
Replaced by
http://github.com/wicg/event-timing

Event Timing Web Perf API

STATUS: Seeking feedback.

tdresser@
Last updated: July 24, 2017

Background

Minimal Proposal
Correlating with Frame Timing
When should we dispatch PerformanceEventTiming entries?
What about input triggering multiple DOM event types?
Is a Polyfill Good Enough?

But what about X?
The Long Tasks API
Composited Scrolling
Cases where we only want to monitor one event type
Cases where $THRESHOLD ms is too much Latency to ignore
Cases where we want more or different timestamps

:visited attacks

Planning for the Future

http://github.com/wicg/event-timing

Background
Web developers currently have little insight into what causes latency when handling events.

This document provides a “Minimal Proposal” which provides developers insight into the cases
which are most often slow. This proposal does not address latency of input which isn’t blocked
on the browser’s main thread. Looking forward, more and more input latency will be due to
threads other than the main thread, and we’ll eventually need to extend this API to cover these
cases, such as animation worklet and offscreen canvas.

Minimal Proposal
A previous proposal grew too broad in scope. This proposal explains the minimal API required
to solve the following key use cases:

1.​ Measure event handler / default action duration.
2.​ Correlate input with slow frames.

○​ Including input without handlers, such as input triggering hover.
3.​ Measure impact of event handlers on scroll performance

○​ For scrolls blocked by main thread work.

A polyfill roughly implementing part of this API can be found here.

In order to accomplish these goals, we introduce:

interface PerformanceEventTiming : PerformanceEntry {​
 // The type of event dispatched. E.g. "touchmove".
 // Doesn't require an event listener of this type to be registered.
 readonly attribute DOMString name;
 // "event".​
 readonly attribute DOMString entryType;
 // The event timestamp.​
 readonly attribute DOMHighResTimeStamp startTime;
 // The time the first event handler or default action started to execute.
 // startTime if no event handlers or default action executed. ​
 readonly attribute DOMHighResTimeStamp processingStart;
 // The time the last event handler or default action finished executing.
 // startTime if no event handlers or default action executed.​
 readonly attribute DOMHighResTimeStamp processingEnd;
 // Zero.​
 readonly attribute DOMHighResTimeStamp duration;
 // Whether or not the event was cancelable.
 readonly attribute boolean cancelable;
 // Whether or not the event contributed to a user scroll.
 readonly attribute boolean eventCausedScroll;
 // Whether or not a commit was pending at processingEnd.
 readonly attribute boolean eventHasCommit;
 // If a commit was pending at processingEnd, the time that commit occurred.
 // Otherwise, 0.
 readonly attribute DOMHighResTimeStamp commitTime;
};

https://github.com/WICG/animation-worklet
https://html.spec.whatwg.org/multipage/scripting.html#the-offscreencanvas-interface
https://docs.google.com/document/d/15YAIJbv5x4hCVQx3cbUNRd9QSkyvS8bzbAMkcznNSjI/edit#
https://github.com/tdresser/input-latency-web-perf-polyfill/tree/gh-pages
https://heycam.github.io/webidl/#idl-DOMString
https://w3c.github.io/performance-timeline/#dom-performanceentry-name
https://heycam.github.io/webidl/#idl-DOMString
https://w3c.github.io/performance-timeline/#dom-performanceentry-entrytype
https://github.com/whatwg/dom/pull/420
https://w3c.github.io/performance-timeline/#dom-performanceentry-starttime
https://w3c.github.io/performance-timeline/#dom-performanceentry-duration

Correlating with Frame Timing
The startTimeUntilFrameDuration field provides information about when an associated commit
occurred, if one did. However, in the future, we’d like to be able to associate this with when
pixels actually hit the screen. The Frame Timing API will eventually surface more accurate
display timestamps, and will also include the frame commit time. startTimeUntilFrameDuration
will enable us to correlate event processing entries with frame timing entries, letting us measure
from input time until pixels hit the screen.

When should we dispatch PerformanceEventTiming entries?
Proposal:

Let’s dispatch PerformanceEventTiming for all events for which

 𝑚𝑎𝑥(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝐸𝑛𝑑, 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 + 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒𝑈𝑛𝑡𝑖𝑙𝐹𝑟𝑎𝑚𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) − 𝑒𝑣𝑒𝑛𝑡𝑄𝑢𝑒𝑢𝑒𝑑 > 50𝑚𝑠

This considers an event to start the moment it’s blocked on the main thread, and an event to
end when it’s associated frame is committed, if one exists, and when the event handlers and
default action are complete if no associated frame exists.

Alternatives:

●​ We could batch these entries, and dispatch one per event, but this is likely to incur too
high a performance overhead, and may constrain what information we’re allowed to
include in the Entry due to privacy concerns.

●​ We could dispatch these entries if the event handlers or the default action ran longer
than some threshold. This would miss a variety of cases however, such as when event
handlers dirty style or layout, and the style or layout recalculation is expensive.

What about input triggering multiple DOM event types?
Proposal:

●​ Report one entry per DOM event.
○​ For events which have no listeners, we report one entry per DOM event which

would have been dispatched had there been listeners.
○​ For nested elements which all have, for example, touchmove event handlers,

only one entry is reported, despite there being many listeners.
○​ For input which triggers multiple DOM events, such as a touch pointer release

triggering touchend, pointerend and click, many entries may be
dispatched for a single user input.

Alternatives:
●​ Report one entry per logical user input.

○​ We could dispatch less redundant information if we only reported one entry per
logical user input. For example, a touch pointer release would report a single

http://wicg.github.io/frame-timing/

entry, instead of reporting touchend, pointerend and click. The primary
advantage of using the existing DOM event types is simplicity - developers
already understand DOM event types, specs already include the notion of DOM
event types, and this allows us to assume that all event listener invocations occur
in contiguous blocks.

●​ Report one entry per event listener invocation.
○​ Developers will want to monitor the total amount of work done per event, so we

should perform this aggregation step for them.

Is a Polyfill Good Enough?
Polyfilling this runs into a few problems.

1.​ Measure event handler duration.
○​ It’s possible to polyfill this, but it’s tricky to all combine timing data associated with

a single DOM event. See a possible solution here. This solution doesn’t have
adequate performance, as it requires replacing addEventListener, and measuring
the time at the end of every event listener invocation.

2.​ Correlate input with slow frames.
○​ This is possible to polyfill for input with event handlers, but impossible for input

without event handlers. Adding event handlers for all input types has
unacceptable performance overhead.

3.​ Measure impact of event handlers on scroll performance
○​ We can get close to polyfilling this (with the above caveats), by identifying

cancellable events of types which could potentially trigger scroll, which executed
during a frame in which a scroll occurred. We could remove causedScroll
from PerformanceEventTiming and require users to correlate this with scroll
events, but including it makes this a fair bit easier for consumers of this API, and
will result in slightly higher quality results.

But what about X?

The Long Tasks API
The long tasks API provides some of the value of this API, but isn’t adequate. The work done in
response to an event is often split between multiple tasks. First, the event handlers are
executed, which often dirties layout and style. Then when we go to produce a frame, rAF is
executed, potentially based on input handled previously, and we perform style and layout. That
style and layout needs to be included as part of the cost of event handling, and this isn’t doable
using the long tasks API. In order to approximate the user perceived latency of an event, we
need to include the time taken to draw the frame, and the long tasks API doesn’t let us do that.

https://github.com/tdresser/input-latency-web-perf-polyfill/blob/gh-pages/event_timing.js

Here are two examples of events being processed where the handling time is very short, but the
total time taken to display the result of the input is very long. The long tasks API would notify
about the long style recalc and layer tree update, but wouldn’t correlate with the event. In order
to understand the total work done in processing the event, we need to know the time taken until
we’ve produced a frame.

Even if the long tasks API did give us information about any events which triggered this long
task, it still wouldn’t solve the problem of correlating all work associated with an event, and
wouldn’t threshold on the actual event latency. The event timing API needs to dispatch a
performance entry if the total time spent processing the event on the main thread exceeds some
threshold.

In addition, this API provides additional context on the event in question.

Composited Scrolling
Composited Scrolling which doesn’t block on the main thread should be essentially equivalent to
other composited animations, and should eventually be addressed by extensions to the Frame
Timing API. The changes a developer can make to fix high compositing overhead are equivalent

for scrolling and other composited animations. Insight into the events which caused the scrolling
isn’t very valuable in this context.

Cases where we only want to monitor one event type
We may want to support some way of filtering which DOM event types are monitoring at
Performance Observer registration time. This could be achieved by extending
PerformanceObserverInit.

Cases where $THRESHOLD ms is too much Latency to ignore
The Frame Timing current proposal states “the user agent is allowed to set and exercise own
thresholds for delivery of slow frame events.” We could eventually enable configuring the long
frame threshold, or we could be smart about picking when to report long frames, based on the
context. We can use the same approach for the Event Timing API.

Cases where we want more or different timestamps
There are lots more useful timestamps, which should be added to these performance entries in
the future. Most of this proposal can be incrementally extended by adding additional timestamps
to the frame or event performance entries. The hardest thing to iterate on is the duration that we
threshold on for deciding whether or not to fire a long frame entry.

The current proposal suggests using main thread frame time (or event handling time, if no frame
was produced). There are reasonable arguments to be made that we should instead threshold
on our best guess of how long the frame took to produce, all the way up until the frame hits the
glass. In order to minimize spec churn, I think it makes sense to go with the main thread time for
now, and we can consider ways of dealing with cases which fail because we’re using the main
thread frame time in the future. If we tune the threshold correctly, as long as we add the
estimated glass time to the Frame Timing performance entry, thresholding on the main thread
time will be fine.

A few additional pieces of information we should add in the future:

●​ Frame Timing
○​ Estimated Glass Time
○​ rAF handler start/end.
○​ Time spent compositing

●​ Event Timing
○​ Long tasks V2 style attribution for event handlers.

:visited attacks
This proposal opens up a new approach for sniffing a user’s history via :visited. To accomplish
this, an attacker would:

●​ Add a link to $SITE
●​ Give the link a :visited:hover style which paints
●​ Avoid giving the link a :hover style which paints
●​ Give the link element a long (>50ms) mousemove event handler.
●​ Add an event timing performance observer.

When a performance entry for this mouse move event comes in, then if there’s an associated
commit, then the user has previously visited $SITE.

One way to avoid this issue would be to always commit when hovering an object which has a
:hover:visited style.

Planning for the Future
The current Frame Timing proposal, and the minimal proposal above both only pay attention to
the main thread. This is fine for V1, but we want to ensure these proposals have clear paths to
extending to include work done on other threads.

In general, each thread which does work related to frame production has a separate contiguous
block of time dedicated to processing each frame. During each frame, some number of events
may be processed on each thread, during that thread’s block of time allocated to processing that
frame. Each frame is displayed at a single time, providing a clear way of associating the work
done to produce a frame across all threads.

When we get to the point where we allow input handling on other threads, we’ll need to extend
the minimal proposal to support monitoring the performance of this input. What this looks like
will depend on the APIs we use for exposing input, but here’s a plausible approach,
demonstrating that the minimal approach proposed above can be extended to support these
use cases.

http://wicg.github.io/frame-timing/

If we modify PerformanceObserverInit to allow passing in a worker or worklet which is receiving
input or producing frames, then we could report event and frame timing data in that context.

dictionary PerformanceObserverInit {​
 ...
 optional (Worker or Worklet)? context; ​
};

interface PerformanceEventTiming : PerformanceEntry {
 ...
 readonly attribute (Worker or Worklet)? context;
}

interface PerformanceFrameTiming : PerformanceEntry {
 ...
 readonly attribute (Worker or Worklet)? context;
}

const performanceObserver = new PerformanceObserver(...);
performanceObserver.observe({entryTypes: ["frame", "event"], context: worker};

The frame and event entries dispatched to this observer will include a context attribute,
indicating what context the entry timestamps are relative to. Frame timestamps and event
timestamps would be relative to the context in question.

https://w3c.github.io/performance-timeline/#dom-performanceobserverinit

	Event Timing Web Perf API
	Background
	Minimal Proposal
	Correlating with Frame Timing
	When should we dispatch PerformanceEventTiming entries?
	What about input triggering multiple DOM event types?
	Is a Polyfill Good Enough?

	But what about X?
	The Long Tasks API
	Composited Scrolling
	Cases where we only want to monitor one event type
	Cases where $THRESHOLD ms is too much Latency to ignore
	Cases where we want more or different timestamps

	:visited attacks
	Planning for the Future

