Arkansas Computer Science and Computing Standards

High School Programming

Arkansas Computer Science and Computing Standards for High School Programming

Introduction

The Arkansas Computer Science and Computing Initiative standards for high school courses are designed to provide understandings of concepts in computer science that are necessary for students to function in an ever-changing technological world. Through these standards, students will explore, apply, and move toward mastery in skills and concepts related to Computational Thinking and Problem Solving; Data, Information, and Security; Algorithms and Programs; Computers and Communications; and Professionalism and Impacts of Computing. These standards help students learn to accomplish tasks and solve problems independently and collaboratively. These standards give students the tools and skills needed to be successful in college and careers including computer science, computing, and other fields.

State developed pathways within the Arkansas Computer Science and Computing Initiative all begin with common year-one standards which allow for consistency across the state and all schools. These common standards address the basic knowledge and skills needed for any student entering a technology-based field.

The Arkansas State Board of Education (SBE) does not place any prerequisites on the Arkansas Computer Science and Computing Initiative high school courses, but allows for schools to place students in any of the courses based on ability and desire. The Arkansas Department of Education (ADE) recommends that districts develop and formally adopt a written policy outlining placement protocols. Evaluation tools and placement criteria will be the responsibility of the local districts.

The SBE and ADE authorize schools to enroll students across levels in the same sections of the master schedule (a.k.a. stacking) as long as the number of students does not exceed Standards of Accreditation maximums and/or ratios and the school can reasonably assure a high-quality educational experience for all students within that section.

Implementation of the Arkansas Computer Science Standards for High School Programming begins during the 2021-2022 school year.

Course Titles: Programming

Course/Unit Credit: 1 credit per listed course code

	Programming	Programming	Programming
	Year 1	Year 2	Year 3 - Advanced
Programming	465070	465080	465090

Teacher Licensure: Please refer to the Course Code Management System (https://adedata.arkansas.gov/ccms/) for the most current licensure codes.

Grades: 9-12

Prerequisites: There are no ADE established course prerequisites for any of the Arkansas Computer Science and Computing Initiative high school

courses; it is up to the local district to determine placement based on student ability.

Computer Science and Computing Practices

Students exhibit proficiency in computer science and computing through:

Communication - Students effectively communicate, using accurate and appropriate terminology, when explaining the task completion or problem solving strategies used. They recognize that creating good documentation is an ongoing and important part of the communication process.

Collaboration - Students productively work with others while ensuring multiple voices are heard and considered. They understand that diverse thoughts may lead to creative solutions and that some problems may be best solved collaboratively.

Storytelling - Students creatively combine multimedia tools, such as graphics, animations, and videos with research, writing, and oral presentations to create ethical, data-driven stories.

Professionalism - Students embrace professionalism by demonstrating skills and behaviors necessary for success in technical careers.

Ethics and Impact - Students comprehend the ramifications of actions prior to taking them. They are aware of their own digital and cyber presence and its impact on other individuals and society.

Inclusion - Students encourage diversity in the field of computer science and computing regardless of race, ethnicity, gender, or other differences.

Learning by Failure - Students reflect upon and critique their work while embracing a willingness to seek feedback and constructive instruction from teachers and peers. They utilize the feedback to continually improve current projects, educational experiences, knowledge, and confidence.

Perseverance - Students expect difficulties and persist in overcoming challenges that occur when completing tasks. They recognize making and correcting mistakes is necessary for the learning process while problem solving.

Understanding - Students recognize patterns, utilize tools, and apply problem solving strategies to build understanding, find solutions, and successfully deliver high-quality work.

Patterns - Students understand and utilize the logical structure of information through identifying patterns and creating conceptual models. They decompose complex problems into simpler modules and patterns.

Problem Solving - Students exhibit proficiency through the process of identifying and systematically solving problems. They recognize problem solving is an ongoing process.

Research - Students purposefully gather information and seek to expand their knowledge through various methods and mediums. They embrace the practice of gaining knowledge to develop novel approaches for solving problems and addressing issues they have not previously encountered, in addition to merely searching for answers.

Tools - Students evaluate and select tools to be used when completing tasks and solving problems. They understand that appropriate tools may include, but are not limited to, their mind, pencil and paper, manipulatives, software applications, programming languages, or appropriate computing devices.

Arkansas Computer Science Standards for High School Programming

Strand	Content Cluster
Computational 7	Thinking and Problem Solving
	Students will analyze and utilize problem-solving strategies.
	2. Students will analyze and utilize connections between concepts of mathematics and computer science.
Data, Informatio	n, and Security
	3. Students will analyze and utilize data through the use of computing devices.
	4. Students will analyze and utilize concepts of cybersecurity.
Algorithms and	Programs
	5. Students will create, evaluate, and modify algorithms.
	6. Students will create programs to solve problems.
Computers and	Communications
	7. Students will analyze the utilization of computers within industry.
	8. Students will analyze communication methods and systems used to transmit information among computing devices.
	9. Students will utilize appropriate hardware and software.
Professionalism	and Impacts of Computing
	10. Students will analyze the impacts of technology and professionalism within the computing community.
	11. Students will demonstrate understanding of storytelling with data and appropriately communicate about technical information.

Understanding the Arkansas Computer Science and Computing Standards Documents:

- This Arkansas Department of Education curriculum standards document is intended to assist in district curriculum development, unit design, and to provide a uniform, comprehensive guide for instruction.
- The goal for each student is proficiency in all academic standards for the course/year in which the student is enrolled.
- The Practice Standards are intended to be habits of mind for all students and were written broadly in order to apply to all grades/levels. The Practice Standards are not content standards and are not intended to be formally assessed.
- Notes (NOTE:) and examples given (e.g.,) found within the document are not mandated by the Arkansas State Board of Education, but are provided for clarification of the standards by the Arkansas Department of Education and/or the standards drafting committee. The notes and examples given are subject to change as understandings of the standards evolve.
- Within the high school documents, the numbering for standards is read as: Course Abbreviation Year Content Cluster Standard. Example: "CSPG.Y1.2.3" would be Computer Science Programming Year 1 Content Cluster 2 Standard 3.
- Within the Coding Block document, the numbering for standards is read as: Course Abbreviation Content Cluster Standard. Example: "CSCB.1.2" would be Coding Block, Content Cluster 1, Standard 2.
- Within the K-8 Computer Science Standards documents, the numbering for standards is read as: Course Abbreviation Grade Content Cluster Standard. Example: "CSK8.G1.2.3" would be K-8, Grade 1, Content Cluster 2, Standard 3.
- Ancillary documents and supporting information may be released to assist in further understanding of the standards with possible classroom implementation strategies included.

"Research" and Learning

The Arkansas Department of Education Office of Computer Science recognizes that the use of the term "research" as an action verb within academic standards is not mainstream, though not unheard of, and exists as a measurable objective within other Arkansas K-12 academic standards. The members of the internal team, composed of the State Director of Computer Science and nine state-wide Computer Science Specialists, discussed this at length amongst ourselves and with many committee members. While there existed varying opinions for various reasons, the internal team opted to keep "research" as an action verb within the standards for the following reasons:

- 1. The internal team believes that this use of "research" and the skill-building activities students will undertake while performing said research will produce students that have a skillset which industry representatives have identified as missing from workers entering technical job fields.
- 2. As the field of Computer Science and Computing is ever changing and growing, professionals and students within this field must conduct informal research on an almost daily basis to maintain relevant knowledge and skills.
- 3. The use of "research" within this document does not determine classroom implementation; however, it is used to indicate that the student should take individual and active efforts to seek out knowledge to develop novel approaches for solving problems and addressing issues they have not previously encountered, in addition to merely searching for answers.
- 4. The use of "research" should not infer that a student should be required to do an extensive qualitative or quantitative research project from the use of "research" anywhere in this document; however, a more formal research project is not prohibited if the teacher feels it is appropriate.

Strand: Computational Thinking and Problem Solving **Content Cluster 1:** Students will analyze and utilize problem-solving strategies.

Year 1	Year 2	Year 3 - Advanced
CSPG.Y1.1.1 Leverage problem-solving strategies to solve problems of level-appropriate complexity	CSPG.Y2.1.1 Leverage problem-solving strategies to solve problems of level-appropriate complexity	CSPG.Y3.1.1 Leverage problem-solving strategies to solve problems of level-appropriate complexity
NOTE: Problem-solving strategies that encompass computat recognition.	ional thinking include, but are not limited to, abstraction	n, algorithm development, decomposition, and pattern
CSPG.Y1.1.2 Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity	CSPG.Y2.1.2 Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity	CSPG.Y3.1.2 Analyze and utilize multiple representations of problem-solving logic used to solve problems of appropriate complexity
NOTE: Representations may include, but are not limited to, b	acklog, decision matrix, design brief, documentation, fa	ault tree analysis, flowchart, pseudocode, and sprints.
CSPG.Y1.1.3 Analyze and utilize collaborative methods in problem solving of level-appropriate complexity	CSPG.Y2.1.3 Analyze and utilize collaborative methods in problem solving of level-appropriate complexity	CSPG.Y3.1.3 Analyze and utilize collaborative methods in problem solving of level-appropriate complexity
NOTE: Collaborative methods may include, but are not limite	d to, distributive (divide and conquer), paired programr	ming, and redundant parallel.
CSPG.Y1.1.4 Analyze and utilize level-appropriate troubleshooting strategies for hardware and software	CSPG.Y2.1.4 Analyze and utilize level-appropriate troubleshooting strategies for hardware and software	CSPG.Y3.1.4 Analyze and utilize level-appropriate troubleshooting strategies for hardware and software
This standard is not specifically required until Year 2	CSPG.Y2.1.5 Decompose problems of level-appropriate complexity	CSPG.Y3.1.5 Decompose problems of level-appropriate complexity

Strand: Computational Thinking and Problem Solving **Content Cluster 2:** Students will analyze and utilize connections between concepts of mathematics and computer science.

Year 1	Year 2	Year 3 - Advanced
CSPG.Y1.2.1 Interpret relational and logical expressions of level-appropriate complexity using comparison and Boolean operators	CSPG.Y2.2.1 Construct and evaluate compound expressions using multiple relational and logical operators	Continuation of this standard is not specifically included or excluded
NOTE: Boolean operators include AND, OR, NOT, and XOR Comparison operators may include, but are not limite		
CSPG.Y1.2.2 Classify the types of information that can be stored as variables and analyze the appropriateness of each (e.g., Booleans, characters, integers, floating points, strings)	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
CSPG.Y1.2.3 Analyze how computer science concepts relate to the field of mathematics	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
NOTE: Concepts may include, but are not limited to, differen minimum, mode, and range.	t division methods (e.g., integer, long, modular), rando	om number generation, domain, maximum, mean,
CSPG.Y1.2.4 Discuss and apply concepts of abstraction	CSPG.Y2.2.4 Analyze and utilize concepts of abstraction as modeling and abstraction as encapsulation	Continuation of this standard is not specifically included or excluded
NOTE: Abstraction is the process of reducing information an hiding the details).	d detail to facilitate focus on relevant concepts and fur	nctionality (displaying only essential information while
CSPG.Y1.2.5 Perform operations of level-appropriate complexity with binary, decimal, and hexadecimal numbers	CSPG.Y2.2.5 Perform operations of level-appropriate complexity with binary, octal, decimal, and hexadecimal numbers	Continuation of this standard is not specifically included or excluded
NOTE: Operations may include, but are not limited to, addition	on, subtraction, multiplication, division, and conversion	i.

CSPG.Y1.2.6 Demonstrate operator precedence in expressions and statements	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
---	--	--

NOTE:

Operators include, but are not limited to, addition, subtraction, division, modulus division, concatenation, square root, and exponentiation.

Operator precedence may include, but is not limited to, inside-out, order of operations, and the understanding that the assignment statement of "x = 1" is not the same as "1 = x."

Strand: Data, Information, and Security

Content Cluster 3: Students will analyze and utilize data through the use of computing devices.

Year 1	Year 2	Year 3 - Advanced
CSPG.Y1.3.1 Define, store, access, and manipulate level-appropriate data (e.g., primitive, linear)	CSPG.Y2.3.1 Create programs to store, access, and manipulate level-appropriate data (e.g., structured data, objects)	CSPG.Y3.3.1 Create programs that store, access, and manipulate, with high level of efficiency, level-appropriate data
Objects may include, but are not limited to, constructor Defining, storing, and accessing may include, but are parameters, private, protected, public).	ists, strings, and vectors. ys, classes, linked lists, maps, multidimensional arrays	rs (e.g., final, pass-by-value, pass-by-reference
CSPG.Y1.3.2 Define and discuss different examples of level-appropriate quantitative and qualitative data	CSPG.Y2.3.2 Define and discuss different examples of level-appropriate quantitative and qualitative data	Continuation of this standard is not specifically included or excluded
This standard is not specifically required until Year 2	CSPG.Y2.3.3 Research, discuss, and create level-appropriate programs to model and simulate probabilistic and real-world scenarios	CSPG.Y3.3.3 Create and test models and simulations to answer student-identified questions and scenarios
NOTE: Probabilistic scenarios may include, but are not limite Real-world scenarios may include, but are not limited		
CSPG.Y1.3.4 Analyze, utilize, and visually represent level-appropriate data	CSPG.Y2.3.4 Analyze, utilize, and visually represent level-appropriate static and dynamic data	Continuation of this standard is not specifically included or excluded
	mited to, analytics reports, graphical representations, pork traffic, real-time weather data, sensor statuses, stoo	
CSPG.Y1.3.5 Perform level-appropriate data analysis using computing tools	CSPG.Y2.3.5 Perform level-appropriate data analysis using computing tools	CSPG.Y3.3.5 Discuss real-world data sources that can be mined to produce new knowledge
NOTE: Analysis may include, but is not limited to, maximum	values, mean values, minimum values, ranges, and str	ing comparisons.

This standard is not specifically required until Year 2	CSPG.Y2.3.6	CSPG.Y3.3.6
	, , , , , , ,	Issue queries against data sets to produce new knowledge from stored data (e.g., databases, large sets of data)

Strand: Data, Information, and Security

motivations, significant impacts, and social

Content Cluster 4: Students will analyze and utilize concepts of cybersecurity.

Year 1	Year 2	Year 3 - Advanced
CSPG.Y1.4.1 Identify the five pillars of cybersecurity and evaluate the relevance of each pillar to computer science concepts	CSPG.Y2.4.1 Apply the five pillars of cybersecurity as applicable to level-appropriate computer science concepts	Continuation of this standard is not specifically included or excluded
	of cybersecurity (confidentiality, integrity, availability, no ability, authorization, least-privilege, and need-to-know	
CSPG.Y1.4.2 Research and describe different roles within the hacking community (e.g., white hat, black hat, gray hat hacking), including positive and negative	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded

NOTE:

stereotypes

White hat hacking may include, but is not limited to, bug bounty programs and contracted penetration testing. A significant impact example may include, but is not limited to, Charlie Miller's compromisation of Fiat Chrysler vehicles.

Black hat hacking may include, but is not limited to, the unauthorized processes of accessing systems to destroy, compromise, or steal data and deny access to services or systems. A significant impact example may include, but is not limited to, Behzad Mesri's alleged theft of data from Home Box Office (HBO) and subsequent ransom demands.

Gray hat hacking may include, but is not limited to, unauthorized processes of accessing systems to report, correct, and draw attention to security vulnerabilities. A significant example of gray hat hacking is intentionally not included; students and teachers are encouraged to explore and discuss the nuances of "right versus wrong" and motivations within this community, including nation-state actions.

CSPG.Y1.4.3	CSPG.Y2.4.3	CSPG.Y3.4.3
Research and describe the impacts of ransomware,	Research and describe common attacks on	Utilize a defined process or tool to identify and
trojans, viruses, and other malware	hardware, software, and networks	resolve security vulnerabilities in student-created
		programs

NOTE:

Common hardware attacks may include, but are not limited to, clones, hardware trojans, and side-channel attacks.

Common software attacks may include, but are not limited to, buffer overflows, deployment errors, software bugs, and Structured Query Language (SQL) and command injection.

Common network attacks may include, but are not limited to, man-in-the-middle attacks, packet sniffing, protocol abuse, and spoofing of media access control (MAC) or internet protocol (IP) addresses.

Explain implications related to identification and	1	Continuation of this standard is not specifically included or excluded
responsible reporting of a vulnerability versus exploitation		

Strand: Algorithms and Programs

Content Cluster 5: Students will create, evaluate, and modify algorithms.

Year 1	Year 2	Year 3 - Advanced
CSPG.Y1.5.1 Design and implement level-appropriate algorithms that use iteration, selection, and sequence	CSPG.Y2.5.1 Design and implement level-appropriate algorithms that use iteration, recursion, selection, and sequence	CSPG.Y3.5.1 Design and implement level-appropriate algorithms that solve student-identified problems
CSPG.Y1.5.2 Illustrate the flow of execution of algorithms in level-appropriate programs including branching and looping	CSPG.Y2.5.2 Illustrate the flow of execution of algorithms in level-appropriate programs including recursion	Continuation of this standard is not specifically included or excluded
NOTE: Illustrations may include, but are not limited to, flowch	narts and pseudocode.	
CSPG.Y1.5.3 Evaluate the qualities of level-appropriate student-created and non-student-created algorithms	CSPG.Y2.5.3 Evaluate the qualities of level-appropriate student-created and non-student-created algorithms including classic search and sort algorithms	CSPG.Y3.5.3 Evaluate multiple student-created algorithms and non-student-created algorithms in terms of time and space complexities (e.g., Big O notation)
NOTE: Evaluation tools may include, but are not limited to, confidence of Qualities may include, but are not limited to, correctness usability.	ode review and test cases. ess, efficiency, exception handling, input/data/model va	lidation, portability, readability, scalability, and
CSPG.Y1.5.4 Use a systematic approach to detect and resolve errors in a given algorithm	CSPG.Y2.5.4 Use a systematic approach to detect and resolve errors in a given algorithm	CSPG.Y3.5.4 Use a systematic approach to detect and resolve errors in a given algorithm

Strand: Algorithms and Programs

Content Cluster 6: Students will create programs to solve problems.

. ••	Year 3 - Advanced
Create programs to solve problems of level-appropriate complexity	CSPG.Y3.6.1 Create programs to solve problems of level-appropriate complexity utilizing inheritance and polymorphism
C le	create programs to solve problems of evel-appropriate complexity

"Procedures" is considered interchangeable with "functions" for meeting this standard.

Problems may include, but are not limited to, encoding, encryption, finding minimum/maximum values, identifying prime numbers, searching and sorting, and solving classic computer science tasks such as The Towers of Hanoi problem.

and format (e.g., descriptive names, documentation,		CSPG.Y3.6.2 Discuss and apply best practices of program design, user experience design, and format (e.g., descriptive names, documentation, indentation, whitespace)
	CSPG.Y2.6.3 Determine the scope and state of variables defined in classes and class procedures	CSPG.Y3.6.3 Determine the scope and state of variables defined in classes and class procedures involving inheritance and polymorphism

NOTE:

"Procedures" is considered interchangeable with "functions" for meeting this standard.

that read from standard input, write to standard output, read from a file, write to a file, and append to	append to a file of level-appropriate complexity that	CSPG.Y3.6.4 Create programs that read from, write to, and manipulate binary files (e.g., images, sounds)
a file		

NOTE:

Standard input and output is platform-specific.

Standard input and output on personal computers may include, but are not limited to, a keyboard and terminal.

Standard input and output on mobile application devices may include, but are not limited to, touchscreen and speakers.

Standard input and output on robots may include, but are not limited to, sensors and servos.

Structured data refers to any representation of data which can be interpreted by an external or separate computing system including, but not limited to, comma-separated values (CSV), JavaScript Object Notation (JSON), Extensible Markup Language (XML), and other line-based text documents.

CSPG.Y1.6.5	CSPG.Y2.6.5	CSPG.Y3.6.5
Use a systematic approach to detect logic, runtime,	Use a systematic approach to detect logic, runtime,	Use a systematic approach to detect logic, runtime,
and syntax errors within a program	and syntax errors within a program	and syntax errors within a program

Strand: Computers and Communications **Content Cluster 7:** Students will analyze the utilization of computers within industry.

Year 1	Year 2	Year 3 - Advanced
CSPG.Y1.7.1 Identify software and hardware specific to carrying out the mission of regional industries	CSPG.Y2.7.1 Utilize hardware and/or software to solve level-appropriate industry-based problems	CSPG.Y3.7.1 Integrate multiple hardware and/or software tools to solve level-appropriate industry-based problems
NOTE CSPG Y3: Tools may include, but are not limited to, using multiple libraries from a code repository.		
CSPG.Y1.7.2 Research advancing and emerging technologies (e.g., artificially intelligent agents, blockchain, extended reality, Internet of Things (IoT), machine learning, robotics)	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded

Strand: Computers and Communications

Content Cluster 8: Students will analyze communication methods and systems used to transmit information among computing devices.

Year 1	Year 2	Year 3 - Advanced
CSPG.Y1.8.1 Utilize the command line to accomplish common network troubleshooting tasks at an introductory level	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
NOTE: Common network troubleshooting tasks may include, but are not limited to, viewing internal IP address information (e.g., ipconfig /all); viewing external IP address information using an external service (e.g., ifconfig.me, myip.com, whatsmyip.com); validating communication with a remote system (e.g., ping); tracing path of communication to a remote system (e.g., traceroute); and releasing and renewing IP addresses (e.g., ipconfig /renew).		
CSPG.Y1.8.2 Research and describe common networking concepts at an introductory level	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
NOTE: Networking concepts may include, but are not limited to, different types of networks (e.g., local area network (LAN), wide area network (WAN)); various common topologies; the role of a MAC address; local versus public IP and how they are assigned; Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6) addressing schemes; role of Domain Name System (DNS); the hierarchical nature of networks; purpose of virtual private networks (VPN); signal carriers for networks (e.g., copper, fiber optic, radio); purpose of firewalls; network access roles (e.g., employee versus guest, staff versus student); role of internet service providers (ISP); wireless connectivity; client-server relationship versus peer-to-peer (P2P); role of common internet protocols; and secure versus insecure protocols.		
CSPG.Y1.8.3 Research and describe modems, network interface cards, routers (e.g., consumer, industrial), switches, and wireless access points, and identify their purposes within a network	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
CSPG.Y1.8.4 Describe the importance of creating and using common rules for communication and the utilization of common network protocols including the relationship between client and server	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded

NOTE:

Discussions of common rules for communications may include, but are not limited to, the Open Systems Interconnection (OSI) Model and packet communication. Common network protocols may include, but are not limited to, DNS, Hypertext Transfer Protocol (HTTP)/Secure Hypertext Transfer Protocol (HTTPS), Simple Mail Transfer Protocol (SMTP)/Post Office Protocol (POP)/Internet Message Access Protocol (IMAP), and Telnet/Secure Shell (SSH).

Strand: Computers and Communications

Content Cluster 9: Students will utilize appropriate hardware and software.

Year 1	Year 2	Year 3 - Advanced
CSPG.Y1.9.1 Compare and contrast computer programming paradigms (e.g., functional, imperative, object-oriented)	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
CSPG.Y1.9.2 Research, describe, and utilize at an appropriate level: debugging strategies integrated development environments (IDE) source-code editors version control strategies	CSPG.Y2.9.2 Use collaboration tools and version control systems in a group software project of appropriate complexity	CSPG.Y3.9.2 Compare, contrast, and utilize collaboration tools and/or version control systems in a group software project of appropriate complexity
CSPG.Y1.9.3 Classify layers of software (e.g., applications, drivers, firmware, operating systems) utilized within various platforms (e.g., Android, ChromeOS, iOS, Linux, macOS, Windows)	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
CSPG.Y1.9.4 Identify and describe the purpose of hardware components within various personal computing platforms	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded

NOTE:

Hardware components include, but are not limited to, central processing units (CPU), chassis, cooling components, graphics cards, input/output devices, memory, motherboards, power supplies, and storage devices.

Strand: Professionalism and Impacts of Computing

Content Cluster 10: Students will analyze the impacts of technology and professionalism within the computing community.

Year 1	Year 2	Year 3 - Advanced
CSPG.Y1.10.1 Research and describe the risks and risk mitigation strategies associated with the utilization and implementation of social media and other digital technology implications	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
	entity theft, impersonation, and social engineering attac byability, legal, physical, psychological, and social acce	
This standard is not specifically required until Year 2	CSPG.Y2.10.2 Research and describe issues related to creating and enforcing cyber-related laws and regulations (e.g., ethical challenges, policy vacuum, privacy versus security, unintended consequences)	Continuation of this standard is not specifically included or excluded
CSPG.Y1.10.3 Research and describe the potential benefits associated with the utilization and implementation of social media and other digital technologies	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
NOTE: Potential benefits may include, but are not limited to,	brand building, crowdsourcing, personal promotion awa	areness, and project funding.
CSPG.Y1.10.4 Research and describe the relationship between access and security (e.g., active and passive data, convenience, data mining, digital marketing, online wallets, privacy, theft of personal information)	CSPG.Y2.10.4 Identify the ethical implications encountered in the curation, management, and monetization of data (e.g., harvesting, information overload, knowledge management repositories, sharing, summarizing)	CSPG.Y3.10.4 Discuss ethical implications encountered in software development industry that relate to intellectual property, non-compete clauses, and non-disclosure agreements
This standard is not specifically required until Year 2	CSPG.Y2.10.5 Explain advantages and disadvantages of various software life cycle processes (e.g., Agile, spiral, waterfall)	CSPG.Y3.10.5 Utilize a software life cycle process (e.g., Agile, spiral, waterfall) in developing a program
CSPG.Y1.10.6 Research the history of computing devices and their impact on society	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded

CSPG.Y1.10.7 Research and identify diverse careers and career opportunities (e.g., accessibility, availability, demand) that are influenced by computer science and the technical and soft skills needed for each	CSPG.Y2.10.7 Demonstrate industry-relevant technical and soft skills	Continuation of this standard is not specifically included or excluded
This standard is not specifically required until Year 2	CSPG.Y2.10.8 Identify the components of a quality professional digital portfolio	CSPG.Y3.10.8 Evaluate the quality and impact of a professional digital portfolio
This standard is not specifically required until Year 2	CSPG.Y2.10.9 Create and maintain a digital collection of self-created work	CSPG.Y3.10.9 Create and maintain a professional digital portfolio comprised of self-created work

Self-created works may include, but are not limited to, applications, diagrams, media, and source code.

Strand: Professionalism and Impacts of Computing

Content Cluster 11: Students will demonstrate understanding of storytelling with data and appropriately communicate about technical information.

Year 1	Year 2	Year 3 - Advanced
CSPG.Y1.11.1 Communicate basic technical information effectively to diverse audiences including, but not limited to, non-technical audience members	CSPG.Y2.11.1 Communicate technical information, of appropriate complexity, effectively to diverse audiences including, but not limited to, non-technical audience members	CSPG.Y3.11.1 Communicate technical information, of appropriate complexity, effectively to diverse audiences including, but not limited to, non-technical audience members
NOTE: Technical information may include, but is not limited to paradigms, and troubleshooting concepts.	o, collecting or collected data, computing hardware, cy	ber hygiene, networking concepts, programming
CSPG.Y1.11.2 Describe and utilize the concepts of storytelling with data	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
	to, identifying the knowledge level of the intended audi audience and that enhance the narrative; remaining ob	
CSPG.Y1.11.3 Describe the following common types of data bias:	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
CSPG.Y1.11.4 Compare and contrast causation and correlation	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded
CSPG.Y1.11.5 Compare and contrast interpreting data, inferring using data, and implicating with data	Continuation of this standard is not specifically included or excluded	Continuation of this standard is not specifically included or excluded

Contributors

The following people contributed to the development of this document:

The following people contributed to the development of this document.	
Dr. Stephen Addison - Professor and CNSM Dean; University of Central Arkansas	Mark McDougal - K-12 Account Executive for Arkansas and Oklahoma; Apple Education
Scott Anderson - Executive Director; Forge Institute - Arkansas Cyber Alliance	Mickey McFetridge - Director of Federal Programs and Professional Learning; Fayetteville School District
Josh Baugh - Senior InfoSec Analyst; Entergy	Dr. Josh McGee - Chief Data Officer and Associate Director of Office for Education Policy; State of Arkansas and University of Arkansas
Garin Bean - Teacher; Cedarville Public Schools	Ben Mcilmoyle - Developer Advocate; Unity Technologies
Kimberly Bertschy - Program Coordinator, Networking and Cybersecurity; Northwest Arkansas Community College	Deborah McMillan - EAST Facilitator; Arkadelphia School District
John Black - Computer Specialist/Cyber Range Manager; University of Central Arkansas	Eli McRae - Statewide Computer Science Specialist; Arkansas Department of Education Office of Computer Science
Sarah Burnett - STEM Project Coordinator; Arkansas Tech University	Alex Moeller - Statewide Computer Science Specialist; Arkansas Department of Education Office of Computer Science
Julia Cottrell - K-8 STEM Coordinator; Van Buren School District	Daniel Moix - Director, STEM Pathways; Arkansas School for Mathematics, Sciences, and the Arts
Dr. Miles Dyson - Director of Special Projects; Cyberdyne Systems	Adam Musto - STEM Program Coordinator; Arkansas Division of Career and Technical Education
Jake Farmer - Teacher; Arkansas Arts Academy	Allison Nicholas - Director of Recruiting; Metova Inc.
Carl Frank - Teacher; Arkansas School for Mathematics, Sciences, and the Arts	Anthony Owen - State Director of Computer Science; Arkansas Department of Education Office of Computer Science
Jim Furniss - Statewide Computer Science Specialist; Arkansas Department of Education Office of Computer Science	Dr. Elizabeth Parker - Director of Financial and Statistical Analysis; Dillards
Tammy Glass - Statewide Computer Science Specialist; Arkansas Department of Education Office of Computer Science	Kimberly Raup - Teacher; Conway Public Schools
Tommy Gober - Curriculum Development Specialist; CYBER.ORG	Ryan Raup - Teacher; Conway Public Schools
Keith Godlewski - Teacher; Rogers Public Schools	Stacy Reynolds - Teacher; McGehee School District
Sean Gray - Teacher; Marion School District	Mike Rogers - Senior Director Maintenance and Refrigeration; Tyson Foods
Kelly Griffin - Statewide Computer Science Lead Specialist; Arkansas Department of Education Office of Computer Science	Christy Ruffin - Teacher; Lake Hamilton School District
John Hart - Statewide Computer Science Specialist; Arkansas Department of Education Office of Computer Science	Jordan Sallis - Cyber Intelligence Manager; GlaxoSmithKline

John Hightower - Department Head Computer Science and Engineering; University of Arkansas at Fort Smith	Leslie Savell - Statewide Computer Science Specialist; Arkansas Department of Education Office of Computer Science
Philip Huff - Assistant Professor of Cybersecurity and Director of Cybersecurity Research; University of Arkansas at Little Rock	Dr. Karl Schubert - Professor of Practice and Associate Director, Data Science Program; University of Arkansas
Grant Hurst - Teacher; North Little Rock School District	Amanda Seidenzahl - Director of Regional Workforce Grants; University of Arkansas at Fort Smith
Chris Jennings - Teacher; Valley View Public Schools	Nicholas Seward - Teacher; Arkansas School for Mathematics, Sciences, and the Arts
Lori Kagebein - Statewide Computer Science Specialist; Arkansas Department of Education Office of Computer Science	Dr. Thilla Sivakumaran - Vice Chancellor of Global Engagement and Outreach; Arkansas State University
Michael Karr - Makerspace Program Coordinator; National Park College	Courtney Speer - Technology Coach; Nettleton School District
David Kersey - Executive Director; PIXEL: A School for Media Arts	Joel Spencer - STEAM Magnet Coordinator; Little Rock School District
Catherine Leach - Associate Professor; Henderson State University	Zackary Spink - Statewide Computer Science Specialist; Arkansas Department of Education Office of Computer Science
Sandra Leiterman - Managing Director; UA Little Rock Cyber Gym	Emily Torres - Policy Development Coordinator; Arkansas Department of Education Office of Computer Science
Rhaelene Lowther - Associate Professor of Art: Game Art, Animation, and Simulation; Southern Arkansas University	Morgan Warbington - Program Advisor; Arkansas Department of Education Office of Computer Science
Gerri McCann - Teacher; Manila School District	Bill Yoder - Executive Director; Arkansas Center for Data Sciences
Amy McClure - Course Implementation Specialist; Virtual Arkansas	Bradford Young - Teacher; Mountain Home School District