
AP CS Principles
Abstraction Project

Tasks:
Using the abtractionProject_start starter code (found here), complete the project so that it does the following
tasks:

1.​ Use the files in the data folder to create a database and tables.
2.​ The opening table should show the schools. Clicking on either a side nav item or dashboard view

details link will display a table of the requested data.
a.​ Schools -> school name, teacher name, teacher email
b.​ Teams -> Team name, school name
c.​ Programmers -> Name, grade, email, team name, school name
d.​ Problems Solved -> Team Name, problem number, finish time

3.​ Fill in the Dashboard Graphics with the appropriate number of teams, schools, etc.
4.​ The graph should show the problem numbers and the time (in minutes) that it took each team to finish

the problem. The graph should be a Combo Chart and, when clicked, should be viewed larger in a
modal window.

Focus:
The focus of this project is abstraction. You will need to plan how you will read data, use procedural/data
abstraction, separate functionality in an MVC style format, and utilize an API.

Deliverables:

●​ Functioning Program (one from the team)
●​ Document of all code written (not code provided by me). All code should be commented for readability

and for attribution. This should be submitted as a PDF and in printed form. (one from the team)
●​ A second PDF that answers the following two questions (one from each person):

○​ Describe at least two difficulties and/or opportunities that you encountered and how they were
resolved or incorporated in the development of the program. One of the items must be
independent, while the second can be collaborative or independent. (max 200 words)

○​ Capture and paste a program code segment that contains an abstraction you developed
individually (on your own). Mark it with a rectangle. Explain how your abstraction helped
manage the complexity of your program. (max 200 words)

https://drive.google.com/file/d/1KSRUPJ-PEX4A9apqTcoVUVDD4tnglJq5/view?usp=sharing

AP CS Principles
Abstraction Project - Grading

 2 1 0

Program
Functionality

Program reads from the data
tables. Nav links trigger the display
of the appropriate information.
Dashboard graphics show the
appropriate numbers. All
information is correct.

Program reads from the data tables.
Nav links trigger the display of
information (may have some
errors). Dashboard graphics show
numbers, though they may not be
exactly correct.

Program may or may not read from
the data tables. The information
tables and dashboard numbers are
not correct, or not present.

Data Chart The data chart shows the
requested information in the
specified format. When clicked, the
chart is enlarged in a modal
window.

The data chart shows the requested
information, though it may not be in
the specified format. A modal
opens, but it may not show an
enlarged version of the chart.

The data chart is missing or does
not show the required information.
There may or may not be a modal.

Code Delivery Code is delivered in two forms:
printed and submitted as an
electronic PDF.

Code is delivered in one of the
required formats.

Code is not delivered, except within
the project.

Code Style Code is commented as required.
Comments are used to increase
readability, including method
purposes and/or explains code to
reader. Code is also marked up to
cite author of specific parts.

Code contains comments. Code is
marked to cite author of specific
parts. Code may be somewhat
lacking in documentation/explicative
purposes.

Code commenting is limited or
non-existent. Code does not
clearly delineate author and does
not do an adequate job of
documentation and/or explanation.

Procedural
Abstraction

Code uses procedural abstraction
effectively, assigning methods to
handle repetitive tasks. Methods
are well named and efficiently
written. Method names clearly
indicate purpose.

Code uses procedural abstraction.
Methods are used but may be over
or under utilized. Methods are well
named. Method names indicate
purpose.

Procedural abstraction is not used
or very minimally used. Methods, if
they exist, may not be
appropriately named and are not
efficient. Method names may or
may not indicate purpose.

Data Abstraction Data abstraction is effectively used
through the development of
classes. Classes are well
organized, efficiently written and
use the concepts of encapsulation.

Data abstraction is used through the
development of classes. Classes
are organized, but may not use the
concepts of encapsulation.

Data abstraction is not used or
minimally utilized. Classes, if they
exist, may be disorganized and
may not use the concepts of
encapsulation.

Program Flow The program effectively separates
data, functionality and display. The
program would easily allow for a
different type of output (display)
and input (data) without major
modification.

The program attempts to separate
data, functionality and display,
though it may not be done as
effectively as possible. The
program would allow for a different
type of output and input, but may
require some modifications.

The program does not attempt to
separate data, functionality and
display OR does so unsuccessfully
leading to major required revisions,
should the output or input be
altered.

Final Product The final product shows significant
student learning and reflection.
Design decisions show
thoughtfulness and provide a
logical and smooth flow of
information. There is evidence of

The final project shows some
evidence of student learning and
reflection. Design decisions show
some thoughtfulness and provide all
a logical flow of information. There
is evidence of student effort.

The final project shows minimal
student learning and/or reflection.
Design decisions seem unfounded
and expedient. There is minimal
evidence of student effort

exemplary student effort.

Question 1 At least two difficulties/opportunities
are discussed. The process of
resolution/incorporation in the
development of the program is
included. At least one of the items
is an independent
struggle/success. The answer is
within the 200 word maximum.

At least two difficulties/opportunities
are discussed. The process of
resolution/incorporation in the
development of the program may
not be included. One of the items
may or may not be independent.
The answer is within the 200 word
maximum.

There may or may not be two
difficulties/opportunities discussed.
The process of
resolution/incorporation in the
development of the program may
not be included. One of the items
may or may not be independent.

Question 2 A program segment containing an
individually developed abstraction
is delivered. It has been marked
with a rectangle and there is a
clear, effective description of how it
helped manage the complexity of
the program. The answer is within
the 200 word limit.

A program segment containing an
individually developed abstraction is
delivered. It may be marked with a
rectangle and there is a description
of how it helped manage the
complexity of the program. The
answer is within the 200 word limit.

There may or may not be a
program segment containing an
individually developed abstraction.
There may or may not be markup
and/or a description of how it
helped manage the complexity of
the program.

20 -> 100​ ​ 15 -> 85​ 11/12 -> 75​ 8/9 -> 65​​ 5 -> 50​ ​ 2 -> 20
18/19 -> 95​ ​ 13/14 -> 80​ 10 ->70​ 6/7 -> 60​ ​ 4 -> 40​ ​ 1 -> 10
16/17 -> 90​ ​ ​ ​ ​ ​ ​ ​ 3 -> 30​ ​ 0 -> 0

NOTES:

