
Practice Session 3: Git: Version Control
System

Make sure that you have already gone through Lab-02

In this practice session, you will get familiar with the git version control system. You will use the
Institute's GitLab environment. After this practice session, you should be able to

●​ create and manage the repository
●​ create and merge branches
●​ resolving merge conflicts
●​ Getting involved with other projects through forking the repo. creating merge request, etc
●​ you should be able perform most of the above tasks through command line interface

What are we going to do?

During this lab session, your tasks will involve familiarising yourself with fundamental Git commands
up to Exercise 4. In the deliverable section, you will be required to create a GitLab project for each of
the previous lab materials and subsequently push the corresponding code and associated
screenshots to their respective projects as shown in the above Figure. As an illustration, for Lab01,
you should push the "flask-app" directory, along with any screenshots captured during the Lab01
practice session.

https://docs.google.com/document/d/1N3-SR6at9NAACqU1wtLHU1MNSr8IJpE6/edit#heading=h.gjdgxs

Pre-Requisites:
basic bash commands; ls, vim or vi, cat, mkdir, cd etc.

Please Note!!
We are performing this lab on the Linux terminal (bash) of controller VM, however you can also try with the
following IDEs for example Visual Studio Code, Git Desktop.

○​ Visual studio code has several features for example, ssh to vm, create code, use git etc.
■​ Running on Windows, Linux, Mac

○​ Git Desktop is basically used to manage your code in VCS (github or gitlab)
■​ Running on Windows, Linux, Mac

Exercise 1: Creating first repository
Intro: In this exercise you will get familiar with the basic Git commands, including installation and configuration
of git, creating repositories, cloning repositories etc. You will not use Github rather the GitLab environment
provided by the institute.

1.1: Create Institute GitLab environment

In this practice session, we will not use GitHub. We will use the Institute provided GitLab environment.

1.​ Go to https://gitlab.cs.ut.ee/
2.​ Login using University username and password

1.2: Connecting to virtual machine and check for git installation
1.​ SSH to your VM
2.​ Check for installation git --version

1.3: Configure Git

1.​ To review the configuration setting at any time, issue the following command.​
 git config --list

2.​ For global settings you may use --global option, e.g. git config --global --list
3.​ Configure user information to be used for all the local repositories. Make sure you put your information

in quotes " ".
○​ git config --global user.name "Your Name"
○​ git config --global user.email "your@email.id"

4.​ you can find the configuration file at ~/.gitconfig
○​ To see the configuration file enter cat ~/.gitconfig

1.4: Create first repo locally

https://code.visualstudio.com/docs/setup/setup-overview
https://desktop.github.com/
https://gitlab.cs.ut.ee/

1.​ Open Git Bash Terminal
2.​ Goto your home directory
3.​ Create a directory with the name you want to use as your repository name.

○​ mkdir firstrepo
○​ cd firstrepo

4.​ Initialise the git repo with
○​ git init command
○​ This will add a .git directory with some necessary information
○​ You can go inside and check the directory

1.5: Status of the repository

1.​ This refers to the state of the working directory and the staging area. Enter the command git status
inside firstrepo directory.

On branch master
No commits yet
nothing to commit (create/copy files and use "git add" to track)

DIY: learn by yourself the meaning of the above lines. You should be able to recall the
concepts of branching, commit, tracking/staging.

1.6: Staging the file

1.​ What is staging? Staging is an intermediate phase prior to committing a file to the repository with the
git commit command.

2.​ Now you are inside firstrepo directory.
3.​ Let's first create two new empty files.

○​ touch LICENCE
○​ touch readme.md

4.​ Now if you enter the git status command, you should be able to see that two files are untracked.
5.​ Add the above files to git tracking system. This is also referred to as staging the files.

○​ git add LICENCE
○​ git add readme.md

6.​ Now check the status of your repo using the git status command and find the meaning of the
output by yourself.

○​ git status​

1.7: Committing the files

1.​ Now you are inside firstrepo directory.

2.​ Let's make an initial commit and check the status. The -m option lets you give a short summary of this
commit.

○​ git commit -m "Initial repo commit"

1.​ Now again check the status with the git status command.
2.​ Modifying the Existing readme.md file

○​ Open the readme.md file with the vim readme.md command and add "Git is cool.."
line.

○​ Enter git add command: git add . . Here . (dot) at the end of the command represents
everything in the current directory. In our case, the command will add only the readme.md file.

○​ Commit the changes with git commit command. e.g. git commit -m "readme file
updated."

3.​ Similarly, update the LICENCE file with the content available at
https://www.apache.org/licenses/LICENSE-2.0.txt and make a commit.

4.​ To see the history of commits, issue git log command.

DIY: Find the ans: What information can be obtained from the output of git log command?

1.8: Find the difference between two changes

git diff command takes two inputs (e.g. hash of two commits) and reflects the differences between them.
Make multiple changes and commits to the readme file.

1.​ Enter the git log command.
2.​ Choose any two commit hashes, say <Commit-hash1> and <Commit-hash2>
3.​ Enter the git diff command with both hashes: git diff <Commit-hash1>

<Commit-hash2>​
 DIY: Find the ans: how to interpret git diff command?

1.9: Pushing the changes to remote repo

So far all the changes are made locally. Now its time to push the code changes to your remote gitlab repo
using the git push command.

1.​ push the local repo to your remote gitlab account. You should replace dehury with your gitlab user
account name.

○​ git remote add master https://gitlab.cs.ut.ee/dehury/firstrepo
○​ git push master

https://www.apache.org/licenses/LICENSE-2.0.txt
https://www.apache.org/licenses/LICENSE-2.0.txt
https://gitlab.cs.ut.ee/dehury/firstrepo

2.​ Screenshot 1.9-1: Take the screenshot of the output similar to below:

3.​ To verify, go to your remote gitlab account at https://gitlab.cs.ut.ee/ and see if it is present. The

repository should be available at https://gitlab.cs.ut.ee/dehury/firstrepo. You should
replace dehury with your Gitlab username.

4.​ Screenshot 1.9-2: Take the screenshot of the web UI similar to below:

5.​ Now in the Git Bash terminal come outside the firstrepo directory with cd .. command

1.10: Clone a repo from your remote gitlab account

https://gitlab.cs.ut.ee/
https://gitlab.cs.ut.ee/dehury/firstrepo.

1.​ login to your gitlab account https://gitlab.cs.ut.ee/
2.​ Create a new repo

○​ Click on New Project button

○​ Select "Create blank project"

○​ Enter the project name as secondrepo in Project slug field and group should be your

username(ex: dehury)

https://gitlab.cs.ut.ee/

○​ Leave everything else to its default and click on Create project.

3.​ Now go to your git terminal and make sure you are **not** inside firstrepo directory.

○​ enter clone command: git clone <url of the second repo>
●​ e.g. git clone https://gitlab.cs.ut.ee/dehury/secondrepo. You should replace dehury with

your Gitlab username.
●​ Screenshot 1.10: Take the screenshot of your terminal output similar to below:

○​ At this point, this may ask you for the university's username and password.
○​ Now you should see the secondrepo directory available in currect directory. Change the

current directory to secondrepo directory, using cd secondrepo command.
○​ Here you can see the only default readme.md file.

Exercise 2: Branches and Merging
Intro: Branching means you diverge from the main line of development and continue to do work without
messing with that main line. The default branch name in Git is master. As you start making commits, you’re
given a master branch that points to the last commit you made. git init command creates a master branch by
default and most people don’t bother to change it.

We will use the firstrepo repository in this exercise.
Go to the Terminal, cd firstrepo. To recap: in the current directory, you have two files: readme.md and
LICENSE.

https://gitlab.cs.ut.ee/dehury/secondrepo

2.1. Creating a New Branch

Create a new branch called branch-ex2 using git branch branch-ex2 command. This creates a new
pointer to the same commit you’re currently on. It is a good practice to use branches rather than the master
branch. This allows you to not mess with the main code.

2.2. Listing branches

git branch <options> command allows you to list, create, or delete branches. List all the branches using
the git branch command. Here you should see following two branches​
$ git branch

 branch-ex2
 * master

The * indicates the current branch.

2.3. Change the current branch

1.​ git checkout <branch name> is used to switch to another branch. Let's switch to the newly
created branch:

○​ git checkout branch-ex2
2.​ Now enter git branch command to see the current active branch. The output changes to following:​

$ git branch

 * branch-ex2
 master

2.4. Modify new branch content

1.​ Now let’s append a new line to the readme.md file.
○​ echo "Now I am in branch-ex2" >> readme.md

2.​ Stage the readme.md changes : git add readme.md
3.​ Commit the changes on this branch: git commit -m "readme file updated in

branch-ex2"
4.​ Check the repository status using the git log command. Here, you should see that the commits are

on branch branch-ex2.
5.​ Now check the content of the readme.md file. Here you should see the line saying Now I am in

branch-ex2.
6.​ Screenshot 2.4-1: Using git push --set-upstream master command push all the changes of

this branch to your remote gitlab account and take the screenshot terminal output. Sample output given

below:

7.​ Screenshot 2.4-2: Using your browser, go to your remote Gitlab repo and take the screenshot showing

the update status. Sample output given below:

2.5. Merge the content of multiple branches

1.​ Here we will merge the content of the readme.md file from branch-ex2 to master branch using the
git merge <source branch-name> command.

2.​ Lets first checkout the master branch: git checkout master
3.​ We are now in the master branch. Lets first verify if the line Now I am in branch-ex2 is present

using cat readme.md command. As expected, that line should not be present in this branch.
4.​ Now issue git merge command: git merge branch-ex2 -m "merging readme file to

master"
5.​ Screenshot 2.5-1: From the terminal push all the changes of this branch to your remote gitlab account

and take the screenshot. Sample output given below:

6.​ Screenshot 2.5-2: Using your browser, go to your remote Gitlab repo and take the screenshot showing
the update status. Sample output given below:

7.​ Now check the content of the readme.md file using cat readme.md. The changes from the

branch-ex2 branch should be available in the current master branch.

2.6. Deleting a branch

1.​ Make sure that branch-ex2 and master is available using the git branch command.
2.​ Checkout the master branch: git checkout master
3.​ Delete the branch-ex2 branch using following command:

○​ git branch -d branch-ex2
4.​ Push all the changes to your remote gitlab account.

5.​ Question: what will happen if you are checked out at branch-ex2 while deleting branch-ex2?​
 You will get the error similar to below:​
 $ git branch -d branch-ex2

error: Cannot delete branch 'branch-ex2' checked out at 'D:/firstrepo'

6.​ Question: what will happen, if the branch-ex2 is not fully merged with the master branch?​
You will get following error:​
 $ git branch -d master

error: The branch 'master' is not fully merged.
If you are sure you want to delete it, run 'git branch -D master'.

Exercise 3: Handling Merge Conflicts

Conflict arises when you may have made overlapping changes to a file, and Git cannot automatically merge
the changes. In this exercise we will see how to handle the conflicts.

3.1. Update the readme file with some extra lines.

Lets append some new lines to the readme.md file. Make sure that you are inside firstrepo in your git
terminal.

1.​ Append two new lines using following commands:
○​ echo "This line is added in master branch." >> readme.md
○​ echo "This is just an extra line inserted while in master branch." >>

readme.md
2.​ Stage the file: git add .
3.​ Commit the staged content: git commit -m "added some extra lines to readme file"
4.​ At this point the content of readme.md file should be:

 Git is cool..
 Now I am in branch-ex2
 This line is added in master branch.
 This is just an extra line inserted while in master branch.

3.2. Create and checkout new branch

1.​ Lets first create a new branch called branch-ex3 using the git branch branch-ex3 command.
2.​ Switch to or checkout the new branch: git checkout branch-ex3
3.​ Open readme.md file and update the third line:​

From: This line is added in master branch.​
To: This line is MODIFIED in BRANCH-EX3 branch.

4.​ Stage and commit the changes:
○​ git add .
○​ git commit -m "readme file modified in branch-ex3"

5.​ Here, the content of the readme.md file should be:

 Git is cool..
​ Now I am in branch-ex2
​ This line is MODIFIED in BRANCH-EX3 branch.
​ This is just an extra line inserted while in master branch.

3.3. Checkout master branch and modify the readme.md file

Now lets again modify the same file in master branch:

1.​ First checkout master branch: git checkout master
2.​ Verify the content of the readme.md file. The content should be as below:

 Git is cool..

​ Now I am in branch-ex2
​ This line is added in master branch.
​ This is just an extra line inserted while in master branch.

3.​ Lets update again the third line of readme.md file.​
From: This line is added in master branch.​
To: This line is RE-MODIFIED in MASTER branch.

4.​ Stage and commit the changes
a.​ git add .
b.​ git commit -m "readme file re-modified in master"

5.​ Now the content of readme.md file should look like:

 Git is cool..
​ Now I am in branch-ex2
​ This line is RE-MODIFIED in MASTER branch.
​ This is just an extra line inserted while in master branch.

3.4. Merge to master branch

Now at this point we will merge the branch-ex3 branch to master branch.

1.​ Checkout master branch: git checkout master
2.​ Merge the branch-ex3 branch using git merge branch-ex3 command.
3.​ Here you will get following similar error:

​ Git is cool..
​ Auto-merging readme.md
​ CONFLICT (content): Merge conflict in readme.md
​ Automatic merge failed; fix conflicts and then commit the result.

4.​ If you now see the content of readme.md file, this should look like: ​
$ cat readme.md

​ Git is cool..
​ Now I am in branch-ex2
​ <<<<<<< HEAD
​ This line is RE-MODIFIED in MASTER branch.
​ =======
​ This line is MODIFIED in BRANCH-EX3 branch.
​ >>>>>>> branch-ex3
​ This is just an extra line inserted while in master branch.

5.​ The readme.md file now contains information to help you find the conflict. The line between <<<<<<<
HEAD and ======= represents the line from the master branch and the line between ======= and
>>>>>>> branch-ex3 represents the line from branch-ex3 branch.

6.​ Lets remove the line from the master branch and keep the line from branch-ex3 branch.​
For this remove following lines from the readme.md file:

​ <<<<<<< HEAD
​ This line is RE-MODIFIED in MASTER branch.
​ =======

and

​ >>>>>>> branch-ex3

7.​ Now the readme.md file should look like:

​ Git is cool..
​ Now I am in branch-ex2
​ This line is MODIFIED in BRANCH-EX3 branch.
​ This is just an extra line inserted while in master branch.

8.​ Now Stage and commit the changes
a.​ git add .
b.​ git commit -m "manually conflict handled"

9.​ Screenshot 3.4-1: From the terminal push all the changes of this branch to your remote gitlab account
and take the screenshot. Sample output given below:

10.​Screenshot 3.4-2: Using your browser, go to your remote Gitlab repo and take the screenshot showing
the update status. Sample output given below:

Exercise 4: Forking and merging a branch
Intro: A fork is a copy of a repository. Forking a repository allows you to freely experiment with changes
without affecting the original project.

In this exercise your going to complete following tasks:

●​ Forking the main repository
(https://gitlab.cs.ut.ee/devops2023-fall/all-practice-sessions/prac03-gitlab_shared) to your gitlab
account.

●​ You will clone the forked repository and create a branch, modify it by adding your files and merge it with
your forked repository.

●​ Finally, you will send merge request to owner of the main repository
(https://gitlab.cs.ut.ee/devops2023-fall/all-practice-sessions/prac03-gitlab_shared)

4.1. Forking a project

●​ Login to your remote GitLab account: https://gitlab.cs.ut.ee
●​ Go to https://gitlab.cs.ut.ee/devops2023-fall/all-practice-sessions/prac03-gitlab_shared

https://gitlab.cs.ut.ee/devops2023-fall/all-practice-sessions/prac03-gitlab_shared
https://gitlab.cs.ut.ee/devops2023-fall/all-practice-sessions/prac03-gitlab_shared
https://gitlab.cs.ut.ee
https://gitlab.cs.ut.ee/devops2023-fall/all-practice-sessions/prac03-gitlab_shared

●​ Fork this repository (GUI)

4.2. Clone your forked project, create and add your files and merging

●​ Clone that repository to your local environment using the git clone <url> command. The url
repository for cloning can be found here

●​ Make a new branch ex4-dehury using git branch ex4-dehury. You should replace dehury

with your name.
●​ Checkout the newly created ex4-dehury branch using git checkout ex4-dehury. Replace

dehury with your name.
●​ Create a directory: mkdir dehury && cd dehury. Replace dehury with your name.
●​ Create a file hello.txt inside the dehury directory using the following command.​

 echo "Helloooo, Its <your_name> speaking from DevOps course." > hello.txt
●​ Change to parent directory cd ..
●​ Stage parent directory git add .
●​ Commit the changes locally using git commit -m "change from <your_name>"
●​ See the list of existing remotes git remote
●​ Add a remote with the name main using the command git remote add main

https://gitlab.cs.ut.ee/<your_gitlab_account_username>/prac03-gitlab_shared
●​ Push the changes git push main

https://gitlab.cs.ut.ee/%3Cyour_gitlab_username%3E/DevOps21FallPub.git

●​ Check out git checkout main and Merge the changes to your repository git merge
ex4-dehury. Replace dehury with your name.

●​ Push the final changes git push main
●​ After this you should see the following changes in your repo

4.3. Sending merge request to owner of the main repository

Here, you can send a merge request in two ways: 1)Gitlab GUI 2) git cmd line interface

●​ Create a merge request using GUI, for this go to your gitlab project and create as shown below:

●​ Make sure, you added correct projects as shown below

●​ If everything goes well, PI and TAs will get a merge request notification.

Deliverable: Uploading Lab01 and Lab02 content
Note!! You can use Visual Studio Code or Git Desktop in your laptop for this task if needed. Here is the guide
for using git commands in Visual Studio Code

In this Exercise you will create projects and upload the content/materials of Lab01 and Lab02. For this we
have already created the required group and sent you the invitation email.

-​ Please check your university email and find the invitation email with the subject “dehury invited
you to join GitLab”.

-​ The group name and path should be in the following format:
-​ devops2023-fall/students/devops2023Fall-<lastname>-<studyCode>

-​ e.g. devops2023-fall/students/devops2023Fall-dehury-xxxxxx
-​ You are invited to join the group as a “Maintainer”. You are not authorised to access other

students’ groups.
-​ Create the first project with the name “Prac01 - Etais Intro and Flask web app”

-​ Refer Deliverables section of Lab01.
-​ Unzip the zip file that you had uploaded to the course wiki page.
-​ Push the “flask-app” directory and all the “screenshots” to the “Prac01 - Etais Intro

and Flask web app” project. (PS!! Please ignore python .venv files)
-​ Create the second project with the name “Prac02-Docker”

-​ Refer Deliverables section of Lab02.
-​ Unzip the zip file that you had uploaded to the course wiki page.
-​ Push the “Flask-webapp” directory and all the “screenshots” to the “Prac02-Docker”

project.
-​ Create third project “Prac03-VCS-Gitlab”

-​ Copy all the screenshots so far you have taken (in the previous exercises) to this directory.
This can be done manually using windows explorer or similar environments in other OSs.

-​ Add and commit to this project
-​ [UPDATE] Upload to Course wiki page

-​ Upload the screenshot taken wherever mentioned
-​ Pack the screenshots (if any) and code (if any) into a single zip file and upload them

through the submission form.

https://code.visualstudio.com/docs/sourcecontrol/intro-to-git
https://docs.google.com/document/u/0/d/15qaywI9Ju-eu5PNzJYF3pdid-AftlEjbhIT0lUJHW4M/edit
https://docs.google.com/document/d/1Y32tQxXsL5svF0DHsxJYPs8Rke8VqdfLXJEn32Y8S2A/edit?usp=sharing
https://docs.google.com/document/d/15qaywI9Ju-eu5PNzJYF3pdid-AftlEjbhIT0lUJHW4M/edit#heading=h.6yo192o2rz0l
https://docs.google.com/document/u/0/d/15qaywI9Ju-eu5PNzJYF3pdid-AftlEjbhIT0lUJHW4M/edit
https://docs.google.com/document/d/1Y32tQxXsL5svF0DHsxJYPs8Rke8VqdfLXJEn32Y8S2A/edit#heading=h.awiobnhlhnvz
https://docs.google.com/document/d/1Y32tQxXsL5svF0DHsxJYPs8Rke8VqdfLXJEn32Y8S2A/edit?usp=sharing
https://courses.cs.ut.ee/2022/DevOps/fall/Main/Lab03

	Practice Session 3: Git: Version Control System
	Make sure that you have already gone through Lab-02
	What are we going to do?

	Pre-Requisites:
	Exercise 1: Creating first repository
	1.1: Create Institute GitLab environment
	1.2: Connecting to virtual machine and check for git installation
	1.3: Configure Git
	1.4: Create first repo locally
	1.5: Status of the repository
	1.6: Staging the file
	1.7: Committing the files
	1.8: Find the difference between two changes
	1.9: Pushing the changes to remote repo
	1.10: Clone a repo from your remote gitlab account

	Exercise 2: Branches and Merging
	2.1. Creating a New Branch
	2.2. Listing branches
	2.3. Change the current branch
	2.4. Modify new branch content
	2.5. Merge the content of multiple branches
	2.6. Deleting a branch

	Exercise 3: Handling Merge Conflicts
	3.1. Update the readme file with some extra lines.
	3.2. Create and checkout new branch
	3.3. Checkout master branch and modify the readme.md file
	3.4. Merge to master branch

	Exercise 4: Forking and merging a branch
	4.1. Forking a project
	4.2. Clone your forked project, create and add your files and merging
	4.3. Sending merge request to owner of the main repository

	Deliverable: Uploading Lab01 and Lab02 content

