
Hello, all. I tried putting together some rough answers for the 2014 exam. I’d love 
some help with collab in this a3 
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1. (a)  

4 properties associated with a good solution to a critical section problem: 

●​ Mutual Exclusion 
○​ A maximum of one thread at a time is allowed to enter its critical section. 

●​ Absence of livelocks and deadlocks 
○​ If two or more threads attempt to access a critical section, at least one 

succeeds. 
●​ Absence of unnecessary delay 

○​ If there are no other threads currently in a critical section and there is a 
thread requiring access to enter a critical section, this thread is not 
prevented to enter its critical section. 

●​ Eventual Entry (No starvation) 
○​ A thread attempting to enter a critical section will eventually succeed. 

 

The first 3 are necessary for a good solution to a critical section problem, but the 4th 
one is desirable. This is because we may be making progress in other threads. 

 

Entry Protocol: 

An entry protocol should be able to block processes that are requesting to enter their 
critical section, but cannot due to other processes currently in their critical section. In 
other words, enforce mutual exclusion (single process in critical section in any given 
time). 

 

Exit Protocol: 

An exit protocol must be aware of when a process that is currently in its critical section 
completes its critical section, and make aware of waiting processes that it can enter its 
critical section. 

 

1. (b) (i) 

Bakery Algorithm Entry Protocol: 

The entry protocol calculates the threads turn by looking at other threads’ turns and taking the 
current maximum thread turn value and incrementing by one. After calculating its own thread turn 
value, the protocol will loop until all other threads that are requesting access to their critical 
section have greater NON Zero turn values than itself. ​



 

 

Bakery Algorithm Exit Protocol: 

A thread turn value of 0 indicates that it is currently not requesting access to a critical 
section. When the thread exits its own critical section, it will set its turn value to 0 to 
indicate it is no longer requesting access to its critical section.  

 

1. (b) (ii) 

●​ Both BA and SL guarantee mutual exclusion, so only a maximum of a single 
thread may enter its critical section. 

●​ Both BA and SL guarantee absence of livelocks, deadlocks and delays to entry 
of critical section.  

●​ BA does not need atomic read and atomic write instructions, but can be  
●​ implemented using them. On the other hand, SL requires atomic instructions to 

achieve mutual exclusion. 
○​ But BA requires a sequentially consistent (SC) memory model in both 

cases (with or without atomic instructions) in order to work, which is 
expensive due to the severe restrictions on the buffering and pipelining of 
0memory accesses and is not commonly implemented in real life systems. 

○​ SL also requires a sequentially consistent (SC) memory model, although it 
may also be implemented in weaker models if memory fences are 
explicitly introduced by the programmer. 

●​ BA guarantees eventual entry (no starvation) which is desirable in a critical 
section solution. SL does not guarantee this.  

●​ Naive implementations of SL make poor use of cache coherency and can cause 
cache contention. A pragmatically better solution is known as 
Test-and-Test-and-Set (though it still uses Test-and-Set). 

 

1. (b) (iii)​
​
Not sure of this solution, perhaps we are overthinking for 2 marks? 

Not sure if this is it but I was thinking it’d be that it supports at most N threads as we 
need to preallocate an array of size N for the number of threads in use? 

 

BA needs atomic instructions which are expensive to implement and requires a 



sequentially consistent memory model which is not common in the real world. 

​
If SC was enforced on the other hand, BA could be used as the basis of a SL style 
system. A global TURNS[] array that is visible to all threads can be used to indicate 
which threads are requesting access to its critical section.  

LOCK() will assign a turn value to the thread and update TURNS[] with its turn value.  

UNLOCK() will set its turn value to 0 and update TURNS[] with its turn value, allowing 
the next thread to enter its critical section. 

 

1. (c) 

Not sure what the significance of the SFAA instruction is 
int SFFA(int x){ 

 < 

   int temp = x; 

   if(x<100) x++; 

   return temp; 

 > 

} 

 
int lock = 99; 

co[i = 0 to n-1] { 

 
   await(SFFA(lock)<100); 

   critical section... 

   lock = lock-1; 

   non-critical section... 

} 

 
The above pseudo-code provides an SL style solution for the critical section problem by 
exploiting SFFA. Since the entirety of SFFA’s contents are considered one atomic 
instruction the write and return of the variable lock occur at the same time, which means 
whenever a process returns a value lower than 100 we can be certain that it has 
incremented the variable. This provides a natural lock on the system, as processes 
awaiting to enter the critical section must wait until a process has finished its run of the 
critical section and decremented the lock. The added benefit of this solution is that we 
can run multiple threads at the same time by decrementing the initial value of lock by 



the total number of concurrent threads we want to allow. 

-- Nicholas 

 

 
Ashley 
 
​ int l = 99; 
​ while(l == 100  || SFAA(l) == 100); // spin 
​ ​ // enter cs 
​ ​ l = 99; 
​ ​ // leave cs 
 
Checks that l == 100 (i.e other process in cs) and will not check second condition if it is (hence 
cache efficient). When x = 99, checks second condition which will also return false and will enter 
CS. l is now = 100 so no other process will enter cs. 
 
 
 

} 
+1 
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2. (a) (i) 

During normal execution, every thread will eventually hit the await condition and wait.  

Once count is equal to P, one by one the threads will complete the await statement:  

< await (count == P) > 

If the thread with value myID == P-1 completes the await statement before other 
threads complete, there is a chance that the thread with myID == P-1 will reset count to 
0 before the other threads complete the await statement. Any threads that are still at the 
await statement will remain in deadlock and eventually the entire implementation will be 
broken as count can never be equal to P, thus never exiting the barrier. 

 

(ii)  

If every thread excluding the thread with myID == P-1 executes the await barrier before 
the thread with myID == P-1 resets count in each loop iteration, the barrier will appear to 
be executing correctly as count can equal P in the next loop iteration. 

 

P-1 can’t reset count before executing the await barrier. The excluding of myID == 
P-1 is unnecessary. 

 

(b) (i) 

Symmetric Barrier:​
Overall synchronization is achieved by implication by choosing set pairwise 
synchronisations, and synchronising in steps. Symmetric barriers only work if the 
number of synchronising  threads is a power of 2. 

Dissemination Barrier: 

Overall synchronisation is achieved by implication by choosing different thread 
“partners” for synchronising with and being synchronised by in steps. Dissemination 
barriers can work with non power of 2 number of synchronising threads. The number of 
steps for a dissemination barrier to fully synchronise is  steps, where p 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 𝑙𝑜𝑔

2
(𝑝)[ ]

is the number of processes.​
​
As dissemination barriers do not require a power of 2 number of threads to be execute 
correctly, dissemination barriers are a more generic barrier solution than symmetric 
barriers. 



 

(b) (ii)​
For 14 processes using a dissemination barrier, there will be  stages. ​𝑐𝑒𝑖𝑙𝑖𝑛𝑔 𝑙𝑜𝑔

2
(𝑝)[ ]

 

 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 𝑙𝑜𝑔
2
(𝑝)[ ]

 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 𝑙𝑜𝑔
2
(14)[ ]

 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 3. 807[ ]

4 

There will be 4 stages for a 14 process dissemination barrier. 

 

(c) 

 =>  => 3 stages 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 6[ ] 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 2. 584[ ]

 

STAGE 1​
p0 will set p1, and will be set by p5.​
p1 will set p2, and will be set by p0. 

p2 will set p3, and will be set by p1. 

p3 will set p4, and will be set by p2. 

p4 will set p5, and will be set by p3. 

p5 will set p0, and will be set by p4. 

 

STAGE 2 

p0 will set p2, and will be set by p4. 

p1 will set p3, and will be set by p5. 

p2 will set p4, and will be set by p0. 

p3 will set p5, and will be set by p1. 

p4 will set p0, and will be set by p2. 

p5 will set p1, and will be set by p3. 

 

STAGE 3 



p0 will set p4, and will be set by p2. 

p1 will set p5, and will be set by p3. 

p2 will set p0, and will be set by p4. 

p3 will set p1, and will be set by p5. 

p4 will set p2, and will be set by p0. 

p5 will set p3, and will be set by p1. 

 

p0 and p5 are synchronized due to: 

●​ Stage 1 where p5 synchronises p0, and p0 synchronises with p1. 
●​ Stage 3 where p1 synchronises p5.  

Thus p5 has synchronised with p0 and p0 has implicitly synchronised with p5 through 
p1 which has explicitly synchronised with p5. 

 

(d) 

Any object in Java can act as a monitor by declaring one or more methods as 
synchronized or including any synchronized declared code.  

Each object that is synchronized is associated with a single implicit lock. Entering any 
synchronized section of code is equivalent to obtaining the lock, and exiting the 
synchronized section of code is equivalent to releasing the lock.​
Java employs Signal-And-Continue semantics, by allowing a single condition variable 
queue per monitor which can be interacted with using the following methods: 

●​ wait() - wait on this condition variable until it is released. 
●​ notify() - release this condition variable and notify a single waiting thread. 
●​ notifyAll() - releases this condition variable and notify ALL waiting threads. 

 

(e) 

 



volatile int count = 0; 

synchronized void func() 

{ 

while(something) 

{​
​ // do work 

​ // barrier 

​ count++; 

​ if(count == n) 

​ { 

​ ​ count = 0; 

​ ​ notifyAll(); 

​ } 

else 

{ 

​ ​ wait(); 

}​  

} 

} 

​
 

Alt Solution: 

// Global Sense Object 

public class Sense() 

{ 

​ int counter = 0; 

​ int threshold = 0; 

​ boolean sense = false; 

​  

​ public Sense(int t) 

​ { 

​ ​ threshold = t; 



​ } 

​  

​ public synchronous boolean getSense() 

​ ​ return sense; 

​ ​  

​ public synchronous void updateCount() 

​ { 

​ ​ counter++; 

​ ​ if(counter == t) 

​ ​ { 

​ ​ ​ counter = 0; 

​ ​ ​ sense = !sense; 

​ ​ } 

​ } 

} 

 

// Spawn a whole load of these 

public class Thing() 

{ 

​ while(something) 

​ { 

​ ​ // Do some stuff 

​ ​ Sense.updateCount(); 

​ ​ while( Sense.getSense != mySense ); 

​ ​ mySense = !mySense; 

​ } 

} 

 

  



a
 

3. (a)  

MPI communicators determine the scope and the “communication universe” in which a 
point-to-point or collective operation is to operate. In other words, communicators define 
contexts within which groups of processes interact.  ​
​
MPI collective operations are complex operations that are composed of a complex 
sequence of sends, receives and computations. They are collective operations because 
all processes in a communicator must call the collective operation. ​
 

The MPI_Allreduce operation computes a reduction, such as adding a collection of 
values together. An MPI_Op operation defines the reduction operation. When 
MPI_Allreduce is called, it reduces all elements in all send buffers using the MPI_Op 
specified and stores the results in all receive buffers.​
​
(b) 

MPI_Send() is the blocking send method. 

MPI_Ssend() is the blocking and synchronous version of MPI_Send(). 

Blocking in MPI context refers to the relationship between the caller of a communication 
operation and the implementation of the operation. MPI_Send() will only return when the 
data to be sent is copied somewhere safe from the specified output buffer. 

Synchronous in MPI contexts means that operations can only be completed when a 
matching operation has been posted. In this context, MPI_Ssend() will only return when 
a matching receive operation has been found and the receiver has started  executing 
the matching receive. Communication does not complete at either end before both 
processes rendezvous at the communication. 

Bad example, can someone flesh out a better one? 

A simple situation where this difference can cause the behaviour of the program to vary 
dramatically for example, if MPI_Ssend() was used and there existed no other matching 
receiving operation, the sender would be stuck in a deadlock until a matching receiving 
operation had been posted. With MPI_Send(), the sender would copy the data from the 
buffer safely and move on.  

 

 



(c) 

(i)  

parallel_for 

Load balanced parallel execution of fixed number of independent loop iterations 

Range 

Range defines the range type to iterate over. A range type must include:  

●​ A copy constructor and destructor must be defined 
●​ The following methods must defined: 

○​ is_empty() 
■​ True if range is empty 

○​ is_divisible() 
■​ True if range can be partitioned 

○​ splitting constructor R(R &r, split) 
■​ Splits r into 2 subranges 

 

Body 

Body defines the body type that operates on the range or subrange. A body type must 
include: 

●​ A copy constructor and destructor must be defined  
●​ Defines method operator() 

○​ Apply the body to the sub range 

 

parallel_for partitions the original range into subranges and deals out the subranges to 
worker threads such that cache efficiency is optimal, workload is balanced and scales 
well. Range specifies the range type for parallel_for to partition and deal the subranges 
to workers, and Body specifies the operation to perform on each subrange. 

 

(ii) 

The TBB runtime system uses Range to split the range in subranges, which are 
effectively tasks. The Range method is_divisible() defines the range’s granularity. The 
TBB runtime system uses is_divisible() to check if a range can be subdivided, if it can 
be subdivided, the splitting constructor is used to split the range. Once a range can not 
be divided into subranges, the range is now ready for Body operation() to be performed 
to the range.  



(d) 

In addition to the operator() (Range &subrange) as in parallel_for a parallel_reduce 
body also needs to supply the method void::join (Body &rhs) which takes the result in 
rhs and merges it with the calling object.  

... 

 
<TODO> 

Parallel reduce would merge and only keep the max of LHS,RHS returning this value  

Parallel for would do this differently it would compare two values and keep one and then 
get another rather than returning both 

 

<If anyone can given more details on the below, please do > 

parallel_for 
 
each process will run over the range finding the maximum .  
The result will need to be stored in a new range which will have length p (the number of 
processors) , and will need to run on a single process to give a single result.  
 
 
parallel_reduce 
 
each process runs the operator() method to seek the max value from the range assigned to it. 
the results are then combined using a max() operator such that a single result is obtained. ​
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