Refactoring sourcekitd to Use Swift Concurrency

Introduction and Background

Problem

sourcekitd is a critical component of the Swift toolchain, enabling features like code
completion, syntax highlighting, and diagnostics by interfacing with the compiler internals.
However, sourcekitd currently relies on C++ for concurrency, which can be:

Fragile: Lock-based concurrency introduces race conditions if not carefully managed.
Difficult to Maintain: C++ thread handling and global locks spread across multiple files can
lead to complex logic.

Platform Dependent: On macOS, sourcekitd is run via XPC (separate process), but on
other platforms it remains in-process, making crash resilience harder.

Why Refactor?

With Swift 6 concurrency (actors, async/await, structured concurrency), we now have
language-level tools to manage concurrency safel.. Refactoring sourcekitd to Swift
concurrency will therefore:

Improve Race Safety: Actors isolate state, eliminating the need for manual locking.
Enhance Maintainability: Concurrency code becomes explicit and more readable, reducing
the risk of subtle bugs.

Enable Out-of-Process Models on All Platforms (stretch goal): A robust concurrency
abstraction could ease separating sourcekitd into a dedicated process on Linux and
Windows, mirroring macOS’s XPC model and improving crash resilience in SourceKit-LSP.

Current State

Requests.cpp: Contains logic for handling requests such as code completion,
syntactic/semantic queries, indexing, etc. Uses std: :thread, std: :mutex, and
callback-based concurrency.

SwiftASTManager.cpp: Manages AST caching and parsing. It often involves a global or

class-level mutex to coordinate parallel requests.
Global Locks and Thread Pools: Present across the codebase for concurrency control.



Project Goals
Migrate Request Handling from C++ Threads/Callbacks to Swift
async/await

1. Develop Swift APIs that replace or wrap the existing thread-based dispatch model in

Requests.cpp.
2. Ensure the new approach remains functionally compatible (no regressions!).

Introduce Actor-Based AST Management

3. Replace the lock-based model in SwiftASTManager .cpp with a Swift actor,
isolating shared AST caches from data races.
4. Wrap existing C++ parsing logic where needed, but remove direct concurrency

constructs (e.g., std: :mutex).
Maintain or Improve Performance

5. Validate through existing test suites and possible new stress/concurrency tests.
6. Ensure no major regressions in code-completion latency adn memory usage.

Scope Clarification:
e Included: Converting major concurrency hotspots (request dispatch, AST caching) to
Swift concurrency.

e Not Included?: A complete rewrite of all performance-critical C++ logic to Swift (we
will rely on bridging for some parts).

Implementation

Below, we detail the technical plan to achieve a safe concurrency model in Swift. We also
show code snippet examples from Requests.cpp and SwiftASTManager.cpp that
illustrate the before (C++ concurrency) and after (Swift concurrency) transformations. These
aren’t tested, | have only been playing around with these!

Swift Concurrency Wrappers for Requests (Requests.cpp)
Current State
bool handleRequest(const Request &Req, Response &Resp) {

switch (Req.Kind) {

case RequestKind::Completion:



// Spawns thread or uses global locks
std::thread([&]() {
auto results = doCodeCompletion(Req.filePath);
Resp.completionResults = results;
}).detach();

return true;

// ... other request kinds ...

}

return false;

Refactored
actor RequestActor {
func handleRequest(_ req: Request) async -> Response {
switch req.kind {
case .completion:
// Use async bridging to C++ function
let results = await doCodeCompletionInCPP(req.filePath)
return Response(completionResults: results)

// ... other kinds of requets

}

// “bridging” function



private func doCodeCompletionInCPP(_ filePath: String) async -> [String] {
return await withCheckedContinuation { continuation in
cppDoCodeCompletion(filePath) { completionList in

continuation.resume(returning: completionList)

Key points:

e Remove manual threads (std: :thread/detach) and use Swift async tasks.

e withCheckedContinuation safely bridges the callback from C++ into Swift
concurrency.

Actor-Based AST Manager (SwiftASTManager.cpp)
Current State
std::mutex ASTMutex;
std::unordered_map<std.::string, ASTNode*> ASTCache;
ASTNode™* SwiftASTManager::parseAST(const std::string &filePath) {

std::lock _guard<std::mutex> lock(AS TMutex);

auto it = ASTCache.find(filePath);

if (it I= ASTCache.end()) {

return it->second;
}
ASTNode* newAST = doParse(filePath);

ASTCacheffilePath] = newAST;



return newAST;

Refactored
actor SwiftASTManager {

private var astCache: [String: ASTNodeRef] = [:]

func parseAST(_ filePath: String) async -> ASTNodeRef {
if let existing = astCacheffilePath] {
return existing
}
let newAST = await withCheckedContinuation { continuation in
cppDoParse(filePath) { astPtr in

continuation.resume(returning: ASTNodeRef(astPtr))

}

astCacheffilePath] = newAST

return newAST

func clearCache() {

astCache.removeAll()



Main points:
e No explicit locks—the Swift actor ensures only one task accesses astCache at a
time.
e ASTNode may remain partially in C++ if rewriting the parser fully in Swift isn’t
feasible.
Optional: Cross-Platform Out-of-Process Execution
Evaluate possibility of separate processes on Linux/Windows akin to macOS XPC.
Swift concurrency remains the same internally, but requests would cross process

boundaries.
e Document or prototype if time permits (stretch goal).

Timeline

Phase 1 (Weeks 1-2): Setup & Swift Concurrency Wrappers
Introduce Swift “bridging” layer for Requests.cpp:

1. Wrap major request types (e.g., code completion) in async Swift functions.
2. Confirm existing tests pass.

Deliverable: Swift “RequestActor” that replaces manual threads in a minimal bridging
approach.

Phase 2 (Weeks 3-5): Actor-Based AST Management
Refactor lock-based AST code (SwiftASTManager .cpp) into a Swift actor.
1. Encapsulate AST data in an actor, remove std: :mutex.

Deliverable: A functional SwiftASTManager actor with robust concurrency tests.

Phase 3 (Weeks 6-8): Testing, Stabilization & Optional Out-of-Process
Testing & Performance:

1. Run concurrency stress tests and performance benchmarks to detect regressions.
2. Fix bugs, refine bridging code.



Optional: Investigate out-of-process models for Linux/Windows.
3. Document or prototype feasible approaches if time permits.
Deliverable:

e FInal code, fully tested.
e Documentation on how Swift concurrency is now used in sourcekitd.
e Optional PoC for cross-process operation.

Summary

Problem: sourcekitd’s C++ concurrency model is complex and error-prone.
Solution: Migrate to Swift concurrency (actors, async/await), as shown in the code
examples from Requests.cpp and SwiftASTManager .cpp.

Benefits: Increased maintainability, reduced data races

Why Me

After working on the kernel code at VMware for 2 years in the network datapath team, | have
been fascinated with low latency networking and the Swift on Server and the Swift NIO
project have been very interesting to me. | have been able to contribute to it [1][2], and in the
process learnt a ton about Swift’s internals, and even used Swift Concurrency in interesting
ways to develop features like async packet captures [3].

| want to continue contributing to the project, and this particular project aligns really well with
my goals around learning Swift Concurrency primitives deeply, and further, make Swift a
general purpose language for building high performance servers.

I have also had the opportunity to give some talks around interesting concurrency constructs
like Coroutines [4], and will soon be giving a talk in GopherCon NA around Race Detection,
and writing code that is Sequentially Consistent, so this is an area that is very close to my

interests.

Currently, I'm a Masters student at UCL where I'm working on Formal Verification,
particularly applied to complex systems like Distributed Systems and Compilers.

References

[1] Peek API Variants: https://github.com/apple/swift-nio/pull/3160



[2] Peek Integer: https://github.com/apple/swift-nio/pull/3157
[3] Async PCAP: https://github.com/apple/swift-nio-extras/pull/253

[4] Coroutines Talk: https://www.youtube.com/watch?v=sDTJMm__DXE

Questions For Mentors

Q 1: To understand the motivation better, which areas of sourcekitd are most prone to
concurrency issues or race conditions right now? Are there particular locks or data structures
in Requests.cpp and SwiftASTManager .cpp that you know are causing contention or
complexity?

Q 2: How is the lifetime of the AST data currently managed? Are there reference-counting or
memory-management patterns we need to preserve when moving to Swift concurrency? Do
we ever share AST objects between multiple threads and do we need a new approach to
safely share them in Swift concurrency?

Q 3: Are there any submodules or functionalities that must remain in C++ for compatibility
reasons, and can’t be fully converted to Swift concurrency? How ‘deeply’ should we
restructure code in Requests.cpp and SwiftASTManager.cpp - do you foresee only
concurrency changes or also broader re-architecture?

Q 4: Some clarifying questions:

a) Will we have to change the representation of AST node pointers when bridging to
Swift, or is a simple ‘pointer-wrapping’ approach acceptable?

b) Does the existing C++ library code we call from Swift concurrency assume it’s called
from a single thread, or can it handle concurrency from multiple Swift tasks?

c) Do you envision one big actor for AST management or multiple fine-grained actors
(e.g., separate actors for caches, indexing, completions, etc.)?



	Refactoring sourcekitd to Use Swift Concurrency 
	Introduction and Background 
	Problem 
	Why Refactor? 
	Current State 

	Project Goals​​Migrate Request Handling from C++ Threads/Callbacks to Swift async/await 
	Implementation 
	Swift Concurrency Wrappers for Requests (Requests.cpp) 
	Actor-Based AST Manager (SwiftASTManager.cpp) 
	Optional: Cross-Platform Out-of-Process Execution 

	Timeline 
	Phase 1 (Weeks 1–2): Setup & Swift Concurrency Wrappers 
	Phase 2 (Weeks 3–5): Actor-Based AST Management 
	Phase 3 (Weeks 6–8): Testing, Stabilization & Optional Out-of-Process 
	Summary 


