Unit 2 - Interactive Notebook Nuclear Chemistry

Name: Period:

Word Wall	Unit 1 Learning Tracker	<u>Unit Opener</u>	Task Set 2
Task Set 3	Task Set 4	Task Set 5	Task Set 6
Task Set 7		Assignment Log	

Word Wall:

Term	Definition	Example	Picture
Fusion			
Fission			
Nuclear decay			
Half life			
Nuclear radiation			
Alpha radiation			
Beta radiation			
Gamma radiation			
instability			
Band of stability			

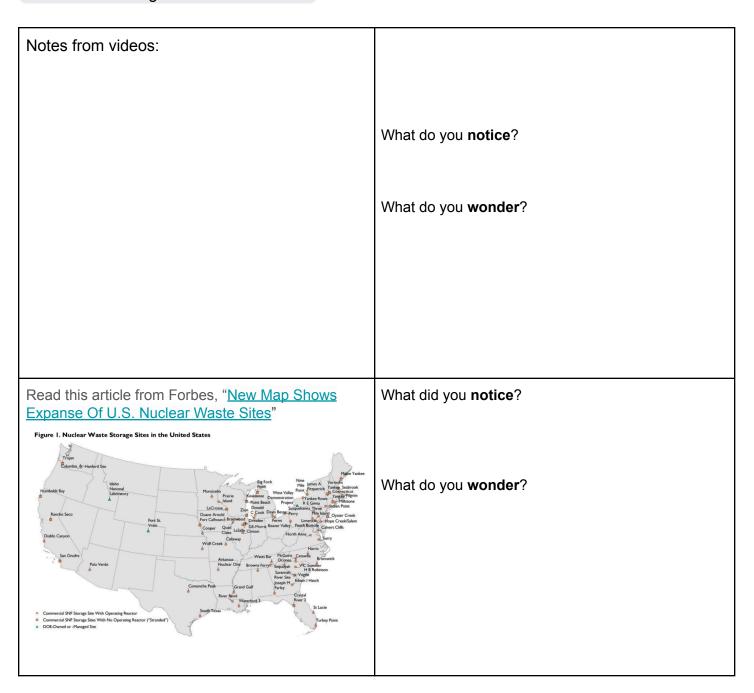
Unit 3 Learning Tracker:

Nuclear Processes - Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.

Anchoring Phenomenon/Dilemma: Nuclear waste disposal is a problem locally and globally, but nuclear power is a bridge to reducing carbon dioxide emissions and nuclear weapons have had significant historical impacts.

Unit Essential Question: As a global society, should we continue to develop nuclear technologies? Do they have the potential to save more lives than harm them?

How can we answer the task set EQ?	How does this help us explain the anchoring phenomenon?
TS1 EQ: As a global society, should we continue to use nuclear power?	helps us explain
Response:	
TS2 EQ: Where do elements come from?	
Response:	
TS3 EQ: How can we predict if an element is stable or unstable?	
Response:	
TS4 EQ: Which type of nuclear reaction occurs in nuclear power plants and in nuclear waste?	
Response:	
TS5 EQ: How can we predict the outcomes of nuclear reactions? (also how do nuclear power plants work?)	
Response:	
TS6 EQ: Is this nuclear waste safe?	
Response:	
TS7 EQ: Should we, as a global society, continue to develop nuclear technology?	
Response:	
TS8 EQ: UNIT ASSESSMENT	


Response:

Unit Essential Questions: As a global society, should we continue to develop nuclear technologies? Do they have the potential to save more lives than harm them?

Response to Unit Essential Question:

Unit Opener: Why is nuclear waste a problem?

■ Is radiation dangerous? - Matt Anticole

Reflect:

- Why is nuclear waste a problem? What should we do with nuclear waste
- Can you answer the Task Set Essential Question: As a global society, should we continue to use nuclear power? <u>Unit 3 Learning Tracker</u>.

Task Set 2: Where do elements come from?

If you had one sentence to explain where elements come from, what would you say?

Copy and paste this response above on the *Unit 3 Learning Tracker*.

Task Set 3: What makes an element stable or unstable?

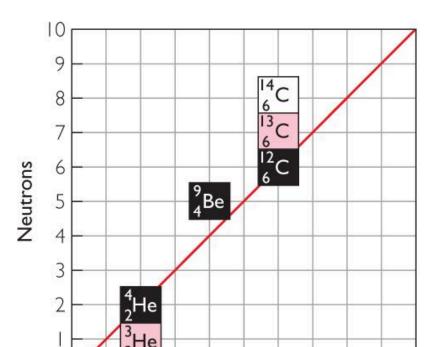
How to write a Nuclear Symbol

Mass Number $= p^+ + n^0$ Atomic Number $= p^+$

How to write elements in nuclear notation

A selection of elements from the periodic table

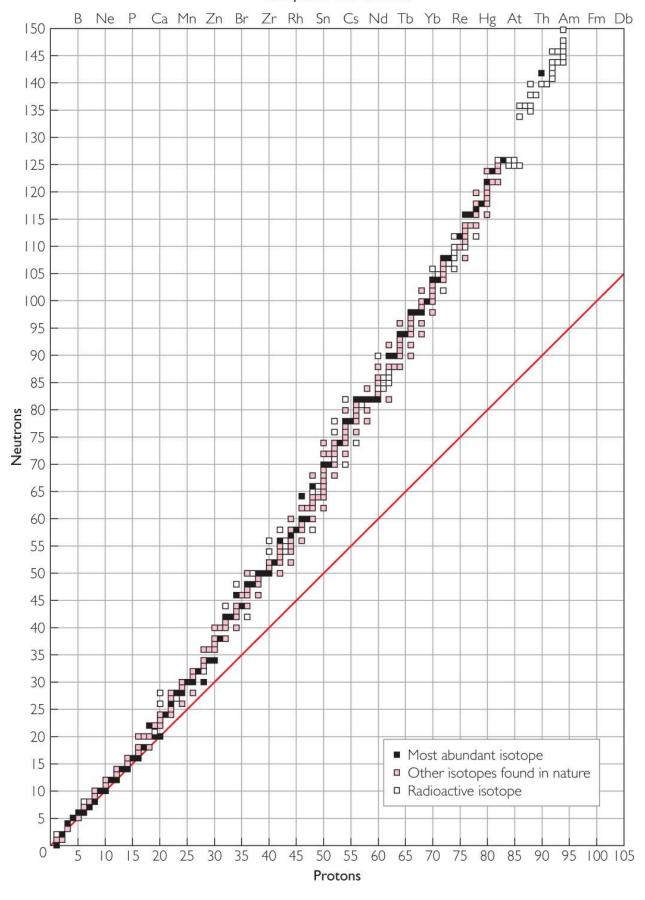
С	Со	Sr	U	Pu
6	27	38	92	94


Practice writing elements in nuclear notation

(Need help inserting nuclear notations? Click here!)

- 1. Element with 6 protons and 7 neutrons
- 2. Atom with 92 protons and 173 neutrons
- 3. Atom with 27 protons and a mass of 60
- 4. An element with 38 protons and 52 neutrons

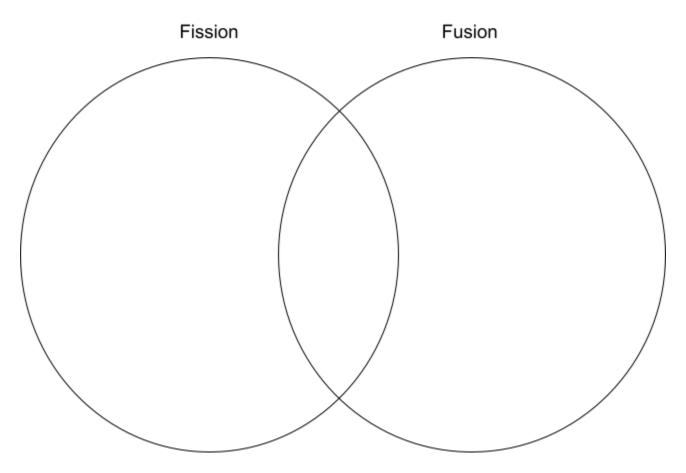
Isotopes: Navigating the Band of Stability


In the graph below we see the same axes labels as in our Build An Atom lab. This copy is a zoomed in version of the same graph with some of the data points highlighted. The zoomed-in segment shown here shows a box for each isotope of each element. Helium has two boxes and so it has two isotopes. The black colored box is

the most abundant isotope and the white boxes are radioactive isotopes. Carbon, therefore, has three naturally occurring isotopes. Carbon-12 is the most abundant and C-14 is radioactive. The intersection of the (X,Y) point gives information about how many protons and neutrons each isotope has. For carbons three isotopes, they all have _____ protons (the definition of Carbon), but each isotope has a different number of neutrons. Carbon-12 has _____ neutrons, Carbon-13 has _____ neutrons, and Carbon-14 has _____ neutrons.

If the graph were zoomed out, it would look like this next graph and would contain all of the known naturally-occurring elements. Use the larger graph to answer questions #1-5 below.

Isotopes of the Elements



1. Would you expect to find the isotope Antimony-124 in nature? Why or why not?

- 2. Which element has the most isotopes? How many?
- 3. Do you expect to find an atom with 26 protons and a mass number of 52? Explain your answer.
- 4. Which elements have isotopes with the same number of protons and neutrons?
- 5. In our inquiry lab we learned that the N:P ratio was 1.2:1. Is it always that ratio?

Fission & Fusion

Use the drawing tool to complete the Venn diagram to compare fission and fusion.

Task Set 4: Which type of nuclear reaction occurs in nuclear power plants to create nuclear waste?

Links fo	or task:	Nuclear Fission Reaction	Marie Curie's Lab	Slides
5.	How do	radioactive materials show up ir	n our lives?	

6. Watch the video <u>nuclear fission reaction</u>

Before reaction	After reaction

Images	accelerated neutron	91 Kr neutron neutron neutron neutron
Add mass and atomic number to elements	¹ ₀ n + U	$\Rightarrow Kr + Ba + 3 $

The energy from this reaction comes out in the form of radiation. A group investigated radiation let off by some elements and made observations here (<u>link to data</u>). In a small group, look for similarities and differences between different kinds of radiation. Record the results below.

Group 1 (list a few elements) What do these have in common?	Group 2 (list a few elements) What do all these have in common?	Group 3 (list a few elements) What do all these have in common?
Science name:	Science name:	Science name:
Additional info about this group	Additional info about this group	Additional info about this group

Investigative Plan, Part 2: Radioactive of	decay chain of uranium: Use the virtual la	ab at tinyurl.com/ydekymxd and choose
4 reactions to document. Of the 4 reaction	ns, 2 should show alpha decay and 2 sho	ould show beta decay.

Radiation Type / Model Type	Element / Isotope you Start with	Element / Isotope you end with	Ionizing Particle emitted
Alpha Decay Word Model			
Alpha Decay Picture Model			
Alpha Decay Equation Model			

Radiation Type / Model Type	Element / Isotope you Start with	Element / Isotope you end with	Ionizing Particle emitted
Beta Decay Word Model			
Beta Decay Picture Model			
Beta Decay Equation Model			

Radiation Type / Model Type	Element / Isotope you Start with	Element / Isotope you end with	Ionizing Particle emitted
Alpha Decay Word Model			

			10		
Alpha Decay Picture Model					
Alpha Decay Equation Model					
Radiation Type / Model Type	Element / Isotope you Start with	Element / Isotope you end with	Ionizing Particle emitted		
Beta Decay Word Model					
Beta Decay Picture Model					
Beta Decay Equation Model					
CER - Claim, Evidence, Reasoning Claim: Answer the initial question, "What happens to uranium once it is used in a reactor? Is it still dangerous?" (Answer this yes or no question as a sentence)					
Reasoning: (why is this good or bad) Describe all 3 types of radiation, what they do and whether they are dangerous or not This gives off radiation which does radiation does and radiation does					

Need reaction writing practice and one slide explicit about writing reactions

Task Set 5: Is this nuclear waste safe?

Links for half life activity: <u>student version of the slides</u> <u>student handout for lab</u>

data discussion template link to dice simulator

Optional extension for half life

Follow- up activities Watch video or read article

Reflect:

- What collaborative strategy worked the best for your group as you worked through sharing and analyzing data?
- What new vocabulary have you learned to help you better understand the stability of the nucleus? Add these words to the Word Wall.
- On the <u>Unit 3 Learning Tracker</u> answer the Task Set EQ:

Task Set 6: Should we, as a global society, continue to develop nuclear technology?

Which two Essential Questions will you choose to research to prepare for the flash debate?

1.

2.

Why did you choose these two questions?

Copy and Paste your completed **Table 3** and **Table 4** from the Nuclear Prep Assignment.

Link or Copy/Paste your completed Flash Debate Student Template.

Task Set 7: Optional - ask your teacher if you will be completing this activity.

Test

Reflect: What do you need to do to be successful on your final summative test?

Assignment Log:

Assignment	Due	Turned in on Google Classroom?
TS 1 - Participate in Unit Opener Discussion		
TS 2 Elements and the Stars		
TS 3 What makes elements stable?		
TS 4 Nuclear Reaction Types		
TS 5 Is Nuclear Waste Safe		
TS 6 Nuclear Technology Essay and Debate		
TS 7 Optional Earth Age Activity		
Unit 3 Final Assessment		