
Lab Assignment: Inheritance Inheritance

You will be given these incomplete class structures:

1.​Punnet.java (this one is complete)
2.​LivingThing.java
3.​Animal.java (inherits from LivingThing)
4.​Dog.java (inherits from Animal)
5.​SomethingNew.java (you decide what this inherits from)
6.​Gene.java

Your task is to complete the classes so that the simulation runs properly. In addition to the class notes on
the basics of graphics applications, you should look up the APIs for Color
(https://docs.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html) and Graphics (
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html). These will help you to draw interesting
things with interesting colors.

If you finish the lab, there is an extra credit opportunity. However, please make separate versions of your
files so that you do not lose your work from the main part of the lab.

Extra Credit
An Abstract Class is one that is never intended to be constructed. It is there merely for reference type. In
it, you will find at least one abstract method, which is nothing more than a method signature. Every class
that inherits from an abstract class must implement the abstract method, otherwise a compile time error
results.

1.​ Study the abstract class version of Gene.java and find the abstract method.
2.​ Research incomplete dominance and codominance and how they differ from simple dominance.
3.​ Create three new classes that inherit from Gene.

a.​ SimpleGene: This gene should implement simple dominance. You will need to
implement the method dominant and mix (this should be short and should call
standardMix). This method should return a 1 if the gene is dominant and 0 otherwise.
Does anything else need overridden?

b.​ IncompleteGene: This gene should implement incomplete dominance. The two
characters should be one-digit ints in character form, although you should have a
constructor that accounts for two actual ints being sent in. You should also have a
private data int called value. The value is calculated by selecting a random int
between the two character ints. When you mix two genes, you should still select one
component from parent1 and one component from parent2. dominant should return
value.

c.​ CoGene: This gene should implement co-dominance. The mixing will work the same as
the previous two. dominant should return a 0 for homozygous recessive (e.g., bb), 1 for
heterozygous (e.g., Bb or bB), and 2 for a homozygous dominant pair (e.g., BB).

4.​ You will need to modify the LivingThing class slightly. The body color gene should be made a
CoGene although the reference type should remain a Gene. What does this mean? Half and
half? Polka dots? Stripes? You decide. You will need to change the drawMe method to reflect
this dominance.

5.​ In the animal class, the eye color gene should remain a SimpleGene. What other changes need
to be made?

6.​ The tail gene for the dog should be an IncompleteGene. You will need to make changes to the
drawMe method to reflect this dominance.

https://docs.oracle.com/javase/7/docs/api/index.html?java/awt/Color.html
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics.html

7.​ Finally, do you need to make any changes to the Punnett class? Have a text field that allows
the user to input an integer for the size gene. (Look up the TextField API.) Do any other
changes need to be made? You decide.

