General	Chemistry	2nd	Semester	Final	Review
General	Chemistry	211U	Schiester	1 11141	140 110 11

PART I: FREE RESPONSE PROBLEMS

Unit 6/7 - Chemical Formulas and Reactions

1. Write the general equation for each type of reaction. Give an example of each

Reaction Type	General Equation	Example
Synthesis/Combination		
		$2K + CuCl_2 \rightarrow 2KCl + Cu$
	$AB \rightarrow A + B$	
Combustion		
Double Replacement		

- 2. Write a balanced equation for the following reactions:
 - a. iron metal + copper(II) Sulfate \Rightarrow

Iron(II)sulfate and copper metal

____(type).

b. chlorine gas and aluminum bromide yields aluminum chloride and bromide gas.

____(type)

- 3. Predict the products of the reaction and balance the equation.
 - a. Butane (C_4H_{10}) + oxygen \Rightarrow
 - b. $zinc metal + copper (II) nitrate \Rightarrow$
- 4. Circle all of the formulas that would be empirical, put a box around those that are molecular formulas?

 CH_4

 C_2H_6

 CO_2

 N_2O_4

 CO_2

5. Write the empirical formula for any of the above compounds that are molecular formulas.

- 6. Determine the molecular formula of a compound with an empirical formula of CH that has a molar mass of 78.11 g/mol.
- 7. A compound contains 36.48% Na, 25.41% S and 38.11% O. Find its empirical formula.
- 8. Determine the percent composition of each element in Mg₃(SO₄)₂.
- 9. Predict the products and balance the following equations

a. Na + CaCl₂
$$\rightarrow$$

c.
$$FeCO_3 + LiNO_3 \rightarrow$$

d.
$$C_4H_8$$
 + $O_2 \rightarrow$

e. Al +
$$O_2 \rightarrow$$

- f. Look at the activity series and determine if reaction in a, b and e will occur.
- g. How do you know if a single replacement reaction will occur by looking at the activity series?

Unit 8 Stoichiometry

1. Balance the reaction below and answer questions below

$$\text{KClO}_{3 \text{ (s)}} \rightarrow \text{KCl}_{\text{ (s)}} + \text{O}_{2 \text{ (g)}}$$

- a. How many grams of O₂ is produced if 2.50 g of KClO₃ is completely decomposed by heating?
- b. How many grams of KCl is produced if 2.50 g of KClO₃ decomposes?
- c. How many moles of KClO₃ is used to produce 10 moles of O₂?

2. a.	In the following equation, which is the limiting reactant if 2.6 moles of aluminum are reacted with
	5.2 moles of HC1? Balance the equation!

$$Al_{(s)} \ + \quad HCl_{(aq)} \rightarrow \quad AlCl_{3(aq)} \ + \quad \ H_{2(g)}$$

a. Determine the limiting reactant (you can compare moles).

- b. How much excess reactant is left over?
- 3. a. Calculate the mass of lithium oxide formed when 4.2 grams of lithium reacts with oxygen.

$$\text{Li}_{(s)} + \text{O}_{2(g)} \rightarrow \text{Li}_2\text{O}_{(s)}$$

- 4. What is the maximum amount of of BaSO₄ that can be produced from a solution containing 2.84 grams of Na₂SO₄ and 5.0 grams of BaC1₂?
- a. Write the balanced equation including state symbols (think solutions!)
- b. Determine the number of moles of each reactant and compare to determine the limiting reactant.
- d. Use your limiting reactant to determine the mass of barium sulfate produced.

e. Draw a model representing the reaction (think about what the state symbols mean!).

Products

Unit 9 Solutions

- 1. Calculate molarity for the following problems:
 - a. 57 g Al₂(SO₄)₃ in 500 mL
 - b. $45 \text{ g C}_6\text{H}_{12}\text{O}_6 \text{ in } 500 \text{ mL}$
- 2. What mass of sucrose $C_{12}H_{22}O_{11}$, is needed to make 300 mL of 0.50 M solution?
- 3. What volume of 1.25 M HCl is required to prepare 180 mL of 0.500 M HCl solution?

Solubility Curve of Different Salts

11. Determine if the following substances will be soluble (aq) or insoluble (s) in water:

 KNO_3

 $(NH_4)_2CO_3$

LiOH

CuSO₄

PbSO₄

CaCO₃

MgS

AgCl

NaF

 $Zn(OH)_2$

BaSO₄

 $Ca_3(PO_4)_2$

Unit 10 Thermochemistry

- 1. Carbon dioxide and water react to form methane (CH4) and Oxygen gas. The enthalpy of the reaction is +890.8 kJ.
 - a. Write the thermochemical equation (includes the energy).
 - b. How much energy was absorbed when 4.5mol of carbon dioxide reacts?
 - c. How much energy is needed to form 5.20 g of methane?

2. Label the following potential energy diagrams

$$\mathrm{CH}_4(\mathrm{g}) + 2\mathrm{O}_2(\mathrm{g}) \rightarrow \mathrm{CO}_2(\mathrm{g}) + 2\mathrm{H}_2\mathrm{O}(\ell) + 890.4~\mathrm{kJ}$$

3. Draw and label the Phase Change Diagram

Freezing and Boiling Point Graph aka Phase Change Diagram or Heating/Cooling

4. How much energy would 45.2g of water absorb as it is heated from 22.0C to 50.0C? (Remember that the specific heat of water s 4.18J/gC.)

Determine the specific heat capacity of a substance if a 35.0g sample absorbes 96J of energy as it was heated from 293K to 313K.

Unit 11 Behavior of Gases

- 1. Determine the volume when the pressure of 359 mL of O_2 at 82.0 kPa is increased to 101.3 kPa. What gas law did you use to solve the problem?
- 2. Determine the new volume of 950 mL at 19°C if the temperature is reduced to standard temperature. What gas law did you use to solve the problem?
- 3. A gas in a container has a pressure of 150 kPa at 35°C. What is the pressure when the temperature is -120°C? What gas law did you use to solve the problem?

4. Correct the volume of 101 mL at 27°C and 90.9 kPa to STP.	What gas law did you use to solve the
problem?	

- 5. How many moles of gas will occupy a 252 mL flask at -25.0°C and 68.7 kPa pressure? What gas law did you use to solve the problem?
- 6. If 22.0g of aluminum reacted with excess acid, how much hydrogen was produced at STP? $Al + HCl \rightarrow AlCl_3 + H_2$

Unit 12 Acids and Bases (seniors stop here)

- 1. List the properties of acids and bases.
- 2. List the six acids and their respective names that we've asked you to memorize.
- 3. The H^+/H_3O^+ concentration of a solution is 1.23 x 10^{-10} mol/L. What is the pH?
- 4. The pH of a solution is 6.5. Find the [H⁺] for this solution.
- 5. What is the pH of a solution if the $[OH^{-}]$ is 4.7 x 10^{-11} mol/L?
- 6. What is the [OH] concentration of a solution if the pH is 3.9?
- 7. Identify the acid, conj acid, base and conj base in this reaction.

$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$

- 8. What can you use to detect pH?
- 9. (Fill in the blanks)

```
a. in a neutral soln the [ ] = [ ]
b. in an acidic soln the [ ] > [ ]
c. in a basic soln the [ ] < [ ]
```

10. Write complete balanced equations for these neutralization reactions:

a.
$$H_2SO_4 + KOH \rightarrow$$

b.
$$HCl + Ba(OH)_2 \rightarrow$$

c.
$$H_3PO_4 + Ca(OH)_2 \rightarrow$$

Unit 5 - Bonding

- 11. What is the molarity of sodium hydroxide if 20.0~mL of the solution is neutralized by 28.0~mL of 1.00~M HCl
- 12. What is the molarity of sodium hydroxide if 15.0 mL of the solution is neutralized by 29.0 mL of 1.00 M H₃PO₄?

Part II: Vocabulary Review. Please match the word with the appropriate definition.

NOTE: You might not use all of the answers. Some choices could be used more than once

shared equally
trons
of p orbitals
way of drawing Lewis Structure
rs electron(s) to nonmetal
electrons to complete octets
rounded by 8 valence electrons
with another nonmetal
ng of electrons
way of drawing Lewis Str rs electron(s) to nonmetal electrons to complete oc rounded by 8 valence ele- with another nonmetal

Unit 8 - Stoichiometry	
1. Reaction Stoich	a. ratio of actual to theoretical yield x 100
2. Theoretical Yield	b. mass relationships of elements in compounds
3. Actual Yield	c. maximum amount of product produced
4. Limiting reagent	d. conversion factor determined using balanced equation
5. Excess Reagent	e. amount of product measured in the lab
6. Mole Ratio	f. reactant not totally used up in the lab
7. Molar Mass	g involves mass relationships in a chemical reaction
8. Percentage Yield	h. combined mass of all the atoms in a compound.
9. Composition Stoich	i. this determines the maximum amount of product that will form
Unit 9 - Solutions	
1. melting point	a. A substances resistance to flow (na)
2. solvent	b. The substance being dissolved
3. homogeneous mixture	c. Solutions that have solutes that settle out, more than one
4. heterogeneous mixture	phase
5. solute	d. Substances that can interfere with H bonds, i.e. soap(na)
6. suspension	e. Temp at which a liquid turns to a vapor/gas
na 7. hydrogen bonds	f. A substance that contain reflective particles that display
8. Tyndall effect	the Tyndall effect.
9. colloid	g. Intermolecular forces that cause surface tension (na)
10. boiling point	h. The substance doing the dissolving
na 11. surfactant	i. Causes adhesion and cohesion (na)
12. viscosity	j. solid turns to liquid
13. solution	k. beam of light indicates mixture type
14. surface tension	l. homogeneous mixture that shows no beam.
	m. uniform in composition, hard to separate.
	n. not uniform in composition, easy to separate
More Solutions	
1. saturated	a. a solid that falls out of solution when two aqueous
2. concentrated	solutions are mixed together
	b. A solution that holds more solute that it theoretically
	hold at a given temp
3. supersaturated	c. Amount of solute that dissolves in a solvent at a given
4. precipitate	temperature to produce a saturated solution
5. unsaturated	d. Contains less solute that a saturated solution
6. solubility	e. Maximum amount of solvent dissolved in a solute at a
7. dilute	certain temperature
8. molarity	e. Maximum amount of solvent dissolved in a solute at a certain temperature
	f. small amount of solute in large amount of solvent
	g. Moles per liter, represents solution concentration
	h. large amount of solute in small amount of solvent

Chapter Thermochemistry	
1. Activation energy	a. energy is released, beaker gets hot
2. Conservation of ener	gy b. total change in heat during a chemical reaction
3. Enthalpy	c. energy is absorbed, beaker gets cold
4. endothermic	d. energy needed to break the bonds
5. Exothermic	e. Energy is neither created nor destroyed
Unit 10: Gas Laws	
1. kinetic theory	a. 101.3 kPa, zero degrees Celsius
2. STP	b. All matter composed of atoms/molecules, particles move in random motion, elastic collisions
3. Boyle's Law	c. Gas escaping through a tiny hole
4. Charles Law	d. Volume inversely proportional to pressure
5. Gay-Lussac's Law	e. Volume directly proportional to temperature
6. effusion	f. Moving from high to low concentration
7. diffusion	g. Pressure directly proportional to temperature
Unit 11 Acids and Bases-	Not sure how far we will get in this unit
23. Arrhenius acid	a. A solution that keeps a constant neutral pH when small
	amounts of acid or base are added
24. Arrhenius base	b. Solution of known concentration
25. Indicator	c. Acid contains one H ¹⁺
26. endpoing	d. Acid contains three or more H ¹⁺
27. monoprotic	e. The point at which the indicator changes color
28. Stock	f. Substance that changes color depending on pH
29. polyprotic	g. Can be an acid or a base
30. amphoteric	h. Any substance that releases H ⁺
31. buffer	i. The addition of a known amount of solution of known
32. salt	concentration to determine the concentration of another
33. neutralization	solution