
 

Modeling Probabilities of All-or-Nothing Events 
 
Often we’re looking at all-or-nothing outcomes: life or death, admitted or rejected from 
Harvard med school, and so on (obviously in ascending order of importance). We represent 
each outcome as a 0 or 1. The best we can do is make a model that predicts the probability 
of getting a 1 (e.g., life) for any given set of conditions.  
 
There are a variety of different models used for predicting these dichotomous outcomes, 
including logistic regression and probit. There’s no snap rule to choose between them. 
Sometimes understanding the logic of the model will tell you- we’ll see how that can work 
for one simple model. More often, it’s just a matter of seeing what works best. We’ll focus 
on logistic regression just because it’s the most widely used. 
 
There will be one change of strategies that affects all these dichotomous predictions, 
regardless of the particular model chosen. Instead of adjusting model parameters to 
minimize some squared prediction error, we typically adjust them to maximize the 
probability of getting our observed results, given our model. 
 
How should we pick the best-fit model? 
 
The criterion for the best fit really depends on what you want the model to do.  
 
Say you’re an insurance company trying to set the price for a group policy for a college. You 
need to predict the probability of people getting an expensive ($1M) disease. Your model 
(e.g. logistic regression) gives you a probability pi for each college employee of them costing 
you $1M. Those pi’s depend on things like the age and sex of the employee. You set 
parameters in the model for the effects of age and sex on pi by fitting data from similar 
colleges. You add up those probabilities to estimate how much you expect to pay out. For 
each employee, whose modeled probability is pi, the error in your estimate is just ​
(1-pi)*$1M or (pi)*$1M, depending on if they get the disease or not. You can do a good job 
just by minimizing the sum of those errors squared in your old data. So you wouldn’t need 
any new methods. 
 
Still, the model you get with those least-squares parameters might be far from the best 
model for other purposes. Say that one person per 100,000 for whom the model says 
p=0.0000000001 gets the disease. That’s not too big a deal for estimating total costs. It’s a 
very big deal if you want to use your model to make predictions for a much different 
population, where people like that one may not be so rare. Let’s think of a more extreme 
case. Say you had a model that gave pi =0 or pi =1 for some people. Then a single case of 
disease for a pi =0 case or of no disease for a pi =1 case tells you that it’s impossible that 
your model is right. A single case of disease where your model gives pi =0.0000000001 
doesn’t quite say the model logically has to be wrong, but it does say that if it were right 
you’d be extremely unlikely to see the results you saw.  
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Likelihood Methods 
 
If we want a model that’s “right” in the sense that it does a good job of predicting the 
probability of rare events as well as common ones, then we need a different way to evaluate 
what fits best.  What we do is to find the parameters that make the observed data as 
probable as possible to be what you’d see. For this type of “maximum likelihood” fit, the 
difference between saying a sick person had pi =0.0000000001 and saying they had pi =0.1 
is a big deal, but the difference between saying they had pi =0.4 and pi =0.6 isn’t a big deal. 
For simple least squares, those differences are equally important. Likelihood measures how 
much you should be surprised by the data, if you think your model is true. Least squares 
measures what sort of payoff errors you might expect for another population similar to the 
one you already observed. 
 
For example, if a model predicts pi = 0.5 of costing $1M for 4 people, and they all get sick, 
the company is out $2M more than they expected. Even if the model is right over the long 
run for the population, that type of error isn’t very unlikely. If just one person for whom the 
model gave pi =0 got sick, the company would only be out $1M more than they expected. 
However, that one person would prove that the model was wrong. You can see why you 
want different criteria depending on what use you’re planning for your model. 
 
This maximum likelihood technique is really used all over the place in more advanced 
statistics, so it’s good to get a taste of it here. The idea is this. Any model gives probabilities 
for getting your results. This probability is called the likelihood of the model. We search 
around (via a computer) among all the parameters for our type of model to find the ones 
that would have made our results most probable, i.e. the model with the biggest likelihood. 
We can start looking at simple examples where there are just lists of different hypotheses to 
evaluate, not a continuum of different parameters for a family of hypotheses. 
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Simple Likelihood Examples 
 
You’ve got 3 boxes, A , B, and C, filled with money. A has 2000 $1 bills. B has 1000 $1 bills 
and 1000 $10 bills. C has 2000 $10 bills. You don’t know which box is which.  
You get to draw 1 bill from a box of your choice. Your chances of drawing from any of the 
boxes are equal: 1/3. So your chances of drawing any particular bill are equal, 1/6000.  
 
You’re in luck, you draw a $10. 
 
What’s the probability that you drew from each of A , B, and C? 
 
The bill you drew was one of 1000 $10 bills from B or one of 2000 10 bills from C. The 
possibilities have narrowed from 6000 bills to 3000. 
 
So any of those 3000 $10 bills were equally probable.  None were in A, 1000 were in B, and 
2000 were in C. So the probability that you drew from A is zero, 
the probability that you drew from B is 1000/3000= 1/3, and the probability that you drew 
from C is 2000/3000= 2/3.  
 
You’re on a roll, so you draw again from the same box. Luck again, another $10! 
 
Now what’s the probability that you drew from A , B, or C? 
Any pair of $10 bills from the same box are equally likely to be the ones you drew. 
Still no chance it was from A.  
There are 500*499/2 or about 500*250 pairs of bills you might have drawn from B. 
There are 1000*999/2 or about 500*1000 pairs of bills you might have drawn from C. 
 
So now the result you got is ~4 times more probable if you’ve been drawing from C than if 
you’ve been drawing from B. The probability you’ve been drawing from B is now about: 
 
1/10​ 1/5​ ¼​ 1/3​ ½​ 2/3​ ? 
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Simple Likelihood Examples ​
You can think of what you just did as evaluating 3 competing hypotheses in terms of how 
probable they were to generate the data. The 3 hypotheses were that you were drawing from 
A , B, or C. Before you had any data, each hypothesis had probability 1/3. 
 
Then you drew a $10 bill. You evaluated the probability that would happen for each of the 3 
hypotheses, and we call that the likelihood  of the hypothesis L(A)=0, L(B)=1/2, L(C)=1. 
(Weird notation, but don’t blame us!) 
 
After you got the data (and the $10 bill!) you had new probabilities for the 3 hypotheses.  
For each hypothesis you multiplied your old probabilities by the probability of getting your 
result. Then you renormalized to make those probabilities still add up to one.  
 
Hypothesis​ ​ ​ ​ A​ B​ C 
Initial probability, P0​​ ​ 1/3​ 1/3​ 1/3 
Probability of $10, L​ ​ ​ 0​ ½​ 1 
P0*L​ ​ ​ ​ ​ 0​ 1/6​ 1/3  (These sum to ½.) 
New probability P1=P0*L/sum​ 0​ 1/3​ 2/3. 
 
What did you do when you drew the second bill? Let’s say the likelihoods for $10 were still 
given by 0, ½, 1, which is very close since we had so many bills to start with. 
 
Hypothesis​ ​ ​ ​ A​ B​ C 
Starting P1, from above​ ​ 0​ 1/3​ 2/3 
Probability of $10, L​ ​ ​ 0​ ½​ 1 
P1*L​ ​ ​ ​ ​ 0​ 1/6​ 2/3  (These sum to 5/6.) 
New probability P2=P1*L/sum​ 0​ 1/5​ 4/5. 
 
You could see that you can continue this re-evaluation of your hypotheses as you get more 
data. What would the next P’s be if your next draw from that box were (alas) a $1? 
 
Simple Likelihood Exercises​
 Now let’s say that each box only has 2 bills in it.  (A has 2 $1’s, B has 1 each, and C has 2 
$10’s). 
 
Say you’ve drawn 1 $10 bill. What are the probabilities of A , B, and C?  It’s just like the case 
with lots of bills in the same proportions: 
 
Hypothesis​ ​ ​ ​ A​ B​ C 
Initial probability, P0​​ ​ 1/3​ 1/3​ 1/3 
Probability of $10, L​ ​ ​ 0​ ½​ 1 
P0*L​ ​ ​ ​ ​ 0​ 1/6​ 1/3  (These sum to ½.) 
New probability P1=P0*L/sum​ 0​ 1/3​ 2/3. 
 
Now you draw a second $10 bill from the same box. ​
What are the probabilities of A , B, and C?​
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Likelihoods with Several Possible Outcomes 
So far we’ve just looked at likelihoods for processes with all-or-nothing outcomes, such as 
life or death, $1 or $10. Likelihood methods can be used just as well to pick hypotheses 
when there are more possible outcomes.  
 
Let’s say those boxes could have $1, $10, or $20 bills in them. Let’s say we’ve got 3 boxes 
with lots of bills again: A has 10% $20’s, 20% $10’s, and 70% $1’s. B has 20% $20’s, 30% 
$10’s, and 50% $1’s. C has 30% $20’s, 30% $10’s, and 40% $1’s.  
 
Now let’s say we make 5 draws: $20, $1, $1, $10, $1. 
Let’s figure out how likely we were to get that result from each of A, B, and C.  Then we can 
figure out the probability that each hypothesis (A, B, and C) was correct. 
 
Hypothesis​ ​ ​ A​ ​ B​ ​ C 
Initial probability, P0​​ 1/3​ ​ 1/3​ ​ 1/3 
Likelihood, $20​ ​ 0.1​ ​ 0.2​ ​ 0.3 
Likelihood, $1​ ​ 0.7​ ​ 0.5​ ​ 0.4 
Likelihood, $1​ ​ 0.7​ ​ 0.5​ ​ 0.4 
Likelihood, $1​ ​ 0.7​ ​ 0.5​ ​ 0.4 
Likelihood, $10​ ​ 0.2​ ​ 0.3​ ​ 0.3 
​ ​ ​ ​ (events independent so L= product) 
L ​ ​ ​ ​ 0.0069​ ​ 0.0075​​ 0.0058  (sum to  0.0202) 
P=P0*L/sum​ ​ ​ 0.343​ ​ 0.372​ ​ 0.285 
 
We’d need to draw many more bills to have much confidence in knowing which box we were 
drawing from. 
 
Exactly the same procedure could be extended to include any number of categorical 
outcomes. So long as the results are independent, this likelihood procedure is very simple 
and straightforward for anything (a computer) with the patience to do the calculations. 
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Likelihoods, Odds, and Odds Ratios 
 
Notice that in each problem when we wanted to calculate the probability of each hypothesis 
we only needed the ratios of their probabilities, because we know that the probabilities 
have to add up to one. Let’s explore this in a simple two-hypothesis case.  
When we have just two possibilities, we call the ratios of their probabilities the Odds. 
What we’ve been doing is that for each new piece of data we took our old A/B odds and 
multiplied it by some A/B Odds Ratio based on the new data.  
Take the last example, but with only boxes A and B. At the end we just need the Odds. 
 
We’ve got 2 boxes with lots of bills again: A has 10% $20’s, 20% $10’s, and 70% $1’s. B has 
20% $20’s, 30% $10’s, and 50% $1’s.   Now let’s say we make 5 draws: $20, $1, $1, $10, $1. 
We can figure out the probability that each hypothesis (A or B) was correct. 
 
Hypothesis​ ​ ​ A​ ​ B​ ​ A/B ​  
Initial probability, P0​​ 1/2​ ​ 1/2​ ​ initial Odds​ 1 
Likelihood, $20​ ​ 0.1​ ​ 0.2​ ​ odds ratio​ 1/2 
Likelihood, $1​ ​ 0.7​ ​ 0.5​ ​ odds ratio ​ 7/5 
Likelihood, $1​ ​ 0.7​ ​ 0.5​ ​ odds ratio​ 7/5 
Likelihood, $1​ ​ 0.7​ ​ 0.5​ ​ odds ratio​ 7/5 
Likelihood, $10​ ​ 0.2​ ​ 0.3​ ​ odds ratio​ 2/3 
L ​ ​ ​ ​ 0.0069​ ​ 0.0075​​ final odds​ 343/375 (product) 
P=P0*L/sum​ ​ ​ 0.478​ ​ 0.522 
 
If we were just keeping track of Odds, how would we get back p= P(A) at the end? 
 

  Try that for this example. 

 
We often like to use additive models, so instead of multiplying the OR’s, we take their ln’s 
and add them, then antilog at the end. 
Ln(initial A/B Odds)​​ ln(1)=​​ 0 
Ln(A/B odds ratio $20)​ ln(1/2)=​ -0.693 
Ln(A/B odds ratio $1)​ ln(7/5)=​ +0.337 
Ln(A/B odds ratio $1)​ ln(7/5)=​ +0.337 
Ln(A/B odds ratio $1)​ ln(7/5)=​ +0.337 
Ln(A/B odds ratio $10)​ ln(2/3)=​ -0.406 
Ln(final Odds) ​ ​ ln(343/375)=​-0.09​ (sum of column) 
Final Odds = eln(final odds)  =​ 343/375 
 
In real life, this procedure is used to evaluate more important hypotheses, e.g. whether a 
cancer is a lethal one. Many somewhat independent pieces of diagnostic evidence each 
contribute some OR. The final ln(odds) can be obtained from an additive model of the 
ln(OR) for each diagnostic trait.  That’s what we were doing in Logistic Regression.
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Likelihood with an Almost Continuous Parameter 
 
Say we had 101 boxes, each with huge numbers of $1 and $10 bills.  
One has 0% $10’s, the next has 1% $10’s, etc. on up to 100% $10’s. ​
So these boxes have p($10)= 0, 0.1, 0.02,…, 1.00. 
 
You draw say 25 bills, 10 $10’s and 15 $1’s in some order, e.g. $1, $10, $10, $10, $1, .. We call 
the likelihoods of these 25 independent outcomes L1, L2. L3, …, L25.  
Lj is p when you draw $10 and (1-p) when you draw $1. 
The likelihood of our particular result for box “p” is then  
(1-p)*p*p*p*(1-p)…= p10

*(1-p)15 

 
Hypothesis (p=%*100)​ 0, ​ 0.01​ 0.02​ …………..1.00 
P0​ ​ ​ ​ 1/101​1/101​1/101…………….1/101 
Likelihood of $10​ ​ 0​ 0.01​ 0.02​ ……………1.00​ ​  
Likelihood of $1​ ​ 0​ 0.01​ 0.02​ ……………1.00​  
L1*L2*L3…L25=​​ ​ (Each result is p10

*(1-p)15 for the hypothesis p.) 
 
You can plot that familiar binomial function,​
 p10

*(1-p)15 as a function of p to see how the 
likelihood varies with p. No surprise, the highest L 
is for p=0.40= 10/25. 

(Why didn’t we bother with the factor 
25!/(10!15!) that comes from counting all 
the different patterns of getting the 10 
$10’s and 15 $1’s? That factor doesn’t 
depend on our hypothesis so it doesn’t 
change the shape of L(p)) 

 
 
Likelihoods and Continuous Parameters 
 
Here’s a really simple example. You already know the answer but now we’ll do it by 
likelihoods. Say we observed 10 people and 7 survived. We want to model survival by a 
single parameter p, the probability of survival. For some p, how probable is it that 7 would 
survive? It’s just given by our old binomial expression:  
L(p)= (10!/3!*7!)p7(1-p)3. That peaks at p=0.7, so that’s 
the maximum likelihood estimate for p. The shape of 
L(p) is a bit different from the normal curve. For 
example, the normal curve always spills out into the 
impossible region where p>1, unlike L(p). That’s a hint 
that if we develop methods to use likelihoods to estimate 
confidence intervals, they won’t give exactly the same 
results as the normal approximation. 
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Null Hypothesis Testing via Likelihood 
 
Sometimes we wish to use likelihood methods to do the same things we did with our 
least-squares fitting methods- find a p-value for a null hypothesis. Remember what we did 
with least squares. We said that the probability that our estimate of a parameter was off 

from the true value fell off as the squared error of the estimate got larger. Our χ2 statistic 

was a properly normalized way to keep track of how far off our results were from the null 

prediction. We could then look up on a χ2 table to see how likely it would be to get χ2 that 

big or bigger as our results if the null were true. That was then called the p-value. 
 
​ Now in general the way the likelihood L of the null falls off as the results become 
more different from the null prediction does not follow our old normal curve. However, for 
large samples our old central limit theorem kicks in again, and the form of how L falls off 
away from its maximum (LM) takes on the old universal normal shape. So then we can use 

our old χ2 tables to figure out how badly the observed results fit with the null hypothesis. 

We need a statistic, based on likelihood calculations, that plays the same role as χ2. 

 

 For our old χ2 statistic we had a probability density ρ that fell from its maximum value ρMax 

as.  Taking the natural log of both sides gives: 
 ​

Thus, brushing past some philosophical issues about the relation between ρ and L, if we 

want a statistic that plays the same role as χ2 we want to use​
  .  
 
How would this deviance, G, get used? Say that we have a logistic regression problem where 
we can’t use least-squares fitting. Our computers are fast enough, however, to calculate 
some likelihoods. We find out LNull/LMax. What was the probability of getting that low or 
lower a value for LNull/LMax if the null were true?  We calculate the deviance, ​

G= -2*ln(LNull/LMax), and plug it into a standard χ2 table with the right number of degrees of 

freedom to get a p-value.
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On General Likelihood Methods 
Notice that whenever we have discrete outcomes, we can calculate a probability that we 
would have gotten our particular set of outcomes from any model we’re given for how the 
probabilities depend on the conditions. So if we wanted, we could have used this same 
likelihood method to see how well different models fit any discrete-outcome process. We 
could have even done that for problems that we treated using least-squared error methods. 
Usually, we would have gotten very nearly the same estimates and about the same 
confidence intervals. With a little tweak, thinking of probabilities of results near the exact 
one found, we can use these methods for continuous-outcome processes too. 
 
The same ideas work for all sort of different boxes (or even continuous families of 
hypotheses, with one or more parameters) and all sorts of different data. In most practical 
examples the likelihoods are harder to calculate so you use computer programs. 
 
Any model gives a set of probabilities, one for each category of result. The categories could 
be draw one and draw two from the same big box, where the models are the different 
fractions of bills in each box. Or the models could be two different diagnoses for a patient, 
and the results are categorical facts about the patient, e.g. gender, ethnicity, whether or not 
they have high blood pressure,… From those probabilities, we can calculate the probability 
that we would have drawn our particular set of results from a box model for that category. 
That is the likelihood assigned to that model. We find the model parameters with the 
highest likelihood for the results we saw. 
 
Sometimes we can assume that each result is independent of each other result. When that’s 
true, the probability, given some model, that we would get our particular set results is just 
the product of the probabilities for each category of result. That’s like for draws with 
replacement. It’s a good approximation for draws from the boxes with lots of bills. In 
real-life problems it’s often a decent starting point.  
 
When the likelihoods of the models for the data set are given by the products of the model 
likelihoods taken from each individual data point, it’s often more convenient to work with 
sums rather than products.  

The log of a product is the sum of the logs of the factors:  . 
So often people convert that product of likelihoods into the sum of the natural logs of the 
likelihoods. Then at the end you can antilog the sum to get back the likelihood. That would 
be a fairly pointless detour for small simple data sets and discrete hypotheses like the ones 
above. For bigger data sets, where there are lots of points with a variety of different types of 
data, it can be more convenient. Perhaps more importantly, though outside the scope of this 
course, when you search for the parameters that maximize the likelihood, you’re finding the 
parameters for which the (calculus) derivative of the likelihood with respect to any changes 
in the parameters is zero. (A maximum is a spot where the slope is zero.) It’s very 
convenient to take the derivative of a sum: the slope of the sum is just the sum of the slopes. 
It’s less convenient to take the derivative of a product. So you will frequently see 
discussions framed in terms of the natural logs of the likelihoods. 
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Likelihood Exercises with a Continuous Parameter 
Say you’ve moved to a new small town and have no idea what political views your new 

neighbors have. Let’s simplify and pretend that each one is either a Democrat or Republican. You 
talk with three people you run into at random, and each is a Republican. You want to make some 
sort of informed guess about what fraction P of the town is Democratic. Our old methods would 
say to start with the obvious estimate P=0/3, the result you got in your sample. That’s also the P 
that gives the highest probability (1.0 !) of getting your result, no D’s in the sample. The question 
is what sort of error bars to set on that estimate. 

 
Our chi-sq type statistic is clearly not the way to go.  The calculated SE has a factor of 

sqrt(p(1-p)), which comes out zero for our estimated p=0. Yet we know that it’s quite possible 
that there are many D’s in town but none happened to be in our sample. You don’t have any 
underlying normal distribution to excuse using “t” either. Likelihood methods work for this 
common type of problem, in which your samples are small. 

 
Let’s make a table of the probabilities of different outcomes {0,1,2,3} for various different 

population P’s. 
 
P(D) D=0 D=1 D=2 D=3 
0.0 1 0 0 0 
0.1 0.729 0.243 0.027 0.001 
0.2 0.512    
0.3 0.343    
0.4 0.216    
0.5 1/8=0.125 3/8=0.375 3/8=0.375 1/8=0.375 
0.6 0.0.64    
0.7 0.027    
0.8 0.008    
0.9 0.001 0.027 0.243 0.729 
1.0 0 0 0 1 

You can fill in the rest, it’s just our old binomial probabilities. 
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We could calculate the probability of any result if we knew P. That’s just drawing tickets 
from a known box. But here our situation is that we know what tickets we have but we don’t 
know what’s in the box. All we can do here is ask “how probable is it to see this D=0 result if 
P had some actual value?” Knowing D but not knowing P means we know what column 
we’re in here but not what row.  
 
P(D) D=0 D=1 D=2 D=3 
0.0 1 0 0 0 
0.1 0.729 0.243 0.027 0.001 
0.2 0.512    
0.3 0.343    
0.4 0.216    
0.5 1/8=0.125 3/8=0.375 3/8=0.375 1/8=0.375 
0.6 0.064    
0.7 0.027    
0.8 0.008    
0.9 0.001 0.027 0.243 0.729 
1.0 0 0 0 1 

That D=0 column fits best with P=0, in that P=0 is the value which was most likely to give 
D=0. However, even P=0.6 could give D=0 with probability 0.064, so we can hardly exclude 
P=0.6 with confidence. Our confidence interval is completely asymmetrical, since our 
estimate was P=0, and that’s as low as you can go.  
 
Now let’s say we asked 10 people and got 3 D’s, so 
P=0.30 is our estimate. We can try to calculate 
error bars around that estimate using SE= 
(0.3*0.7/10)1/2=0.1449.  We can then use the 
normal curve to estimate our confidence that P is 
within some range around that. Or we can 
calculate how the probability of that result 
depends on P, and use that to set our confidence 
limits. This curve gives you a feel for the difference 
between the likelihood curve and the normal curve. The curve shifted a little to the right is 
the likelihood curve for getting 3/10 as a function of P. The other curve is the normal curve 
with our calculated SE. They are pretty dramatically different for P<0.1, The likelihood 
curve indicates that such low P are not very compatible with the data but the normal 
approximation doesn’t rule them out. The normal approximation always gives symmetrical 
confidence intervals, even when that doesn’t make any 
sense. It doesn’t even rule out P<0, although P<0 
makes no sense. 
 
We can go through the same exercise for 7 D’s out of 
20 people. You get a milder version of the same sort of 
difference between the likelihood calculation and the 
normal approximation, as shown here.​
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Toward Bayesian Statistics 
 
Bayes’ Rule. 

This procedure you’ve been using is just like what you did in Stat 100 to evaluate the 
hypotheses that someone had or didn’t have a dread disease after testing positive for 
it in a screening test where some results are false positives. You figured out how 
many results like the one you saw would be true positives and how many would be 
false positives. You divided the number of true positives by the total number of 
positives to get the new probability that the screened person was sick.  These are 
examples of applying Bayes’ Rule.  
 
We so far just looked at cases where all the initial P’s were the same, so we 
didn’t have to think about them and can discuss just the likelihoods. The 
likelihoods are the things that standard computer models know how to 
calculate. 

 
We can use these same techniques in more interesting cases. Say that you have 4 boxes, with 
two versions of the 50/50 mixed box, B1 and B2. We still have just 3 hypotheses, A, B, and C,  
because you have no reason to care which B box you might have drawn from. 
Now let’s say you drew a $10 bill.  What are the probabilities that you drew it from a box of 
type A, B, or C? What were the starting probabilities? 
 
 
Hypothesis​ ​ ​ ​ A​ B​ C 
Initial probability, P0​​ ​ 1/4​ 1/2​ 1/4 
Likelihood, $10​ ​ ​ 0​ ½​ 1 
P0*L​ ​ ​ ​ ​ 0​ 1/4​ 1/4  (These sum to ½.) 
New probability P1=P0*L/sum​ 0​ 1/2​ 1/2. 
 
 
This case, where the hypotheses have different initial probabilities, is a simple lead-in to 
Bayesian inference, a flexible and increasingly widely used alternative approach to 
statistical inference. If you go on in statistics you will learn much more about it. 

 
Remembering a more important example from Stat 100:​
Say you have a test for HIV that is 95% accurate- ​
5% of infected people test negative and 5% of uninfected people test positive. ​
In a screening a population in which 1% of the people are positive, someone tests positive.  

a)​ If you were to take the two hypotheses for that person (infected, not-infected) what 
are their likelihoods given that data?  

b)​ Which is the “maximum likelihood” hypothesis? 
c)​ What are the odds that they are actually infected?​

 
Notice that when you have information ahead of time the maximum likelihood 
hypothesis does not have to be the most reasonable guess about reality.
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Simple Bayes Example 
 
Remember the old clinical example: You screen for HIV using an old test that is only 95% 
accurate. Someone with the virus tests positive 95% of the time and negative 5% of the time. 
Someone without the virus tests negative 95% of the time and positive 5% of the time. 
Now let’s say that 1% of the males aged 20-30 in Chicago are in fact positive. You screen some 
randomly chosen male in that age bracket and get a positive result.  What’s the probability he 
has HIV? 
Remember (unlike most MDs, who get this very wrong) that the probability turns out low. 
That’s easy to see intuitively by imaging a population of 10,000 people and seeing how many 
positive results are from infected people (95) and how many are from uninfected people (495). 
So P(true pos|pos test)= 95/(95+495)=0.1638. Let’s calculate P using the routine technique we 
just developed.  
 

Hypothesis​ ​ ​ Neg​ ​ Pos​ ​ Neg/Pos ​  
Initial probability, P0​​ 0.99​ ​ 0.01​ ​ initial Odds​ 99 
Likelihood, test pos​ ​ 0.05​ ​ 0.95​ ​ odds ratio​ 1/19 
L ​ ​ ​ ​ 0.0495​ ​ 0.0095​​ final odds​ 99/19 (product) 
P=P0*L/sum​ ​ ​ 0.8362​​ 0.1638. 
 
Nothing new there.  
 

Real-Life Bayes examples 
 
But in real life, nothing is usually that clean. You almost always have more or less information 
than used in that simple calculation. 
 
E.g. Say that the guy screened is actually 31 years old. You don’t have any tabulated screening 
results on people over 30 years old. So you have less information than in our example. 
Discussion exercise: what probability that this person has HIV? 
Do you say 95% because the test is the only info? Seriously? 
Do you say “I have no idea because I have no population data on the group?” Seriously? 
What would a rational conclusion be? Is it purely objective? 
 
E.g. Say that you notice numerous needle marks in the arms of the guy screened. So you have 
more information than in our simple example. 
Discussion exercise: what probability that this person has HIV? 
Do you say 16% because that’s what the formal calculation gives? Seriously? 
Do you say “I have no idea since I have no population data on this narrower group?” Seriously? 
What would a rational conclusion be? Is it purely objective? 
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Bayes estimation of a continuous parameter 
(The following example is a slightly fictionalized composite of two real medical examples.) 
 
Say you want to know whether flu vaccine works well in people over 65. ​
There’s an obvious null hypothesis: 
 

●​ It works just as well in the old as it does in the general population. (say 70% effective in a 
typical year) 

 
And there’s another obvious null used for medical treatments: 

●​ It doesn’t work. (0% effective) 
 

How would you pick which null to use?  
​
Why should you have to pick either of these dull-witted, implausible nulls? 
 
What you really know ahead of time is that the vaccine probably works a bit but not as well as in 
younger people.  You could approximate this prior knowledge by saying there’s a prior probability 
distribution for the effectiveness, E, that’s uniform from 0% to 70%. Maybe you should pick a 
little different prior, peaked a bit in the middle and extending out a bit to negative E and to E > 
70%, but let’s not quibble. 
 
Now let’s say that there’s a randomized clinical trial with the vaccine given to 100 elderly and not 
to another 10,000. Say that 50% of the control got the flu and 30% of the vaccinated group got 
the flu. From that it looks like E was ~40%, i.e.  (50-30)/50, but of course with statistical 
uncertainty. With our big control group, we know the background rate well. So the expected 
number of flus in the treatment group is 50*(1-E) . Now we can just calculate the probability of 
getting 30 flus when 50*(1-E) are expected.   But that’s just the binomial probability we’ve 
calculated in problems above. 
 
So we just multiply that binomial probability of getting 30 out of 100 when we expect 50*(1-E) 
by our prior uniform probability density. We take the resulting product, now a function of E as E 
goes from 0% to 100%, and divide by its integral. That’s the Bayesian posterior probability of E. 
It peaks at E=40% and has a width of around 14%. 
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