)

There have been a couple of informal proposals to extend Sourcegraph’s query syntax to enrich search
capabilities for these kinds of use cases. There are also experimental filters that combine functional search
behaviors in ad hoc ways: repoHasFile and repoHasCommitAfter. These generalize poorly, and we can’t keep
adding ad hoc filters like repoHasContents. We need to introduce language constructs to decouple some of
these conditional filters and relations.

At the same time, we see requests and opportunities for incorporating richer kinds of (meta)data into code
search. For example, “search for foo only in comments”, “search only in files I own as determined by
CODEOWNERS files”. The challenge here is to introduce language constructs and syntax in such a way that
these capabilities are accessible in the syntax and implementation, if and when we are ready to introduce
them.

1 I say directly because there are indirect ways to achieve some of these. E.g., on the command line by combining src-cli
and jq.

mailto:loic@sourcegraph.com
mailto:stefan@sourcegraph.com
mailto:keegan@sourcegraph.com
mailto:thorsten@sourcegraph.com
mailto:camden@sourcegraph.com
mailto:keegan@sourcegraph.com
mailto:erik@sourcegraph.com
mailto:loic@sourcegraph.com
mailto:juliana@sourcegraph.com
mailto:rok@sourcegraph.com
mailto:eric@sourcegraph.com
mailto:stephen@sourcegraph.com
mailto:beyang@sourcegraph.com
mailto:felix@sourcegraph.com
mailto:qkeast@sourcegraph.com
mailto:olafurpg@sourcegraph.com
https://docs.sourcegraph.com/code_search/reference/language#repo-has-file
https://docs.sourcegraph.com/code_search/reference/language#repo-has-commit-after

Navigating this proposal

There’s a lot of discussion around context and rationales for this proposal. If you want to skip some of the
exposition, jump to parts of the proposal and you’re more interested in:

“What are some of the past proposals/concerns/complaints leading to this proposal?” → Background

“I care about making Sourcegraph search work better with more freeform queries, magical file and symbol
completion, and things like ranking. How do those things fit into this proposal?” → Scope

“Which key features are proposed for approval?” → Part 1: Selector syntax and examples.
 Part 2: Filter predicate syntax and examples.

“I don’t care about background or motivation, show me use cases and syntax” → Look out for a hammer 🔨 in
the examples tables of Part 1 and Part 2 above.

“Why this way? What about doing this in another other way?” → Select: motivation
 Filter predicate motivation
 Rejected alternatives

“Can I propose some alternative considerations and syntax?” → Sure, share your thoughts in Open questions.

 For context, keep in mind the points in
 Select: notes,

 ​ ​ ​ ​ ​ ​ ​ ​ Filter predicate notes,
 Rejected alternatives

Background

These are related issues for additional context, roughly in order of relevance. I list them here to convey the
scope, complexity, and prior discussions that bear on this proposal. I don’t recommend reading through these
issues unless you’re interested in the history or want to deeply solve some of these issues in a radically
different way compared to this proposal.

Group by the repos or files that contain matches: https://github.com/sourcegraph/sourcegraph/issues/12055
Nested searches: https://github.com/sourcegraph/sourcegraph/issues/1005
Incomplete proposal before current and/or operators: https://github.com/sourcegraph/sourcegraph/issues/4774
Search different token types, “in:”, “is:” : https://github.com/sourcegraph/sourcegraph/issues/2204

https://github.com/sourcegraph/sourcegraph/issues/12055
https://github.com/sourcegraph/sourcegraph/issues/1005
https://github.com/sourcegraph/sourcegraph/issues/4774
https://github.com/sourcegraph/sourcegraph/issues/2204

Return only file contents: https://github.com/sourcegraph/sourcegraph/issues/8743
Repo has file with symbol: https://github.com/sourcegraph/sourcegraph/issues/4610
Select only additions of diffs: https://github.com/sourcegraph/sourcegraph/issues/11599
Piping selectors for CSV output: https://github.com/sourcegraph/sourcegraph/issues/1525
Campaigns repositoriesMatchingQuery

Shortlist of relevant language syntax, if you’re unfamiliar or otherwise interested in how related domains tackle
aspects of querying:

GH search
Bazel and function syntax
CodeQL Predicates.
jq
SQL
MongoDB

Goal

The goal of this RFC is to:

1.​ Outline the high-level capabilities we want to add and the contexts in which they matter. This is
two-part: (1) selecting search results and (2) conditionally refining and filtering search results.

2.​ Propose and motivate language syntax to express these capabilities.

Guiding principles, please keep these in mind:

A.​ The additions in this proposal stress advanced usage to support capabilities that go beyond what is
possible in Sourcegraph today. Allowing more sophisticated searches (increasing expressivity) by
necessity introduces more complexity to the query language. This impacts users (learning curve), and
ourselves (maintain and implement advanced searches). If this proposal sounds more complex than
what you’re used to seeing or thinking about when using Sourcegraph, that’s expected and part of the
nature of the problem :-)

B.​ The solution outlined here favors a unified approach so far possible re: data type definitions, query
syntax, expressions, and code maintenance rather than attempting to ad hoc support instances of
advanced use cases. You may read some of this proposal and think, “for this particular use case, doing
it this new way sounds more involved than it should be, we could get away with just doing X”. The
problem is that in many of these cases, doing X is an ad hoc idea or shortcut that works only at a
shallow level and sacrifices consistent, predictable, and uniform notions. Ad hoc approaches lead to ad
hoc comprehensibility for users (difficult to learn or recall syntax), ad hoc documentation (difficult for
users to find, difficult for us to maintain), and ad hoc implementation (bugs, difficult to test, difficult to
change).

https://github.com/sourcegraph/sourcegraph/issues/8743
https://github.com/sourcegraph/sourcegraph/issues/4610
https://github.com/sourcegraph/sourcegraph/issues/11599
https://github.com/sourcegraph/sourcegraph/issues/1525
https://sourcegraph.com/github.com/sourcegraph/sourcegraph/-/blob/schema/schema.go#L877
https://github.com/search/advanced
https://docs.bazel.build/versions/master/query-how-to.html
https://codeql.github.com/docs/ql-language-reference/predicates/
https://stedolan.github.io/jq/tutorial/
https://www.w3schools.com/sql/sql_syntax.asp
https://docs.mongodb.com/compass/master/query/filter

Scope

This proposal focuses on repeated requests for better ways of expressing filter operations on the basic result
types that Sourcegraph exposes (repos, files, contents, symbols, commits). Introducing the two mechanisms in
this proposal satisfies immediate user desires for more powerful searches. It also lays the groundwork for
higher-order search functionality, and more powerful capabilities that stand to benefit campaigns and code 2

insights.

Many folks at Sourcegraph have floated interesting ideas for code search that this proposal does not directly
cover. Here are some search use cases that are important, but not directly relevant to this proposal:

-​ Having Sourcegraph interpret more freeform query inputs (e.g., just paste a commit hash and have
Sourcegraph try find and show the relevant commit)

-​ Smarter file and symbol completion
-​ Ranking search results

Proposal for high-level search mechanisms: selectors and
conditional filtering

Ignoring syntax for now, there are two high-level capabilities that we should aim to support generally. They are:

Part 1: A select filter selects a kind of result. I.e., we seek a mechanism to select subsets of data on a result
set, where a result set is a subset of the domain of our inputs.

Part 2: Conditional filtering is the notion that evaluating a functional predicate returns a result set on some 3

condition, where the condition is a general notion. The term functional predicate is perhaps overly general and
mathematical, and detached from Sourcegraph as a search tool. So in the rest of this RFC I’ll synonymously
refer to functional predicates as filter predicates.

Here’s a concrete example to demonstrate how filter predicates fit into more sophisticated search
queries that user’s have requested in the past:

Show file content matches for a pattern inside a repository, but only if that repository contains a
particular file (i.e., the file does not have to contain matches, it just needs to exist).

3 For practical purposes, think of a functional predicate as an ordinary function in your favorite language that takes some
inputs and produces an output. In the context of this RFC, a functional predicate is different from “just a function” in that it
is defined over certain inputs that are particular to Sourcegraph, and the domain of code search and code search use
cases.

2 More context on what I mean by “higher-order search functionality” to come in a follow up RFC, stay tuned.

Ignoring syntax, we could define a filter predicate contains that takes as input a set of repositories and
a file pattern, and returns the set of repositories if a “contains” relation holds, i.e., that the repository
contains a file satisfying the file pattern:

contains(set_of_repositories, file_pattern) → set_of_repositories

A filter predicate is thus an umbrella term for describing a mapping function that evaluates a
boolean-valued expression on the domain of our inputs to yield a result. The domain of our inputs are
defined by the various data that Sourcegraph stores (repositories, file paths, file contents, commits,
symbols) and domain-specific data types that these functions accept (search pattern, etc.).

Both select and conditional filtering capabilities are ultimately operations on the result set of a search. At the
implementation level, we can delegate these operations to a so-called Rule Engine that does processing on
the results of a search that you can run on Sourcegraph today. I.e., these new capabilities are an optional
processing step based on a syntax extension of today’s query language. There are no proposed changes that
break any part of Sourcegraph’s current query syntax.

Result set definition

It’s useful to define a concrete data type that selectors and conditional filtering operate on. A result set of these
operations is defined by at least the following data types, which correspond roughly to the result types in our
GraphQL schema:

repository
|
|- file
| |
| |- content
| `- symbol
|
`- commit
 |
 |- message
 |- diff-content
 |- author
 |- date-time
 …

In practice there are additional data types to think about, and a more complete picture of what we might like to
expose for filtering and selection, is e.g.,:

repository
|- name
|

|- file
| |
| |- name
| |- content
| | |
| | |- line
| | |- comment
| | |- string-literal
| | |- code
| | ...,
| | |
| | `- range
| | |
| | |- lsif-hover
| | |- lsif-declaration
| | |- lsif-references
| | ...
| |
| |- language
| `- symbol
| |
| |- variable
| |- const
| |- package
| ...
|
|- commit
| |
| |- message
| |- diff-content
| | |
| | |- comment
| | |- quoted-string
| | |- code
| | ...,
| | |
| | |- added
| | |- deleted
| | `...
| |
| |- author
| |- date-time
| ...
|
|- issue
| |
| |- comment
| ...

|
...

The point is that there is a decomposition of data that we can filter and select today, and ones that we should
explicitly think about for future extension (e.g., scoped naming for symbol tokens, LSIF data associated with
ranges of file contents, comments related to issue trackers, etc). This proposal aims to reference a consistent
definition for supporting new additions for filtering/selection over data.

Part 1: Select

Behavior

For any result set defined in terms of the data types above, a select operation extracts those data members
(including useful properties of parent definitions, i.e., content matches return file path names and repo names).
This solves many user requests along the lines of “give me only the repos I’m interested in if it matches this
query”, see #12055. Selecting multiple disjoint data types merges into the same result set (e.g., where
commit splits to separate branches for commit message versus commit diff-content.).

Selector syntax and examples

The proposal is to add a select: parameter that accepts values in the result set definition. I think the
importance and flexibility of a select operation at the toplevel of a query, and as a new parameter, is
well-justified. Here are examples that we solve for user requests, and interesting ways to combine and use
select: for future extensions. None of these behaviors are currently explicitly expressible.

The Query 🔨 column shows queries that will be imminently expressible and easily implemented. I.e., “we can
add this very soon and with little risk, I’d like approval for this”.

The Forward-compatible queries 💡 show aspirational ways to easily extend deeper ways to use the syntax.
I.e., “We can add this soon too, but gradually depending on the result kind (e.g., symbol, versus diffs,
versus…). These are subject to more discussion, priority, and effort and not explicitly approved in this proposal.

Query 🔨 Description

repo:foo file:bar baz select:repo

Adding select:repo simply
converts the results of a traditional
query to repository name results.
See #12055 for requests. This is
also a user-facing syntax and
solution for what campaigns
functionally does with the
repositoriesMatchingQuery
field in campaigns spec.

repo:foo file:bar baz select:file Select only file results for files
whose name matches bar in

https://github.com/sourcegraph/sourcegraph/issues/12055
https://emojipedia.org/light-bulb/
https://github.com/sourcegraph/sourcegraph/issues/12055

repo:foo and containing pattern
baz

(repo:foo or repo:bar) file:Dockerfile select:repo

Select works over result sets of
expressions (merges results of the
same kind)

repo:foo file:bar baz

(select:repo or select:file or select:content)

Select multiple disjoint result kinds
using an or-expression. In fact, the
default Sourcegraph search selects
multiple result kinds corresponding
to an implicit expression
(select:repo or
 select:file or
select:content).
Select gives explicit control.

file:Dockerfile select:repo

Equivalent to the query
repohasfile:Dockerfile.
Note, though, that select is not
powerful enough to match the
expressivity of repoHasFile for
queries that also contain search
patterns for file content. More on
that in this interaction in the
Conditional Filtering section. This
use case solves some of the
examples in #1005 and subsumes
some of the need for
repoHasFile.

type:commit after:”last thursday” error select:repo Match error in a commit message
after a specified time. Removes the
need for repoHasCommitAfter.
And is equivalent to current
repoHasCommitAfter usage. By
functionally equivalent I mean that
the query gives the same expected
result if we don’t think about how
the result is computed. To compute
this efficiently we would likely
optimize the query when we see,
e.g., select:repo.

https://github.com/sourcegraph/sourcegraph/issues/1005

type:commit author:rob select:repo A query to handle the request
“Users should be able to quickly
return a list of repositories they
have committed to. Preferably by
date descending.” #13236. We are
currently limited by commit/diff
searches in computing this result in
the backend. This is just
demonstrating the query that would
give the desired result.

Forward-compatible queries 💡 Description

type:symbol Search

(select:symbol.class or select:symbol.function)

Specify only result kinds in the
result definition. This would achieve
related functional behavior
discussed in #2204.

type:symbol Search select:class,function

Alias of the above, but more terse.
Comma-separated values for select
can be defined to mean “or”, and
the result names can be inferred
from or qualified by type:.

Notes for select parameter
-​ An alternative syntax we can consider to select: is return:. I think select: is clearer

because the operation is data-driven, and on a result set, rather than a “function”-like operation with
control flow properties, where something like “return” is used. Select is also a familiar term in
data-driven queries popularized by SQL and so on.

-​ The expressivity that select: adds makes type: redundant in many (but not all) queries. For

example, type:symbol is potentially redundant in the last two examples in the table. Deprecating or
rethinking type: is something we can defer for now. type: can continue to exist and operate the way
it currently does, and is compatible with select:.

Motivation

Every search query today performs an implicit select operation, but we’ll enable more use cases in allowing
queries to select more than one implicit result type. Implicit select examples:

Query Description

repo:foo Returns only results for (i.e., “selects”) repos, and not
files or commits, since files or commits don’t

https://github.com/sourcegraph/sourcegraph/issues/13236
https://emojipedia.org/light-bulb/
https://github.com/sourcegraph/sourcegraph/issues/2204#issuecomment-461621642

intuitively make sense to return.

repo:foo file:bar baz Selects matches for baz in files in repos, or files
containing baz in the file name, or repos containing
baz in the repo path.

type:repo foo Alias for repo:foo in current behavior

type:symbol foo file:bar Perform a symbol search for symbols matching foo in
file names containing bar and return symbol results.

Observe that the type: parameter currently influences the selected (or returned) result type. E.g.,
type:symbol is the only way to get symbol results back in Sourcegraph. But type:symbol is dually used to
tell Sourcegraph to run a search for symbols. So, the type: parameter currently defines both the INPUT and
OUTPUT kinds of a search. It acts like a function signature that implies a default result kind to select in the
OUTPUT, but doesn’t let a user change this OUTPUT kind.

Sometimes the default OUTPUT kind is sensible, but the current state is limiting (e.g., what if we wanted to
select only file paths containing a symbol). Our result tabs also suffer from this issue, and adding type: may
change the meaning of a search query rather than just filter the result kind. If we have a way for queries to
express searching for contents inside repositories, or files inside repositories, and then just have a way to filter
by the kind of result they want (file, repo, …) we end up with a more expressive API, and also make it possible
to build better UI filtering components at the API level than doing result filtering in the client.

Part 2: Conditional filtering with filter predicates

Behavior

A filter predicate returns a result set on some general condition that evaluates to true or false. Filter predicates
enable sophisticated conditional filtering that test certain data relations in a result set, and can then produce a
result set where those tests (relations) are satisfied. Here are examples of desired behaviors:

-​ Search a repository across all files for the pattern P but only if the repository contains at least one
match for the pattern Q in any file. 4

-​ Show file content matches for a pattern inside a repository, but only if that repository contains a

particular file (i.e., the file does not have to contain matches, it just needs to exist). 5

These behaviors rely on a general relation where a repo contains some data, i.e., “a repo contains file contents
matching the regex pattern P”. We can define a “contains” relation formally in terms of a subset relation, but in
this RFC we’ll just appeal to the intuitive definition. Filter predicates allow a straightforward way for users to
express these high-level queries. Of course, we’ll define and implement the code for checking that “X contains
Y” for valid inputs of X and Y.

5 Based off of examples in #1005.

4 This is a recent request from a user.

https://github.com/sourcegraph/sourcegraph/issues/1005

Filter predicate syntax and examples​

The proposed syntax of a filter predicate is similar to a call in many languages:

name(n, m, ...)

A filter predicate has a name and arity that accepts some parameters n, m, …. Predicates take any string as
arguments and are interpreted by the underlying implementation. Standard quoting and escaping apply for the
reserved syntax: parentheses and commas.

A filter predicate’s name is registered in the query language (so that we can detect whether such a predicate is
supported), and it is registered to an existing filter (e.g., registered to the filter repo:). Filter predicate syntax
may only follow filters to which that predicate has been registered, e.g., you will only see filter predicates
syntax after a filter, as in:

repo:name(n, m, …)

The Query 🔨 column below shows queries that will be imminently expressible and easily implemented. I.e.,
“we can add this very soon and with little risk, I’d like approval for this”.

The Forward-compatible Queries 💡 show aspirational ways to easily extend deeper ways to use the syntax.
I.e., “We can add this soon too, but gradually depending on the result kind (e.g., symbol, versus diffs,
versus…). These are subject to more discussion, priority, and effort and not explicitly approved in this proposal.

The contains filter predicate enables use cases where users want to first filter repositories or
files by some search query, and then search in the result of that operation.

Query 🔨 Description

repo:contains(file:foo) bar

repo:contains.file(foo)

Show matches for bar in
repositories that contain the
files matching foo. foo can
be any valid file: value,
like a regular expression.

repo:contains(content:foo) bar Show matches for bar in
repositories that contain
some file contents matching
foo. foo can be a valid
content: value. We decide
on a default pattern type
e.g., a regular expression or
literal by default. Additional
predicate filter params may

https://emojipedia.org/light-bulb/

override the default.

repo:.*sourcegraph.* repo:contains(content:foo) bar As above, but restrict the
repository scope to
repositories that contain the
word sourcegraph. I.e.,
predicates are compatible
with existing filters that take
plain values.

repo:contains(content:foo) or repo:contains(content:bar)

baz

Search for baz in repos
containing either foo or bar.
I.e., filter predicates work
across operators.

repo:contains(file:foo) and repo:contains(file:bar) Finds repositories that
contain both the file foo
and the file bar. Note this
useful query is not
expressible in Sourcegraph
today. A similar looking
query we can currently write
is:

repo:.* (file:foo and file:bar)

which is equivalent to:

repo:.* file:foo file:bar

The behavior of the above
query, for whatever historic
reason, only finds files in any
repository where a single file
name contains both foo and
bar. I.e., the and-operation
intersects on substring
containment and not
whether repo’s contents
contain both a file foo and
file bar.

repo:sourcegraph repo:contains(file:\.py) file:Dockerfile pip Equivalent to our
documented
repoHasFile usage when
the query includes a pattern
pip to match. Example
query. The contains filter
obviates the need for
repoHasFile, and can also
be used with content:.

Forward-compatible queries 💡

https://docs.sourcegraph.com/code_search/reference/queries#keywords-all-searches
https://sourcegraph.com/search?q=repohasfile:%5C.py+file:Dockerfile+pip+repo:sourcegraph&patternType=regexp
https://sourcegraph.com/search?q=repohasfile:%5C.py+file:Dockerfile+pip+repo:sourcegraph&patternType=regexp
https://emojipedia.org/light-bulb/

repo:contains(file:README content:foo) file:bar baz Searches for baz in files
matching bar in repos that
contain a file matching
README where those
matching README files
have matches for foo. The
contains argument here
resembles a search query,
but it need not (predicate
arguments can take a string
shape of whatever form).
This syntax is to
demonstrate how we could
allow a use case of “run a
traditional search query but
only on repositories where a
specific file X has matches
for Y'' by allowing the
contains predicate to
accept expressions itself,
including and or or
operators. This use case is
considered an immediate
piece of follow-up work for
contains, but one we can
punt on for now.

repo:contains(symbol:bar)

Implements a contains
filter predicate that relates
repos to symbols. Filter
repos containing a symbol
bar

repo:contains(symbol.function:bar) Implements contains to
accept more granular symbol
kinds (function, comment,
etc.).

file:contains(lsif.hover:SearchResultResolver) Filter files with LSIF hover
information match the string
SearchResultResolver.
Can express, e.g., a
cross-repository search on
the “Graph” of code by
hooking into LSIF semantic
data and not just text based.

Notes for contains predicate

1.​ An alternative name for contains is has. Although has is shorter (nice), I feel it’s less precise.

2.​ In general, forward-compatible queries can implement contains on any result type in the result

set definition, and expressions on these. The contains predicate is thus defined on file and content
for repo, and on content for file. We can expand it for commit, etc.

3.​ Alternative syntax considered and rejected. See later discussion of alternatives that considers filter
predicates more generally.

4.​ Relation to piping. Piping data to a subsequent command is a familiar mechanism in Bash scripting,
and built into tools like jq. Over time, I’ve realized that the majority of use cases and requests we’ve
talked about are a subset of a general pipe operation, and that adding a general pipe operation adds
more constraints and complexity than we need to enable these use cases. I’m going to elaborate on
just some of these points, it’s not exhaustive. On constraints: a pipe operation is ordered. This is a
semantic behavior irrespective of syntax, so I’ll only explain why I think ordered expressions in our
queries are best avoided until we identify more compelling reasons. Ordering imposes that users
sequence commands in a valid way. Our query language currently is completely unordered, which I’ve
come to appreciate for its simplicity (just add foo:bar when you want to modify the query). Requiring
users to consider ordering means that we have to communicate which expressions are valid in these
ordered operations (does it make sense to pipe X to Y?) and introduce a very particular syntax for this
behavior. On complexity: unlike Bash scripting (resp. jq), Sourcegraph doesn’t implement a routine to
evaluate a pipeline of operations on, essentially freeform text (resp. extremely simple JSON spec). It
would be a significantly complex undertaking to build such a pipeline into our backend, and ensure that
some piping expression is valid. Piping expressions are less constrained from a behavioral perspective
than atomic filters like repo:foo, making it more difficult to implement efficiently. Conversely, filter
predicates gives the user a declarative interface where they don’t have to explicitly think about ordering,
and we can implement the backend in a way that optimizes constrained operations rather than trying to
efficiently evaluate a generic pipeline of commands.

5.​ Relation to and-operators. An and-operation semantics evaluates the intersection of two results sets
(e.g., if I have a set of files A that match X and a set of files B that match Y and I want the set of files
that contain X and Y, then those files are in the intersection of sets A and B). You can think of an
and-operation as an unordered pipe operation. That’s because taking the intersection of two result sets
is taking the subset of a given result set. Piping also reduces a set to a subset, but the expression is an
explicitly ordered operation. Conversely evaluating the result of an and-operations are not explicitly
ordered. For example, taking our previous set A with matches of X, we can find the intersection of A
and B as a subset of files in A that match Y. Or, equivalently, we can start with the previous set B with
matches of Y, and find the intersection of A and B as a subset of files in B that match X. This unordered
property makes and-operators convenient from a user perspective (the user doesn’t care if we first find
files with X or Y, so they can order it either way) and from an implementation perspective (we choose
how to evaluate finding matches and can optimize on the properties of our data). In this context, the
filter predicate contains is a subset operation based on some relation (taking a subset is analogous
piping a result through a filter). Because this subset operation produces a result set, the result set can
be further evaluated in the context of other expressions (e.g., an and-operation). This combination of
“unordered piping” using our existing and-operations, along with subset operations based on relations
using contains compose to give expressive power that is equivalent to evaluating pipe operations
without (for now) introducing the semantics of arbitrary piping. For example repo:contains(A) and
repo:contains(B) is like a pipe operation that checks that a repo satisfies two contains relations

but without requiring an ordering (like checking A first and then piping the result to checking contains B
next, or vice versa).

Additional filter predicates

We have an immediate demand for implementing the contains predicate. The next couple of examples are
compelling use cases that we do not need to immediately implement, but open up a lot of possibilities and
motivate the predicate syntax. These are all forward-compatible queries 💡

The commit filter predicate filters repositories or files to search based on some commit property. Note
that this is unlike a commit search. This predicate enables searching the repository or file contents based on
whether that content is part of a commit.

repo:commit(after:”last thursday”) error Searches for error in repositories (not commit
data) where the repository has had a commit after
last thursday. A useful construct for bisecting
code changes based on some pattern.

file:commit(after:”last thursday”) error As above, but filtered to files satisfying the
commit time.

The commit predicate can be extended to accept other parameters for commit data in the result set definition,
similar to commit searches (e.g., author, message, …).

The size filter predicate filters data by size (for supported types in the result set definition).

repo:sourcegraph file:size(>=1MB) Show large files (>=1MB) in repos matching
sourcegraph.

repo:sourcegraph repo:size(<10MB) error Search for error in repos that are smaller than
10MB in repos matching repositories.

repo:sourcegraph file:size(<1MB) error Search for error in files that are smaller than
1MB in repos matching sourcegraph.

Here it’s important to point one reason why filtering is better expressed as filter predicates than introducing a
new toplevel filter like size:.... Properties like size are shared across different (i.e, disjoint) types of data,
like repositories and files, for instance. Notice how the GH query builder will add size:10 and size:100 to
the same search query for different types (repositories versus file sizes), and this is problematic and
ambiguous:

https://emojipedia.org/light-bulb/
https://github.com/search/advanced

There is more than one way to resolve this ambiguity for our use case. For example, grouping together toplevel
filters would allow us to infer, in some cases, whether a toplevel size: refers to file sizes or repo sizes:

repo:sourcegraph (file:.* size:<1MB) Straw Man example. Equivalent to proposed
syntax:

repo:sourcegraph file:size(<1MB)

Here we would need to write some query processing code that infers size: refers to file:. From a syntactic
perspective, the file:.* is awkward (but necessary) if a user wants the filter to apply to all files. This is the
same reason that I’m inclined to think that if Sourcegraph had implemented a size predicate similar to other
ad-hoc parameters, it wouldn’t be a filter like size:, but would rather have taken the form repoHasSize:,
which is awkward.

A more problematic case is that this hypothetical inference routine will not work on the following query, using
the same syntax, but with the intent of also putting a constraint on repo size:

repo:sourcegraph size:>10MB (file:.* size:<1MB) Straw man example. Impossible to interpret correctly,
but could be taken to intend the unambiguous and
correct meaning of the proposed syntax:

repo:sourcegraph repo:size(>10MB) file:size(<1MB)

The above straw man query does not work, because search subexpressions imply scope and this is a
desirable property. For example:

repo:sourcegraph (file:foo or file:bar)

Implies that we only search for files foo or bar in repositories matching sourcegraph. If size: is
introduced as a toplevel filter, it could imply that it scopes subqueries. Does size:>10MB then override the
subexpression size:<1MB for files above? Or does the subexpression override the toplevel filter? Answering
these questions introduces new and wonderfully complex semantic behaviors that will make life very
unpleasant for users and our engineers. The intent of the converse query is immediately clear with filter
predicates (and far easier to implement the query processing):

repo:sourcegraph repo:size(>10MB) file:size(<1MB)

Besides clarity, we remove the need for excessive parentheses and awkward additions like file:.*. The
only arguable downside compared to the straw man query is that repo: is repeated for the filter predicate.

The time filter predicate filters results based on temporal data. For example, we’ve had code insights
request for “search repository contents on a specific date” #10820. There are a couple of ways to name or
parameterize this predicate, so these are rough examples. Like size properties, temporal properties also hold
over different kinds of data. So, whatever naming or parameters we give time filter predicates, it is similarly
defined for different types of data (e.g., repo, file, etc).

repo:sourcegraph repo:on(2021-01-01) error Search for error in repository
contents on a certain date.

repo:sourcegraph file:created(>2021-01-01) error Search for files created after some
date.

GH search exposes various filters for temporal data, like author-date that I think are aptly decoupled with
filter predicates like author:date(<2021-01-01)

The stars filter predicate demonstrates how predicates contextually enable filtering depending on
codehost/metadata without polluting our toplevel filters.

https://docs.sourcegraph.com/code_search/tutorials/search_subexpressions
https://github.com/sourcegraph/sourcegraph/issues/10820
https://docs.github.com/en/github/searching-for-information-on-github/searching-commits#search-by-authored-or-committed-date

repo:stars(>100) error Our backend implements a routine to filter repositories by, say, GitHub
stars, if we store that metadata. This predicate is only valid in certain
contexts, e.g., for OSS/cloud repositories on GitHub where we collect the
metadata.

It’s useful to think about diversifying our search capabilities to metadata like GitHub stars, but in a more
sustainable way than introducing toplevel filters like star: which do not matter in, say, customer
environments.

The group filter predicate demonstrates how predicates can help cut down on increasing toplevel filters.

repo:group(CNCF) error Equivalent to repogroup:CNCF

but without introducing the need for a toplevel repogroup:
filter. On its own, it can help with some query processing and
establish repo: as the definitive filter for repositories. But
group is better motivated by the next example in
conjunction with file:.

file:group(CHANGELOG) regression Search all files associated with changelog entries across all
repositories by using group on the file: filter. The
CHANGELOG group is of course defined by some pattern,
similar to what we do for repogroup:. For example,
changelog files matching /.*changelog.*/i. With group
as a predicate though, there is no need to consider
introducing something like filegroup:. Of course, the
group of files can be specific to a team, some specific
functionality, and so on.

These examples are just to give a flavor of possibilities for initial filter predicates. They are “primitive” in the
sense that the data they operate on has straightforward relations (contains, size, commit data associated
with other data). The last example using group gets closer to the idea that predicates open up higher-order
possibilities, and if that interests you, stay tuned for an upcoming RFC on Code Search Built-ins.

Motivation

The need for more sophisticated filtering is clear from #1005 through to recent requests for search. Campaigns
also stand to benefit: Campaigns already stand to benefit heavily from the efficiency of using search to power 6

changesets. Users may find they can express finding and filtering repos and files directly using predicates,
without (or with less frequent) script-based piping or filtering.

6 This modulo the work to return “exhaustive” results. The point is that once search is an appropriate choice for exhaustive
result fetching (e.g., fetching repos or files matching a criterion), search queries can directly substitute for scripting.

https://github.com/sourcegraph/sourcegraph/issues/1005
https://sourcegraph.slack.com/archives/CMMTWQQ49/p1611676232110200
https://sourcegraph.slack.com/archives/CMMTWQQ49/p1611676232110200

Filter predicates aims to be the vehicle to deliver specialized search behavior and are proposed with these
desirable properties in mind:

Users do not need to understand or learn an overly general or heavyweight language or syntax. Here
it’s useful to compare functionality we aim to provide to a query engine like jq. While jq is extremely powerful,
 it is also complex (it understands data structures in JSON, i.e., objects and arrays, and a user would need to 7

be familiar with the data definitions and JSON structure) [1, 2]. As much as I like the power of something like
jq, I’ve come to learn that Sourcegraph usage generally boils down to simple cases like find me X (string,
symbol, …) in Y (file, repo, commit). User requests for behaviors that build on this with conditions that
resemble “piping” can be made more accessible and declarative by filter predicates without, e.g., an explicit
pipe operator (see concrete examples (4) and (5) in Notes for the contains predicate). The user requests
and use cases we’ve seen and discussed does not (yet) motivate excessively powerful or complex operations
on the data Sourcegraph exposes. While filter predicates are not the end-all-be-all, I can say with confidence
that filter predicates fill a gap where strictly more sophisticated behaviors, aligned with user desires, become
possible in a straightforward and unobtrusive way. More complex operations can be considered as they come
to light.

Small and extensible footprint on the current query language. Filter predicates consist of a name and arity,
and are valid for one or more existing filters (like repo: or file:). By registering a filter predicate name and
some simple validation, it’s easy to express and retrieve user inputs and implement a backend routine to
compute some custom behavior. It gives us a unified way to implement query autocompletion, highlighting, and
hints for more freeform inputs. For example, an N-arity predicate can take N inputs, while our current filters like
repo: accept only one input (the pattern).

Compatible with expressions in the current query language. Once a single filter predicate exists, it's
generally ensured to “just work” when combined with and/or operators. Meaning: the syntax and behavior is
valid and expressible, and we can tell users “yes that’s possible with Sourcegraph”. Of course, I’m not saying
that the performance of these queries is automatically great, backend implementations will have to consider
query optimizations for predicates that are expensive to compute across expressions. See the size predicate
straw man examples to understand how predicates avoid interacting poorly with search expressions.

A mechanism to implement tailored and experimental search experiences in specific contexts (Cloud,
different code hosts) and separating it from basic search functionality that works across all Sourcegraph
instances (see stars predicate).

A declarative framing for search behavior. Linguistically, predicate names anchor behavioral descriptions of
use cases: “I want to find a repository that contains X” follows from repo:contains(X).

Ease of use through query intelligence. With the help of highlighting, autocompletion, hovers, and autofix
suggestions in queries, I think using filter predicates will feel “natural” despite it being a more “advanced”
construct.

7 I like jq.

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/tutorial/
https://stedolan.github.io/jq/manual/#Advancedfeatures

Constraint
Users cannot define their own predicates. One benefit of filter predicates is that we can define how to run the
computation in the backend, and optimize for performance. We should listen to user requests and try to
support use cases. The only way to enable user-customizable predicates is with a dedicated framework that
constrains the data types and computation that a user can work with, and is outside the scope of this proposal.

Syntax alternatives considered and rejected

At least these syntax alternatives were considered and rejected.

Query Idea and reason for rejection

repo:sourcegraph contains:X Idea: Toplevel predicates for testing relations like
contains: and size:.
Rejection: Does not play well with subexpressions.
It would also cause excessive need for parentheses
to group a toplevel filter like contains: with the
associated filter like repo:. May need to introduce
further toplevel filters like contains-file: or
contains-content: which is only incrementally
better than repoHasFile

repo:foo where repo contains file:bar

Idea: introduce a keyword where followed by a filter
predicate expression. Readable and separates data
from filter operation.
Rejection: Awkward syntax for common search use
case if there is no repo: filter. I.e., we want to
implicitly search over all repositories. If we do not
specify repo: our search query is an awkward
dangling where repo contains file:foo. In
this case, allowing to omit the where complicates
query processing. Alternatively, imposing an explicit
repo:.* before where repo contains

file:foo feels silly. In general complicates query

processing when introducing new terms like

contains

repo:foo where repo:contains(file:foo) Idea: Slight variation to above that cuts down on
query processing complexity for where clauses
Rejection: Still awkward for searching over all repos
in repo:.* case. where keyword feels redundant.

repo:(file:foo select:repo) Idea: A minimal subquery-like syntax to express the
subset result set to search over, in part using
select:. E.g., this example would mean searching

over repositories where the query file:foo
returns a non-empty result.
Rejection: Unclear semantics, does not immediately
convey that this query expresses, e.g., “contains”
behavior. Gives a potentially false impression that
we can efficiently evaluate subquery searches.

As far as thinking about conflict with existing syntax, there’s no real issue here. Predicate syntax will be
validated by name, so collisions with literal meanings should be rare. When there is a conflict, we support
quoting as an escape for literal meanings across all filters.

Open questions

Share your questions in this section if the proposal doesn’t answer them. After thinking a lot (a lot) about this
problem and distilling a solution and syntax that satisfies our use cases, I personally do not have many open
questions around these choices. Here are a couple of things I’m still thinking about, so feel free to share your
thoughts on it here:

-​ Should predicate syntax be prefixed by a character? For example:

repo:+contains(...)
repo:#contains(...)
repo:\contains(...)
repo:%contains(...)
repo:!contains(...)
repo:?contains(...)
repo:@contains(...)

The main benefit is from a query intelligence perspective: We can trigger better autocomplete and validation
than if a prefix is absent. For example, if a prefix is absent, we may need to think a little about distinguishing
predicates from repository paths in suggestions.

-​ Keegan - Can we sketch out an intermediate representation/query plan for this new syntax? IE for a lot
of these queries they can be efficiently executed by the respective backend (eg zoekt could do the
filtering for most of the examples). By nailing down the representation for machines we also have nice
unambiguous ways to explain what a query is doing. General feedback: This looks good to me. Initially I
found the filter predicate syntax confusing and thought we could get by using (select:) on
subexpressions. However, your proposed features like size/etc are really cool and make me like it a lot
:)

Implementation notes

Backend Implementation

Backend implementation relies on additional processing for select: and contains. Select is rather
straightforward to implement, since we can directly filter result types once a search completes. Implementing
contains means adding general functionality for validating predicates, defining their inputs, and
implementing the behavior. Implementing the behavior of contains functionally boils down to the same way
we currently implement things like repoHasFile, but where we now have a better framework for thinking
about predicates to anchor the code structure.

Query evaluation, optimization, and translation.

Once a query is in the backend, we decide how to evaluate (compute) a result, and can take liberties with
optimizing those computations. For example, the contains predicate can be implemented in part (or in
whole, I think) natively in Zoekt, as a Zoekt query, when a repository is indexed. When it is unindexed, we
might evaluate contains in a different, albeit slower way (say, by using unindexed search). This notion is
general and not specific to predicates, we’ve already identified some with evaluating operators, for example
#15145.

We have some opportunities to statically optimize queries, but I’m going to elide discussion of that.
The main opportunities to optimize queries depend largely on runtime state. For example, knowing whether a
repository is indexed or not determines whether we can use Zoekt to efficiently compute a result or not. Once
we understand the runtime state, we can initiate query planning, which is a fancy way of saying “we translate
the initial query at runtime to something a backend understands, making evaluation more efficient”. The crux of
implementing these optimizations is introducing a translation layer, something like:

Since runtime state can change (say, a repository goes from being unindexed to indexed, or a repository is not
indexed yet), the output of query planning will vary in points of time. So it is not an ideal representation to
express a search from a user perspective, but obviously useful as a way to define and represent (and reveal to
the user) how an initial query was evaluated at runtime.

https://github.com/sourcegraph/sourcegraph/issues/15145

Our user-facing query language is defined by the following AST (based off of the TypeScript definition):

Node = Operator | Parameter | Pattern

/**
 * Terminals
 */
Pattern {
 kind: PatternKind
 value: string
 negated: boolean
}

Parameter {
 field: string
 value: string
 negated: boolean
}

/**
 * Nonterminal for operators AND and OR.
 */
Operator {
 operands: Node[]
 kind: OR | AND
}

To define a runtime representation of a query in the above form depends on the components that compute
results in the result set definition. These components are at least:

-​ The PostgreSQL DB (repos)
-​ Zoekt (repos, files, contents/regex)
-​ Searcher (repos, files, contents/regex)
-​ Git (commits, diffs)
-​ Comby (contents/structural)

And later:

-​ Codeintel components

And so on.

Expressing a runtime data structure that encapsulates a query’s representation comes down to (a) defining
data types corresponding to the components above (b) creating an execution path that uses those data types
to run those components. The closest semblance of the data type in (a) that we have right now is in
internal/search/types.go. The closest semblance of (b) is this switch statement in search_results.go. The
biggest limiting factor here is not defining a data type. For example, I can define it in a minute or two, here’s a
sketch of the definition in pseudocode. This would be the runtime target query of the user’s input query:

RuntimeQuery = Operator | ComponentQuery

https://sourcegraph.com/github.com/sourcegraph/sourcegraph/-/blob/internal/search/types.go
https://sourcegraph.com/github.com/sourcegraph/sourcegraph/-/blob/cmd/frontend/graphqlbackend/search_results.go#L1833

ComponentQuery = DB | Zoekt | Unindexed | Structural | Git | Lsif | ...

/**
 * Terminal queries for components that produce results
 */
DB {
 query: DBQuery /* native DB query */
}

Zoekt {
 query: ZoektQuery /* native Zoekt query */
}

Unindexed {
 pattern: ... /* this would have the members of, e.g., type TextParameters */
 ...
}

Structural {
 pattern: ...
 ...
}

Git {
 kind: Commit | Message | author | ...
 pattern: ...
 ...
}

/**
 * Nonterminal for runtime query with operators AND and OR. We use a general merge function
 * for results of disjoint kinds of RuntimeQuery.
 */
Operator {
 Query: RuntimeQuery[]
 kind: OR | AND
}

Not shown: Every function that takes a ComponentQuery as input produces a result in the result set definition.

The biggest limiting factor is that we need to address refactoring around the components that evaluate the
kinds of results we need. This has been a long-standing issue (see, e.g., #13319). It helps little if we have a
nice way to represent what we want to evaluate, but no way to effectively communicate that representation to
the scattered/entangled backend code that is ultimately responsible for running the components above.

For this proposal specifically, I’m hopeful that contains have a straightforward translation for Zoekt, and a
generic fallback in the absence of Zoekt. I do want these additions to initiate the query planning as part of this
proposal. I.e., we can start implementing the Zoekt definition and try refactor our code to target that form and
evaluate it, since we’re most likely to benefit from Zoekt optimizations at this point.

https://github.com/sourcegraph/sourcegraph/issues/13319

Frontend
Usability in the webapp. We want to enhance discoverability and usability with query suggestions, contextual
highlighting, hover information, and diagnostics. This is part and parcel of extending a query language.

Timeline estimate

Rough estimates of how long I think it would take for one engineer to work on these problems. I am nominating
myself to take this on when we’re ready, and could use an additional engineer to move faster.

-​ Implementing select: in the backend takes 2 weeks. This mostly because we’ll need to restructure
surrounding code and do this cleanly. Frontend additions (hovers, diagnostics, validation): 1 week (I
want to say 0.5 weeks but I know we have debt to deal with here). Dedicated integration testing: 0.5
weeks. Total: 3.5 weeks.

-​ Implementing contains in the backend takes 1 week to add scaffolding for adding general predicate
filters (i.e., the Rule Engine code that does processing on search results). Implementing the behavior of
contains takes 2 weeks. Frontend additions (hovers, diagnostics, highlighting, validation) takes 1 week
to add scaffolding for general query support, additional 0.5 weeks to add these details when introducing
contains. Total: 4.5 weeks.

-​ Adding usage metrics for these features takes 1 to 2 weeks (more difficult to say here, I’m not sure
how fluid our current metrics pipeline is). I think metrics are particularly important for these features to
surface discoverability and usage. Total: 1 to 2 weeks.

So by rough estimate, two full-time engineers on this proposal will take about 1.5 iterations to build working
functionality for the queries labeled by the 🔨 column. I believe the work seperates cleanly into well-defined
tasks, so I assume it can be divided uniformly and proportionally.

Feedback

I’m most interested in initial feedback from people who work at Sourcegraph to validate the direction of this
proposal. User testing and hallway tests would be a nice-to-have signal at some point, but not something to
kick off with, since there aren’t many open questions or concerns at this stage of the proposal. I’ve toyed with
the idea of broadcasting a short version of this proposal and a follow-up RFC on Code Search Built-ins to a
wider developer audience (i.e., I tweet about it) to gauge interest. We can also open it up to customers as an
“FYI, we’re embarking on this, what are your thoughts?”. I think talking about the evolution of search in a
broader sense stimulates interesting ideas and new possibilities, much like some of the issues in this RFCs
background (if nothing else) and we should be in the forefront of that category :-).

Definition of success
We implement select: and a contains filter predicate for repo: and file: in our query language.
We’ve seen repeated requests for some way to select data results, and I expect we’ll see a significant usage

uptick once we make it available. There is a discrepancy between the (positive) value and utility we can
provide and the (negative) lack of discoverability and usability in our query language. Currently, ad hoc filters
repoHasFile and repoHasCommitAfter see very low usage on existing instances. We know that these
constructs have utility and have been requested for compelling use cases in the past. By tracking usage I
expect that we’ll see significant uptick for the use cases and value delivery of search once select and filter
predicates are available.

Addendum: select: definitions and behavior

After some back and forth on which values to allow users to specify for `select`, and how it would behave with
our current definitions. What prompted this was the process of speccing out select values. At first, the proposal
was to define selections with respect to the result set definition, as a path on the tree (which means that the
value being selected would always have a unique label). E.g., would we allow expressions like:

select:repo.file // give this a meaning like: “select file results, where repo is a qualifier for file”
select:file // an alias for repo.file, where we don’t need to qualify with repo explicitly

This lead to follow-on questions, like whether we would allow selecting on “fields” of current result types, i.e.,
would we allow to express:

select:file.repo // give this a meaning like: “for a file result, select the repo associated with it”

There’s clearly some opportunity for confusion based on the order and definition of these values above. After
some deliberation, we/I settled on the following, in the interest of: (a) make usage intuitive (b) don’t close off
opportunities to extend `select` for broader use cases.

In the interest of (a), we threw out the idea of representing select values with full qualifiers like `a.b.c`. Instead,
the basics of select will simply implement selection on data for 5 basic kinds:

-​ repo
-​ file
-​ content
-​ commit
-​ symbol

The behavior of select, when specifying these 5 basic kinds, is defined in the below pseudo code.

In the interest of (b), we extend the possibility of values with one or more `.` (dot access), to allow notions like
`select:symbol.variable`. Here, a `.` access means filter symbol results such that the symbol kind is `variable`.

https://sourcegraph.looker.com/dashboards-next/151

Specifying a kind implies that the definition of our 5 basic kinds above has such a (sub)kind. We do not
necessarily define `.` access on all subfields--we are just saying that if we define selecting on something like
`select:symbol.variable`, then `variable` must exist as a kind on the definition of `symbol` so that we can
compare values and select those that equal the specified kind.

This does not close off the opportunity to extend our 5 basic kinds or subkinds in future (e.g., for possibilities
like `select:issue.comment` versus `select:issue.description`). It’s possible to nest subkinds--demonstrating one
level is enough to show the convention generalizes.

The pseudocode below lays out a model of the type definitions and semantics. There is more than one way to
represent this, but at least one way is sufficient :-)

The ideal type definitions for results in part (** (1) Data type definitions *). They roughly correspond
to our top-level GQL definition of SearchResult, but our GQL definition is underspecced for these disjoint
results, IMO. Our top-level GQL definition is:

union SearchResult = FileMatch | CommitSearchResult | Repository

 The pseudocode lays out the semantics of select in part (** (2) Select semantics *), which
corresponds to our implementation in Sourcegraph.

(** (1) Data type definitions *)
type repo =
 { name : string
 }

type file =
 { repo : repo
 ; name : string (* or path name *)
 }

type content =
 { repo : repo
 ; file : file
 ; matches : string list
 }

type symbol =
 { repo : repo
 ; file : file
 ; kind : string (* e.g., "module", "variable", "constant" *)
 ; matches : string list
 }

(* just an example of commit data *)
type commit_data =
 | Diff of string
 | Message of string

https://sourcegraph.com/github.com/sourcegraph/sourcegraph/-/blob/cmd/frontend/graphqlbackend/schema.graphql#L3346

type commit =
 { repo : repo
 ; files : file list
 ; matches : commit_data
 }

type result =
 | Repo of repo
 | File of file
 | Content of content (* e.g., line match, to distinguish from symbols *)
 | Symbol of symbol
 | Commit of commit

(** (2) Select semantics *)

(**
 [mapper] is a function that maps any of our results to a list of values.
 Specific functions implement logic to map a result to, e.g., the [repo] or
 [file] values above. Internally, mapper functions are available as a
 convenience function for extracting data from [result] types (e.g., [repo],
 [file]). The workhorse function [select_basic] uses convenience mappers and
 then constructs a list of [result] types from the list of values based on the
 selector.

 I.e., we could easily alternatively define the mapper as:

 type mapper = result -> result

 with some corresponding implementation details to, e.g., [to_repo] or
 [to_file] mapper functions below, except that it's convenient to create
 mapper functions that can extract members of [result] for internal use.
*)
type 'a mapper = result -> 'a list

(* select:repo *)
let to_repo : repo mapper =
 fun (result : result) : repo list ->
 match result with
 | Repo repo -> [repo]
 | File { repo; _ } -> [repo]
 | Content { repo; _ } -> [repo]
 | Symbol { repo; _ } -> [repo]
 | Commit { repo; _ } -> [repo]

(* select:file *)
let to_file : file mapper =
 fun (result : result) : file list ->
 match result with

 | Repo _ -> []
 | File file -> [file]
 | Content { file; _ } -> [file]
 | Symbol { file; _ } -> [file]
 | Commit { files; _ } -> files

(* select:symbol.kind *)
let to_symbol_kind : string -> symbol mapper =
 fun (select_kind : string) (result : result) : symbol list ->
 match result with
 | Symbol ({ kind; _ } as symbol) when String.(kind = select_kind) -> [symbol]
 | Symbol _
 | Repo _
 | File _
 | Content _
 | Commit _ -> []

(* Basic select:value syntax *)
let select_basic (selector : string) results : result list =
 match selector with
 | "repo" -> List.concat_map to_repo results |> List.map (fun repo -> Repo repo)
 | "file" -> List.concat_map to_file results |> List.map (fun file -> File file)
 | "content" -> failwith "not implemented, you get the idea"
 | "symbol" -> failwith "not implemented, you get the idea"
 | "commit" -> failwith "not implemented, you get the idea"
 | _ -> failwith "selector not supported"

(**
 Extended select:value.kind syntax. Can nest, e.g., select:value.k1.k2. This
 demonstrates one level, details for further nestedness elided for brevity
*)
let select_kind (selector : string) (kind : string) results : result list =
 match (selector, kind) with
 | "symbol", kind ->

List.concat_map (to_symbol_kind kind) results
|> List.map (fun symbol -> Symbol symbol)

 | _ -> failwith "selector and kind not supported"

(**
 Two kinds of select syntax:

 select:value
 select:value.kind
*)
let select (query : string) results : result list =
 let path = String.split_on_char '.' query in
 match path with
 | [] -> results
 | selector :: [] -> select_basic selector results
 | selector :: kind :: [] -> select_kind selector kind results

 | _ -> failwith "selector not supported"

	RFC 254 IMPLEMENTED: Search query extension: selectors and filter predicates
	Problem
	Navigating this proposal
	Background

	Goal
	Scope
	Proposal for high-level search mechanisms: selectors and conditional filtering
	Result set definition
	Part 1: Select
	Behavior
	Selector syntax and examples
	Notes for select parameter

	Motivation

	Part 2: Conditional filtering with filter predicates
	Behavior
	Filter predicate syntax and examples​
	The contains filter predicate enables use cases where users want to first filter repositories or files by some search query, and then search in the result of that operation.
	Notes for contains predicate

	Additional filter predicates
	The commit filter predicate filters repositories or files to search based on some commit property. Note that this is unlike a commit search. This predicate enables searching the repository or file contents based on whether that content is part of a commit.
	The size filter predicate filters data by size (for supported types in the result set definition).
	
	
	
	The time filter predicate filters results based on temporal data. For example, we’ve had code insights request for “search repository contents on a specific date” #10820. There are a couple of ways to name or parameterize this predicate, so these are rough examples. Like size properties, temporal properties also hold over different kinds of data. So, whatever naming or parameters we give time filter predicates, it is similarly defined for different types of data (e.g., repo, file, etc).
	
	The stars filter predicate demonstrates how predicates contextually enable filtering depending on codehost/metadata without polluting our toplevel filters.
	
	The group filter predicate demonstrates how predicates can help cut down on increasing toplevel filters.

	Motivation
	Constraint
	Syntax alternatives considered and rejected
	

	Open questions

	Implementation notes
	Backend Implementation
	Query evaluation, optimization, and translation.

	Frontend

	Timeline estimate
	Feedback
	Definition of success
	Addendum: select: definitions and behavior

