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Chapter 1. Philosophies of data science 

This chapter covers 

●​ The role of a data scientist and how it’s different from that of a 

software developer 

●​ The greatest asset of a data scientist, awareness, particularly in the 

presence of significant uncertainties 

●​ Prerequisites for reading this book: basic knowledge of software 

development and statistics 

●​ Setting priorities for a project while keeping the big picture in mind 

●​ Best practices: tips that can make life easier during a project 

In the following pages, I introduce data science as a set of processes and 

concepts that act as a guide for making progress and decisions within a 

data-centric project. This contrasts with the view of data science as a set of 

statistical and software tools and the knowledge to use them, which in my 

experience is the far more popular perspective taken in conversations and 

texts on data science (see figure 1.1 for a humorous take on perspectives of 

data science). I don’t mean to say that these two perspectives contradict 

each other; they’re complementary. But to neglect one in favor of the other 

would be foolish, and so in this book I address the less-discussed side: 

process, both in practice and in thought. 

Figure 1.1. Some stereotypical perspectives on data science 
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To compare with carpentry, knowing how to use hammers, drills, and saws 

isn’t the same as knowing how to build a chair. Likewise, if you know the 

process of building a chair, that doesn’t mean you’re any good with the 

hammers, drills, and saws that might be used in the process. To build a 

good chair, you have to know how to use the tools as well as what, 

specifically, to do with them, step by step. Throughout this book, I try to 

discuss tools enough to establish an understanding of how they work, but I 

focus far more on when they should be used and how and why. I 

perpetually ask and answer the question: what should be done next? 



In this chapter, using relatively high-level descriptions and examples, I 

discuss how the thought processes of a data scientist can be more important 

than the specific tools used and how certain concepts pervade nearly all 

aspects of work in data science. 

1.1. DATA SCIENCE AND THIS BOOK 

The origins of data science as a field of study or vocational pursuit lie 

somewhere between statistics and software development. Statistics can be 

thought of as the schematic drawing and software as the machine. Data 

flows through both, either conceptually or actually, and perhaps it was only 

in recent years that practitioners began to give data top billing, though data 

science owes much to any number of older fields that combine statistics and 

software, such as operations research, analytics, and decision science. 

In addition to statistics and software, many folks say that data science has a 

third major component, which is something along the lines of subject 

matter expertise or domain knowledge. Although it certainly is important to 

understand a problem before you try to solve it, a good data scientist can 

switch domains and begin contributing relatively soon. Just as a good 

accountant can quickly learn the financial nuances of a new industry, and a 

good engineer can pick up the specifics of designing various types of 

products, a good data scientist can switch to a completely new domain and 

begin to contribute within a short time. That is not to say that domain 

knowledge has little value, but compared to software development and 

statistics, domain-specific knowledge usually takes the least time to learn 

well enough to help solve problems involving data. It’s also the one 

interchangeable component of the three. If you can do data science, you can 

walk into a planning meeting for a brand-new data-centric project, and 

almost everyone else in the room will have the domain knowledge you need, 

whereas almost no one else will have the skills to write good analytic 

software that works. 



Throughout this book—perhaps you’ve noticed already—I choose to use the 

term data-centric instead of the more popular data-driven when describing 

software, projects, and problems, because I find the idea of data driving 

any of these to be a misleading concept. Data should drive software only 

when that software is being built expressly for moving, storing, or otherwise 

handing the data. Software that’s intended to address project or business 

goals should not be driven by data. That would be putting the cart before 

the horse. Problems and goals exist independently of any data, software, or 

other resources, but those resources may serve to solve the problems and to 

achieve the goals. The term data-centric reflects that data is an integral 

part of the solution, and I believe that using it instead of data-driven 

admits that we need to view the problems not from the perspective of the 

data but from the perspective of the goals and problems that data can help 

us address. 

Such statements about proper perspective are common in this book. In 

every chapter I try to maintain the reader’s focus on the most important 

things, and in times of uncertainty about project outcomes, I try to give 

guidelines that help you decide which are the most important things. In 

some ways, I think that locating and maintaining focus on the most 

important aspects of a project is one of the most valuable skills that I 

attempt to instruct within these pages. Data scientists must have many hard 

skills—knowledge of software development and statistics among them—but 

I’ve found this soft skill of maintaining appropriate perspective and 

awareness of the many moving parts in any data-centric problem to be very 

difficult yet very rewarding for most data scientists I know. 

Sometimes data quality becomes an important issue; sometimes the major 

issue is data volume, processing speed, parameters of an algorithm, 

interpretability of results, or any of the many other aspects of the problem. 

Ignoring any of these at the moment it becomes important can compromise 

or entirely invalidate subsequent results. As a data scientist, I have as my 

goal to make sure that no important aspect of a project goes awry 

unnoticed. When something goes wrong—and something will—I want to 

notice it so that I can fix it. Throughout this chapter and the entire book, I 



will continue to stress the importance of maintaining awareness of all 

aspects of a project, particularly those in which there is uncertainty about 

potential outcomes. 

The lifecycle of a data science project can be divided into three phases, as 

illustrated in figure 1.2. This book is organized around these phases. The 

first part covers preparation, emphasizing that a bit of time and effort spent 

gathering information at the beginning of the project can spare you from 

big headaches later. The second part covers building a product for the 

customer, from planning to execution, using what you’ve learned from the 

first section as well as all of the tools that statistics and software can 

provide. The third and final part covers finishing a project: delivering the 

product, getting feedback, making revisions, supporting the product, and 

wrapping up a project neatly. While discussing each phase, this book 

includes some self-reflection, in that it regularly asks you, the reader, to 

reconsider what you’ve done in previous steps, with the possibility of 

redoing them in some other way if it seems like a good idea. By the end of 

the book, you’ll hopefully have a firm grasp of these thought processes and 

considerations when making decisions as a data scientist who wants to use 

data to get valuable results. 

Figure 1.2. The data science process 
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1.2. AWARENESS IS VALUABLE 

If I had a dollar for every time a software developer told me that an analytic 

software tool “doesn’t work,” I’d be a wealthy man. That’s not to say that I 

think all analytic software tools work well or at all—that most certainly is 

not the case—but I think it motivates a discussion of one of the most 

pervasive discrepancies between the perspective of a data scientist and that 

of what I would call a “pure” software developer—one who doesn’t normally 

interact with raw or “unwrangled” data. 

A good example of this discrepancy occurred when a budding startup 

founder approached me with a problem he was having. The task was to 

extract names, places, dates, and other key information from emails related 

to upcoming travel so that this data could be used in a mobile application 

that would keep track of the user’s travel plans. The problem the founder 

was having is a common one: emails and other documents come in all 

shapes and sizes, and parsing them for useful information is a challenge. 



It’s difficult to extract this specific travel-related data when emails from 

different airlines, hotels, booking websites, and so on have different 

formats, not to mention that these formats change quite frequently. Google 

and others seem to have good tools for extracting such data within their 

own apps, but these tools generally aren’t made available to external 

developers. 

Both the founder and I were aware that there are, as usual, two main 

strategies for addressing this challenge: manual brute force and scripting. 

We could also use some mixture of the two. Given that brute force would 

entail creating a template for each email format as well as a new template 

every time the format changed, neither of us wanted to follow that path. A 

script that could parse any email and extract the relevant information 

sounded great, but it also sounded extremely complex and almost 

impossible to write. A compromise between the two extreme approaches 

seemed best, as it usually does. 

While speaking with both the founder and the lead software developer, I 

suggested that they forge a compromise between brute force and pure 

scripting: develop some simple templates for the most common formats, 

check for similarities and common structural patterns, and then write a 

simple script that could match chunks of familiar template HTML or text 

within new emails and extract data from known positions within those 

chunks. I called this algorithmic templating at the time, for better or for 

worse. This suggestion obviously wouldn’t solve the problem entirely, but it 

would make some progress in the right direction, and, more importantly, it 

would give some insight into the common structural patterns within the 

most common formats and highlight specific challenges that were yet 

unknown but possibly easy to solve. 

The software developer mentioned that he had begun building a solution 

using a popular tool for natural language processing (NLP) that could 

recognize and extract dates, names, and places. He then said that he still 

thought the NLP tool would solve the problem and that he would let me 

know after he had implemented it fully. I told him that natural language is 



notoriously tricky to parse and analyze and that I had less confidence in 

NLP tools than he did but I hoped he was right. 

A couple of weeks later, I spoke again with the founder and the software 

developer, was told that the NLP tool didn’t work, and was asked again for 

help. The NLP tool could recognize most dates and locations, but, to 

paraphrase one issue, “Most of the time, in emails concerning flight 

reservations, the booking date appears first in the email, then the departure 

date, the arrival date, and then possibly the dates for the return flight. But 

in some HTML email formats, the booking date appears between the 

departure and arrival dates. What should we do then?” 

That the NLP tool doesn’t work to solve 100% of the problem is clear. But it 

did solve some intermediate problems, such as recognizing names and 

dates, even if it couldn’t place them precisely within the travel plan itself. I 

don’t want to stretch the developer’s words or take them out of context; this 

is a tough problem for data scientists and a very tough problem for others. 

Failing to solve the problem on the first try is hardly a total failure. But this 

part of the project was stalled for a few weeks while the three of us tried to 

find an experienced data scientist with enough time to try to help overcome 

this specific problem. Such a delay is costly to a startup—or any company 

for that matter. 

The lesson I’ve learned through experiences like these is that awareness is 

incredibly valuable when working on problems involving data. A good 

developer using good tools to address what seems like a very tractable 

problem can run into trouble if they haven’t considered the many 

possibilities that can happen when code begins to process data. 

Uncertainty is an adversary of coldly logical algorithms, and being aware of 

how those algorithms might break down in unusual circumstances 

expedites the process of fixing problems when they occur—and they will 

occur. A data scientist’s main responsibility is to try to imagine all of the 

possibilities, address the ones that matter, and reevaluate them all as 

successes and failures happen. That is why—no matter how much code I 



write—awareness and familiarity with uncertainty are the most valuable 

things I can offer as a data scientist. Some people might tell you not to 

daydream at work, but an imagination can be a data scientist’s best friend if 

you can use it to prepare yourself for the certainty that something will go 

wrong. 

1.3. DEVELOPER VS. DATA SCIENTIST 

A good software developer (or engineer) and a good data scientist have 

several traits in common. Both are good at designing and building complex 

systems with many interconnected parts; both are familiar with many 

different tools and frameworks for building these systems; both are adept at 

foreseeing potential problems in those systems before they’re actualized. 

But in general, software developers design systems consisting of many 

well-defined components, whereas data scientists work with systems 

wherein at least one of the components isn’t well defined prior to being 

built, and that component is usually closely involved with data processing 

or analysis. 

The systems of software developers and those of data scientists can be 

compared with the mathematical concepts of logic and probability, 

respectively. The logical statement “if A, then B” can be coded easily in any 

programming language, and in some sense every computer program 

consists of a very large number of such statements within various contexts. 

The probabilistic statement “if A, then probably B” isn’t nearly as 

straightforward. Any good data-centric application contains many such 

statements—consider the Google search engine (“These are probably the 

most relevant pages”), product recommendations on Amazon.com (“We 

think you’ll probably like these things”), website analytics (“Your site 

visitors are probably from North America and each views about three 

pages”). 

Data scientists specialize in creating systems that rely on probabilistic 

statements about data and results. In the previous case of a system that 



finds travel information within an email, we can make a statement such as 

“If we know the email contains a departure date, the NLP tool can probably 

extract it.” For a good NLP tool, with a little fiddling, this statement is likely 

true. But if we become overconfident and reformulate the statement 

without the word probably, this new statement is much less likely to be 

true. It might be true some of the time, but it certainly won’t be true all of 

the time. This confusion of probability for certainty is precisely the 

challenge that most software developers must overcome when they begin a 

project in data science. 

When, as a software developer, you come from a world of software 

specifications, well-documented or open-source code libraries, and product 

features that either work or they don’t (“Report a bug!”), the concept of 

uncertainty in software may seem foreign. Software can be compared to a 

car: loosely speaking, if you have all of the right pieces, and you put them 

together in the right way, the car works, and it will take you where you want 

it to go if you operate it according to the manual. If the car isn’t working 

correctly, then quite literally something is broken and can be fixed. This, to 

me, is directly analogous to pure software development. Building a 

self-driving car to race autonomously across a desert, on the other hand, is 

more like data science. I don’t mean to say that data science is as 

outrageously cool as an autonomous desert-racing vehicle but that you’re 

never sure your car is even going to make it to the finish line or if the task is 

even possible. So many unknown and random variables are in play that 

there’s absolutely no guarantee where the car will end up, and there’s not 

even a guarantee that any car will ever finish a race—until a car does it. 

If a self-driving car makes it 90% of the way to the finish line but is washed 

into a ditch by a rainstorm, it would hardly be appropriate to say that the 

autonomous car doesn’t work. Likewise if the car didn’t technically cross 

the finish line but veered around it and continued for another 100 miles. 

Furthermore, it wouldn’t be appropriate to enter a self-driving sedan, built 

for roads, into a desert race and to subsequently proclaim that the car 

doesn’t work when it gets stuck on a sand dune. That’s precisely how I feel 



when someone applies a purpose-built data-centric tool to a different 

purpose; they get bad results, and they proclaim that it doesn’t work. 

For a more concrete example, suppose you’ve been told by a website owner, 

“The typical user visits four pages of our site before leaving.” Suppose you 

do an analysis of a new data set of site usage and find that the average user 

is visiting eight pages before leaving. Does that mean there’s an error? Are 

you using the mean user when you should be using the median user? Does 

this new data include a different type of user or usage? These are questions 

that a data scientist, not a software developer, typically answers, because 

they involve data exploration and uncertainty. Implementing a software 

solution based on these questions and their answers can certainly benefit 

from the expertise of a software developer, but the exploration 

itself—necessarily involving statistics—falls squarely within the realm of a 

data scientist. In chapter 5, we’ll look at data assessment and evaluation as 

a useful tool for preventing and diagnosing problems and for helping avoid 

the case where a seemingly finished software product fails in some way. 

It’s worth noting that, though I’ve seemed to pit data scientists and 

software developers against each other, this conflict (if I can call it that) can 

also be internal to a single person. While working on data science projects, I 

often find myself trading my data scientist hat for that of a software 

developer, particularly when writing production code. The reason I 

conceive of them as two different hats is that there can be conflicts of 

interest at times, because priorities can differ between the two. Openly 

discussing these conflicts, as I do in this book, can be helpful in illustrating 

the resolution of these differences, whether they occur between two or more 

people or within an individual who may wear either hat. 

1.4. DO I NEED TO BE A SOFTWARE DEVELOPER? 

Earlier, I discussed the difference between data scientists and software 

developers, often as if those are the only two options. Certainly, they are 
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not. And you don’t need to be either in order to gain something from this 

book. 

Knowledge of a statistical software tool is a prerequisite for doing practical 

data science, but this can be as simple as a common spreadsheet program 

(for example, the divisive but near-ubiquitous Microsoft Excel). In theory, 

someone could be a data scientist without ever touching a computer or 

other device. Understanding the problem, the data, and relevant statistical 

methods could be enough, as long as someone else can follow your 

intentions and write the code. In practice, this doesn’t happen often. 

Alternatively, you may be someone who often works with data scientists, 

and you’d like to understand the process without necessarily understanding 

the technology. In this case, there’s also something in this book for you. 

One of my primary goals is to enumerate the many considerations that 

must be taken into account when solving a data-centric problem. In many 

cases, I’ll be directing explanations in this book toward some 

semi-fictionalized colleagues from my past and present: biologists, finance 

executives, product owners, managers, or others who may have given me 

data and asked me a single question: “Can you analyze this for me?” For 

that last case, perhaps if I write it down here, in detail and with plenty of 

examples, I won’t have to repeat (yet again) that it’s never that simple. An 

analysis demands a question, and I’ll discuss both of those in depth on 

these pages. 

This book is about the process of thinking about and doing data science, but 

clearly software can’t be ignored. Software—as an industry and its 

products—is the data scientist’s toolbox. The tools of the craft are the 

enablers of work that’s beyond the capabilities of the human mind and body 

alone. But in this book, I’ll cover software only as much as is necessary to 

explore existing strengths and limitations of the software tools and to 

provide concrete examples of their use for clarification. Otherwise, I’ll try to 

write abstractly about software—without being impractical—so that the 

explanations are accessible by as many people as possible, technical or not, 



and years from now, the explanations may still be valuable, even after we’ve 

moved on to newer (and better?) software languages and products. 

1.5. DO I NEED TO KNOW STATISTICS? 

As with software, expert knowledge of statistics certainly helps but isn’t 

necessary. At my core, I’m a mathematician and statistician, and so I’m 

most likely to veer into an overly technical tangent in these fields. But I 

despise jargon and presumed knowledge more than most, and so I’ll try 

hard to include accessible conceptual explanations of statistical concepts; 

hopefully, these are sufficient to any reader with a little imagination and 

perseverance. Where I fall short, I’ll try to direct you to some resources with 

more thorough explanations. As always, I’m an advocate of using web 

searches to find more information on topics that interest you, but at least in 

some cases, it may be better to bear with me for a few pages before heading 

down a rabbit hole of web pages about statistics. 

In the meantime, to get you started conceptually, consider the field of 

statistics as the theoretical embodiment of the processes that generate the 

data you encounter on a daily basis. An anonymous website user is a 

random variable who might click any number of things depending on 

what’s going on in their head. Social media data reflects the thoughts and 

concerns of the populace. Purchases of consumer goods depend on both the 

needs of the consumers as well as marketing campaigns for the goods. In 

each of these cases, you must theorize about how intangible thoughts, 

needs, and reactions are eventually translated into measurable actions that 

create data. Statistics provides a framework for this theorizing. This book 

will spend less time on complex theoretical justifications for statistical 

models and more on formulating mental models of data-generating 

processes and translating those mental models into statistical terminology, 

equations, and, ultimately, code. 



1.6. PRIORITIES: KNOWLEDGE FIRST, TECHNOLOGY SECOND, 
OPINIONS THIRD 

This section title is an adage of mine. I use it to help settle disputes in the 

never-ending battle between the various concerns of every data science 

project—for example, software versus statistics, changing business need 

versus project timeline, data quality versus accuracy of results. Each 

individual concern pushes and pulls on the others as a project progresses, 

and we’re forced to make choices whenever two of them disagree on a 

course of action. I’ve developed a simple framework to help with that. 

Knowledge, technology, and opinions are typically what you have at the 

beginning of any project; they are the three things that turn data into 

answers. Knowledge is what you know for a fact. Technology is the set of 

tools you have at your disposal. Opinions are those little almost facts you 

want to consider true but shouldn’t quite yet. It’s important to establish a 

hierarchy for your thought processes so that less-important things don’t 

steamroll more-important ones because they’re easier or more popular or 

because someone has a hunch. 

In practice, the hierarchy looks like this: 

●​ Knowledge first— Get to know your problem, your data, your 

approach, and your goal before you do anything else, and keep those 

at the forefront of your mind. 

●​ Technology second— Software is a tool that serves you. It both 

enables and constrains you. It shouldn’t dictate your approach to the 

problem except in extenuating circumstances. 

●​ Opinions third— Opinions, intuition, and wishful thinking are to 

be used only as guides toward theories that can be proven correct and 

not as the focus of any project. 

I’m not advocating that knowledge should always take precedence over 

technology in every decision—and likewise for technology over 

opinion—but if the hierarchy is to be turned upside down, you should be 



doing it deliberately and for a very good reason. For instance, suppose you 

have a large amount of data and a statistical model for which you would like 

to estimate parameters. Furthermore, you already have a tool for loading 

that data into a system that performs a type of statistical parameter 

optimization called maximum likelihood estimation (MLE). You know that 

your data and statistical model are complex enough, possibly, to generate 

many reasonable parameter values, and so using MLE to find a single most 

likely parameter value might give unpredictable results. There exist more 

robust alternatives, but you don’t currently have one implemented. You 

have two options: 

1.​ Build a new tool that can do robust parameter estimation. 

2.​ Use the tool you have to do MLE. 

Your knowledge says you should do A, if you had unlimited time and 

resources, but the technology indicates that you should do B because A 

requires a tremendous outlay of resources. The pragmatic decision is 

probably B, but that inverts the hierarchy. As mentioned earlier, you can do 

this but only deliberately and for a very good reason. The good reason 

might be the difference in time and money that you’ll need to spend on A 

and B. By deliberately, I mean that you should not make the decision 

lightly and you should not forget it. If you choose B, you should pass along 

with any results the knowledge that you made a sacrifice in quality in the 

interest of a cost savings, and you should make note of this in 

documentation and technical reports. You should appropriately intensify 

quality control and perform tests that check specifically for the types of 

optimization errors/biases to which MLE is prone. Making the decision and 

then forgetting the reasoning is a path to underwhelming or misleading 

results. 

Opinion presents an even fuzzier challenge. Sometimes people are blinded 

by the potential of finding truly amazing results and forget to consider what 

might happen if those results aren’t evident in the data. In the heyday of big 

data, any number of software startups attempted to exploit social 

media—particularly Twitter and its “firehose”—to determine trends within 



various business markets, and they often ran into obstacles much larger 

than they expected. Scale of computation and data, parsing of natural 

language in only 140 characters, and inferring random variables on messy 

data are often involved. Only the very best of these firms were able to 

extract meaningful, significant knowledge from that data and earn a profit 

with it. The rest were forced to give it up or change their focus. Each of 

these startups, at some point, had to decide whether they wanted to spend 

even more time and money chasing a goal that was based mainly on hope 

and not on evidence. I’m sure many of them regretted how far they’d gone 

and how much money they’d spent when they did decide to pack it in. 

Often people are blinded by what they think is possible, and they forget to 

consider that it might not be possible or that it might be much more 

expensive than estimated. These are opinions—guesses—not knowledge, 

and they shouldn’t play a primary role in data analysis and product 

development. Goals are not certain to be achieved but are required for any 

project, so it’s imperative not to take the goal and its attainability for 

granted. You should always consider current knowledge first and seek to 

expand that knowledge incrementally until you either achieve the goal or 

are forced to abandon it. I’ve mentioned this uncertainty of attainability as 

a particularly stark difference between the philosophies of software 

development and data science. In data science, a goal is much less likely to 

be achievable in exactly its original form. In a room full of software 

developers or inexperienced data scientists, be particularly wary of anyone 

presupposing without evidence that a goal is 100% achievable. 

Remember: knowledge first, then technology, and then opinion. It’s not a 

perfect framework, but I’ve found it helpful. 

1.7. BEST PRACTICES 

In my years of analyzing data and writing code as an applied 

mathematician, PhD student researcher, bioinformatics software engineer, 

data scientist, or any of the other titles I’ve had, I’ve run into a few 



problems involving poor project management on my part. When I worked 

for years on my own research projects, which no one else touched or looked 

at, I frequently managed to set poorly documented code aside for long 

enough that I forgot how it worked. I’d also forgotten which version of the 

results was the most recent. I’d managed to make it nearly impossible for 

anyone else to take up my projects after I left that position. None of this was 

intentional; it was largely negligence but also ignorance of the usual ways in 

which people ensure that their project’s materials and code can survive a 

long while on the shelf or in another’s hands. 

When working on a team—in particular, a team of experienced software 

developers—someone has usually established a set of best practices for 

documentation and preservation of project materials and code. It’s usually 

important that everyone on the team abides by the team’s strategies for 

these things, but in the absence of a team strategy, or if you’re working by 

yourself, you can do a few things to make your life as a data scientist easier 

in the long run. The following subsections cover a few of my favorite ways 

to stay organized. 

1.7.1. Documentation 

Can you imagine what one of your peers might have to go through to take 

over your project if you left suddenly? Would taking over your project be a 

horrible experience? If you answer yes, please do these future peers—and 

yourself—a favor by staying current on your documentation. Here are some 

tips: 

●​ Comment your code so that a peer unfamiliar with your work can 

understand what the code does. 

●​ For a finished piece of software—even a simple script—write a short 

description of how to use it and put this in the same place (for 

example, the same file folder) as the code. 

●​ Make sure everything—files, folders, documents, and so on—has a 

meaningful name. 



1.7.2. Code repositories and versioning 

Some software products have been built specifically to contain and manage 

source code for software. These are called source code repositories (or 

repos), and they can help you immensely, for a number of reasons. 

First, most modern repos are based on versioning systems, which are also 

great. A versioning system tracks the changes you make in your code, 

allows you to create and compare different versions of your code, and 

generally makes the process of writing and modifying code much more 

pleasant once you get used to it. The drawback of repos and versioning is 

that they take time to learn and incorporate into your normal workflow. 

They’re both worth the time, however. At the time of this writing, both 

Bitbucket.org and GitHub.com provide free web hosting of code repos, 

although both websites host both public and private repos, so make sure 

you don’t accidentally make all of your source code public. Git is currently 

the most popular versioning system, and it incorporates nicely into both 

repo hosts mentioned. You can find tutorials on how to get started on the 

hosts’ web pages. 

Another reason why I find a remote repo-hosting service nearly 

indispensable is that it functions as a backup. My code will be safe even if 

my computer is accidentally crushed by an autonomous desert-race vehicle 

(though that hasn’t happened to me yet). I make it a habit to push (send or 

upload) my latest code changes to the remote host almost every day, or 

about as often as I might schedule an automatic backup on a standard 

data-backup service. 

Some code-hosting services have great web interfaces for looking through 

code history, various versions, development status, and the like, which has 

become standard practice for collaborating on teams and large projects. It’s 

helpful for individuals and small projects as well, particularly when 

returning to an old project or trying to figure out which changes you made 

since a particular time in the past. 

http://bitbucket.org/
http://github.com/


Finally, remote repos let you access your code from any place with web 

access. You don’t need a computer with the appropriate editor and 

environment to browse through code. No, you normally can’t do much 

except browse code (and maybe do simple editing) from these web 

interfaces, but the best ones have good language-specific code highlighting 

and a few other features that make browsing easy and useful. 

Here are some tips on repos and versioning: 

●​ Using a remote source code repo is now standard practice for most 

groups that write code; use one! 

●​ It’s absolutely worth the effort to learn Git or another versioning 

system; learn it! 

●​ Commit your code changes to the repo often, perhaps daily or 

whenever you finish a specific task. Push those changes to a remote 

repo, so they’re backed up and shared with others on your team. 

●​ If your next code changes will break something, do the work in a 

location that won’t affect the production version or the development 

by other team members. For example, you could create a new branch 

in Git. 

●​ Use versioning, branching, and forking (tutorials abound on the 

internet) instead of copying and pasting code from one place to 

another and therefore having to maintain/modify the same code in 

multiple places. 

●​ Most software teams have a Git guru. Ask them whenever you have 

questions about best practices; the time spent learning now will pay 

off in the end. 

1.7.3. Code organization 

Many books detail good coding practices, and I don’t intend to replicate or 

replace them here. But a few guidelines can be very helpful, particularly 

when you try to share or reuse code. Most people who have been 

programming for some time will be familiar with these, but I’ve found that 

many people—particularly in academia and other work environments 



without much coding collaboration—don’t always know about them or 

adhere to them. 

Here are the guidelines: 

●​ Try to use coding patterns that are common for the particular 

programming language. Python, R, and Java, for instance, all have 

significant differences in the way developers typically organize their 

code. Any popular resource for the language contains examples and 

guidelines for such coding patterns. 

●​ Use meaningful names for variables and other objects. This makes 

your code much more understandable for new collaborators and your 

future self. 

●​ Use plenty of informative comments, for the reasons just mentioned. 

●​ Don’t copy and paste code. Having the same code active in two places 

means twice as much work for you when you want to change it. 

Encapsulating that code in a function, method, object, or library 

makes sure that later modifications happen in only one place. 

●​ Try to code in chunks with specific functionalities. For scripts, this 

means having well-commented snippets (optionally in separate files 

or libraries) that each accomplish a specific task. For applications, 

this means having relatively simple functions, objects, and methods 

so that each does specific things. A good general rule is if you can’t 

name your snippet, function, or method in such a way that the name 

generally describes everything the chunk of code accomplishes, you 

should probably break the chunk into smaller, simpler chunks. 

●​ Don’t optimize prematurely. This is a common mantra for 

programmers everywhere. Make sure you code your algorithm in a 

logical, coherent fashion, and only if you find out later that your 

implementation is inefficient should you try to shave off compute 

cycles and bytes of memory. 

●​ Pretend that someone else will, at some point, join your project. Ask 

yourself, “Could they read my code and figure out what it does?” If 

not, spend a little time organizing and commenting sooner rather 

than later. 



1.7.4. Ask questions 

This may sound obvious or trivial, but it’s so important that I include it 

here. I’ve already discussed how awareness is one of the greatest strengths 

of a good data scientist; likewise, the unwillingness to gain awareness via 

any and all means can be a great weakness. The stereotype of an introverted 

academic being too shy to ask for help may be familiar to you, but have you 

heard of the know-it-all PhD data scientist who was too proud to admit he 

didn’t know something? I certainly have. Pride is perhaps a bigger pitfall to 

data scientists these days than shyness, but you should be wary of both. 

Software engineers, business strategists, sales executives, marketers, 

researchers, and other data scientists all know more than you do about 

their particular domains or projects, and it would be a shame to ignore the 

wealth of knowledge they possess, due to shyness, pride, or any other 

reason. A business setting wherein nearly everyone else has a role different 

from yours provides ample opportunity to learn about the company and the 

industry. This is the subject matter expertise, or domain knowledge, that 

I’ve mentioned already. Nontechnical business folks, in my experience, 

have a tendency to treat you, the data scientist, as the smart one in the 

conversation, but don’t forget that they tend to know a lot more than you 

about project goals and business problems, two extremely important 

concepts. Never hesitate to have a lengthy discussion with someone who 

knows the business side of the project and problems you’re working on. I 

often find that such conversations illuminate projects in new ways, 

sometimes causing strategy changes but always contributing to the domain 

knowledge that’s necessary for me to finish a project successfully. 

1.7.5. Stay close to the data 

Being “close to the data” means making sure that the methods and 

algorithms that you’re applying to the data aren’t so dense as to obscure it. 

Another way to phrase this would be “don’t use methods that are more 

complex than needed, and always be conscious of the possibility of 

mistakes.” 



Many people will argue with this piece of advice, and I agree with these 

detractors that many complex methods have proven their worth. The field 

of machine learning is a perfect example of a source of such methods. In the 

cases where complex methods (black box methods, in some cases) give 

considerable advantage, the concept of being close to the data can be 

adapted: make sure that some results from complex methods can be 

verified, justified, or supported by simpler methods that are close to the 

data. This could include a glorified form of spot-checking, whereby you can 

pick some results at random, extract the raw data that’s relevant to these 

results, and use logic and/or simple statistics to make sure that the results 

make sense intuitively. Straying too far from the data without a safety line 

can get you in trouble, because these problems are the hardest to diagnose. 

Throughout the book, and in each example, I’ll return to this concept and 

give more specifics. 

1.8. READING THIS BOOK: HOW I DISCUSS CONCEPTS 

It has been my experience—over and over—that complex concepts appear 

vastly more complex at the point when you begin to learn about them, as 

compared to later, after you’ve begun to understand them. This is not only 

because all concepts seem less complex once you begin to understand them, 

but also because people, in general, who might be explaining a concept to 

you or who are writing about it revel in the complexities that they 

understand and often have little patience or sympathy for those who don’t 

understand. For example, it’s difficult for most statistics professors to 

explain a simple statistical test to a layperson. This inability to explain in 

simple terms extends across all fields and industries, I’ve found. Part of this 

problem is that most people love to use jargon, and they love to prove their 

knowledge of it. This is, perhaps, a fault of human nature. But from this I’ve 

learned to ignore my frustrations at the beginning of learning a new, 

complex concept and not to get hung up on any specific point until I’ve 

gone through the concept as a whole. 



Throughout this book, I try to explain new concepts in simple terms before 

getting into specifics. This is the way I prefer to learn and the way I prefer 

to explain. Despite this, you’ll still have moments when you get stuck. I 

implore you suspend your frustration, stick with it to the end of the chapter, 

and then review the concept as a whole. At that point, if something still 

doesn’t make sense, perhaps rereading the paragraphs in question can help, 

and if not, feel free to consult other resources. I employ conceptual thought 

processes, and I intend to focus on the whole before the parts. Knowing this 

in advance may help you while reading. 

Before diving into the practical steps of the data science process in the next 

chapter and beyond, I’d like to note that this book is intended to be 

accessible for non-experts in data science, software, and statistics. If you’re 

not a beginner, you may occasionally find some sections that cover material 

you already know. I’d like to think that every section of this book provides a 

useful or even fresh perspective on its topic, even for experts, but if you’re 

pressed for time, feel free to skip ahead to something of more use to you. 

On the other hand, I’d like to discourage skipping whole chapters of this 

book when reading it for the first time. Each chapter describes a step in the 

data science process, and skipping one of them could break the continuity 

of the process and how it’s presented. Rather than skipping, it would be 

better to read at least the beginning and the end of the chapter and to skim 

section by section in order to gain important context for subsequent 

chapters. 

As a final disclaimer, throughout the book I pull many practical examples 

from my own experience. Several of my early, formative data science 

projects were in the field of bioinformatics, and so sometimes I delve into 

discussions of genetics, RNA, and other biological concepts. This may seem 

heavy to some people, and that’s OK. It’s not necessary to understand the 

biology as long as you’re able to understand the data-oriented aspects such 

as project goals, data sources, and statistical analysis. This is also true for 

examples from other fields, but I rely particularly heavily on bioinformatics 

because I can still remember well what it was like to encounter various 

challenges of data science at that early phase of my career. Furthermore, I 



won’t shy away from using highly specified examples because it’s always 

good practice for a data scientist to learn the basics of a new field and 

attempt to apply experience and knowledge to problems therein. I do, 

however, try to present all examples in a way that anyone can understand. 

SUMMARY 

●​ Awareness is perhaps the biggest strength of a good data scientist, 

particularly in the face of uncertainty. 

●​ Dealing with uncertainty is often what separates the role of a data 

scientist from that of a software developer. 

●​ Setting priorities and balancing them with limitations and 

requirements can be done using a helpful framework that I’ve 

outlined. 

●​ Using some of the best practices that I suggest can spare you from 

headaches later. 

●​ I’m a conceptual learner and teacher who loves talking about things 

abstractly before delving into practical examples, so please keep that 

in mind throughout the book. 
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