
Archipelago Specs and Features
Updated: August 2022
Current Release Cycle: 1.0.0
Link to this Document: https://tinyurl.com/ArchipelagoOneSpecs
Latest Documentation: https://github.com/esmero/archipelago-documentation/tree/1.0.0-RC3
Previous RC Roadmap: https://github.com/esmero/archipelago-deployment/issues/172
Latest Roadmap: https://github.com/esmero/archipelago-deployment/issues/190
Official Deployment Strategies: Dockerized environment (docker-compose)
https://github.com/esmero/archipelago-deployment/tree/1.0.0​
https://github.com/esmero/archipelago-deployment-live/tree/1.0.0​
Additional Deployment Strategies:
Bare Metal: https://devdbopen.byterfly.eu/doku.php?id=architecture

Docker Containers:

1.​ MySQL 8.0.28/MariaDB 10.6.8
2.​ Solr 8.11
3.​ Cantaloupe 6.0
4.​ PHP-FPM 8.0
5.​ NLP64 (Natural language Processing Server)
6.​ NGINX with Certbot/SSL self renewal
7.​ Min.io (Latest with Gateway Compat)
8.​ Redis 6.2

Drupal Versions: 9.4
Setup/Config: Sync folder with initial Drupal environment setup/config/yaml. Includes all configs
to get started. AMI Set with Demo data updated for 1.0.0

Archipelago Software/Modules

strawberryfield v1.0.0
This is the core module of Archipelago and deals with Digital Objects definitions and Metadata
capabilities. Concern is storage, logic and binding services.

Provides the following core Archipelago features:

-​ Strawberry field Type(SBF):
Smart Drupal Field that can store complete JSON hierarchies (Descriptive and
Technical Metadata) natively in a JSON Database BLOB and exposes via our
Key Name Provider Plugin (UI) direct access to any internal properties/value to
Drupal/Search/Solr (native to Drupal) with querying capabilities.This basically

https://tinyurl.com/ArchipelagoOneSpecs
https://github.com/esmero/archipelago-documentation/tree/1.0.0-RC2
https://github.com/esmero/archipelago-deployment/issues/172
https://github.com/esmero/archipelago-deployment/issues/190
https://github.com/esmero/archipelago-deployment/tree/1.0.0
https://github.com/esmero/archipelago-deployment-live/tree/1.0.0
https://devdbopen.byterfly.eu/doku.php?id=architecture

means that any data/metadata can be merged/extracted/transformed and
exposed to Search/Index/interaction directly via the UI. Even upfront before it
even exists and changed anytime without schema updates.

-​ SBF can manage direct JMESPATH queries against the stored JSON and cache
the results.

-​ SBF expose all data also flattened and a Dictionary of it's internal Keys
-​ Any Drupal Content type needs only a single of these field types to be attached

(Bundle) to be recognized and to be handled as Archipelago Digital Objects
(ADOs).

-​ SBF stores also Activity Stream Metadata to keep track of who created.update
and how it was done. (e.g via a Webform, which one, or via AMI)

-​ SBF generates automatic hierarchical Drupal taxonomies with every new JSON
KEY added (Vocabulary Builder)

-​ Archipelago Digital Objects:
-​ Any Node with a SBF attached is an ADO.
-​ ADOs are simplistic Nodes and have special /do/{uuid} URLs instead of the

/node/{numeric ID} pattern
-​ ADOs trigger Events on Create/Edit/Update/Versioning/Delete
-​ ADOs Store all File (attachments) references and metadata inside the SBF JSON
-​ ADOs can handle any number of Different Files and Formats
-​ ADOs expose Native Drupal Computed fields for “related Objects/Entity

references e.g Collections” and for File entities too
-​ ADOs via SBF can manage direct JMESPATH queries against it's JSON
-​ ADOs self deposit its data/metadata as JSON files inside the permanent Storage.

Means there are always 2 pure text representations on creation of every NODE.
A full metadata JSON and a full Drupal Node dump (also JSON)

-​ File Entities:
File referenced by an ADO’s JSON gets classified, identified and technical
metadata extracted and merged with the main SBF JSON.

-​ CHECKSUM/EXIF/PRONOM/IDENTIFY is run on every File
-​ Technical metadata lives structured and classified by type (image, model,

document) side by side with Descriptive Metadata
-​ Files are sanitized and stored in Persistent Storage (Minio) using a simple

checksum/hash structure/folder and prefixed for faster Cloud access
-​ File storage Structure is plugable/hookable and can be extended to any desired

hierarchy/pattern (OCFL, etc but does not ship in 1.0.0-RC2 with others)
-​ File access is mediated by Archipelago, Drupal usage count too.

-​ Events and Subscribers:
A full set of ADO and JSON based events are defined and Event Subscriber
provided that deal with post processing ADOs in order. From File clean up to
Identification, To labels based on Metadata, to deposit in storage, all happens via
Event Subscribers. Any external Drupal module can tap into these and add extra
functionality.

Performance Benchmarks can be enabled and is tracked on Subscribers too (e.g
time processing on “save”)

-​ Strawberry Flavors:
Special Data Source Definition to Index/Store/expose/Find Post Processed parts
of files/ADOs. E.g for a single PDF, multiple HOCRs are generated. Each page
generates a Strawberry Flavor that ends on its own, Drupal native Solr document
pointing back to the File and ADO that generated it, it's sequence, who
generated it (more on this in Strawberry Runners module), checksum, etc.

-​ HOCR Services:
Dependent on Strawberry Flavors, exposes direct solr Highlights API/endpoints
for HOCR highlights using solr-ocrhighlighting solr plugin (written by the
Bavarian State Library, Archipelago is the first repository to use this in production
outside of its institutional home) shipped with the deployment strategy. This
means direct fast search for HOCR with coordinates without any pre or post
processing.

-​ Hydroponics Service:
Configurable Background processor for Drupal Queues. Triggers via CRON,
drush or manually and does any heavy processing, e.g HOCR, WARC
transformations, Batch Ingest. Works with ReactPHP, a real time timer/loop/multi
child PHP capable of running extremely fast and efficiently. Has UI/UX reset,
monitoring and allows configuring which Queues (inclusive not Archipelago ones
only) will run. Wakes up. Works. Checks work left. Dies. So it does not waste any
CPU/memory resources. It is also Multi Site capable and integrated with Drush
10.

-​ Key name provider Plugins:
Because JSON can be complex and deeply hierarchical and Solr is not, we
provide dynamic properties (using Typed Data API of Drupal) to expose internal
JSON/KEYS/VALUEs to the native Drupal / Search API ecosystem. These
Plugins provide different “extraction” and “exposure” capabilities for SBFs. You
can Setup new ones with knowledge of existing data or based on future needs.
Some Key Name Providers can take a full Vocabulary (schema.org) and use the
properties there in “Expectation” that you use the same ones in your metadata.
Others use JMESPATH queries to take values and expose them to Solr as
multiple flat values, or join multiple sources in one (e.g Subjects from WIKIDATA
and LoC inside a single Solr field). Others can take string/numeric values from
your SBF JSON and cast them into real entities to allow parent/child references
to be defined dynamically and index in Solr data from a Parent/Parent collection.
New Key Name Providers are being built in each release.

-​ Drush 10 Commands:
JSON API based Drush wrapper for ingestion of ADOs using a single JSON file
(only the metadata) and folder with files. Wraps the JSON API, uploads files first,
recovers UUIDS, enriches the JSON and ingests the New ADOs. UUIDs can be
provided to avoid double ingest of the same source.

-​ Field Widget:
Provides a basic RAW JSON edit widget that can be used by admins to quickly
correct/edit the SBF JSON directly without any complex UI. It also does JSON
validation.

Webform_strawberryfield v1.0.0
This module handles Individual ADO Ingest/edit workflows via Drupal Webforms. It also wraps
all our Linked data functionality and endpoints. Concern is INPUT.

-​ Field Widgets
Provides 2 Field Widgets for SBF. These widgets allow any Webform (even
multistep) to be used as Input Workflow for new/existing ADOs. These widgets
Dynamically load Ajax driven Webforms that can read/write JSON Metadata back
and forth from SBF (ADOs). Each Webform can be customized and has settings
that allow them to be used across multiple Form Modes. This gives the user a
high flexibility to build differentiated ways of editing and creating nodes and even
separate via permission roles on what can/not be added/edited.

-​ Webform handler
To allow Drupal Webforms to read/write JSON and also serve as standalone
URLs for submitting ADOs, this module provides a special Webform handler that
deals with reading data from an ADO, populating the Webform and managing all
the internals needed to fill back the ADO during ingest/edit. This Webform
handler can be attached to any Webform to allow it to act as ingest/edit workflow
using the provided Widgets or also as a standalone URL/endpoint for self deposit
workflows. It also provides automatic saving capabilities (and deferred
validation), so users can start an ingest, leave a session unfinished and come
back before a week to complete the ingest. Jumping between pages/steps is
also allowed. This handler can also map Elements directly to an ADO SBF when
not used via a Widget/Form Mode.

-​ Metadata Webform Elements
This module provides additional elements to the built in Webform ones (50+) that
can be used in the “Build” Webform interface for Metadata/Linked data needs to
create a better Metadata edit/ingest experience. It provides

-​ Wikidata autocomplete
-​ Complete Set of LoC (anything + RDF based selections) autocompletes
-​ Nominatim (Open StreetMaps) with free text query
-​ Getty AAT (Fuzzy and exact) autocomplete
-​ VIAF autocomplete
-​ Panorama Tour Builder with multiple Scenes and Hotspots
-​ Agents with Roles and LoC Autocomplete
-​ XML Import to JSON
-​ CSV Import to JSON
-​ Strawberry Field Transplanter (Copies values from any place of the JSON into

other Webform Elements dynamically)
-​ Metadata aware Dates (with Ranges, Free Form, EDTF, ISO8601)
-​ EXIF preview of uploaded Files

-​ Webform Values override/prefill
Allows any Webform to be “pre populated” with data from an existing ADO via an
URL get argument.

-​ LoD API endpoints
All Vocabularies supported by default (and their variants) are exposed as
URL/API endpoints. This can be used by other systems (or by archipelago itself)
to reconcile “labels” against external authorities and give back the correct
label/URI back, or a full list of candidates. All these endpoints are GET based
and return cacheable JSON. They normalize the way of querying the different
sources (some are JSON, REST, others Sparql) giving the user a single/simple
way of asking for LoD.

Format_strawberryfield v1.0.0

The role of this module is to extract and format the RAW JSON into any other representations,
from interactive HTML, Viewers and JS plugins, to Schema based Metadata representations like
IIIF Manifests, GeoJSON, DC, MODS, schema.org, etc (any). This module also provides most
of the core IIIF integrations Archipelago has. Concern is OUTPUT.

-​ Field Formatters
This Module provides a large set of Field Formatters (viewers and Metadata
Casters) to cover most of the use cases we have encountered, new ones can be
added by extending the base Plugins:

-​ IIIF Media Formatter: based on Open Sea Dragon with Custom
Javascript. It can take any referenced Images from a SBF and display
those in an ADO Display or Views/Block based Display. It uses IIIF to
request images, precomputes correct sizes and exposes them to Open
Seadragon. It also binds with Annotorious and allows Direct Edit of
WebAnnotations on any Viewer. Annotations can be edited, added, per
image (when many too) and then Saved/persisted when going into edit
mode

-​ Image Formatter: simplest use case for images, takes an image file and
outputs a configurable HTML image/link using IIIF.

-​ 3D Formatter: uses Three.js to Render 3D files like OBJ and STL files
referenced in any SBF.

-​ Video Formatter: uses HTML5 to render Video with subtitle capabilities
-​ Audio Formatter: uses HTML5 to render audio with subtitle capabilities
-​ PDF Formatter: simplistic PDF rendering using custom integrated pdf.js.

Lacks the “fancy” functionality of the full version (on purpose) but can
stream PDFs (even huge ones) in almost real time without any delay.

-​ Panorama Pannellum Formatter: Can render 360 degree (and less
degrees) Panorama Images and expose hotspots that can open ADOs
and external URLS in a pop up. The same Formatter can also read
Panorama Tours build (imagine a compound) of many other Panorama
based ADOs and connections between scenes. It also has smart webGL
capabilities limiting the IIIF image size to what each device can really
handle a predictive (but simple) memory calculator to avoid calling a IIIF
image size that does not fit in your Cantaloupe Server’s memory (e.g the
38Kx18K Panoramas of Nasa Perseverance Rover that require 2 Gbytes
of RAM per call)

-​ Metadata Display (Twig) Formatter: this is probably the most powerful
of all Formatters. It takes a Metadata Display Entity (provided by this
module) that holds a Twig template inside, pushes JSON and extra
Context data into it and renders it in realtime. This allows users to build
metadata listings, complex interfaces, blocks, etc, without having to
modify the theme, or even embed JSON-LD or any other metadata
directly into the Rendered Page. It's fast caching and very performant.

-​ Mirador Viewer Formatter (version 3): This Formatter is very flexible. It
can take a Metadata Display Entity (that produces a IIIF manifest v2 or
v3), an Metadata Exposed endpoint (that produces a IIIF manifest v2 or
v3), a json KEY with URLs that point to external IIIF manifests or even a
list of other Nodes (also coming from the JSON metadata) to render
complex multi canvas IIIF scenes. All these settings are configurable and

allow users, e.g to showcase comparisons of ADO files with external IIIF
manifests, or a whole Children list of related ADOs. It has also Annotation
Capabilities

-​ Paged Formatter: Implements a custom Internet Archive Bookreader JS
viewer capable of reading from IIIF Manifests via an exposed Metadata
Endpoint or a Metadata Display Entity that outputs a IIIF manifest (V2). A
popular choice (Provided by default in each deployment) is to use this to
render from PDF directly Pages as Images via IIIF. It also integrates
perfectly with our HOCR endpoints and allows highlights. If no HOCR is
processed yet for a Book, PDF or set of Images, it will hide the Search
Field.

-​ Replayweb Formatter: This Formatters integrates (a collaboration with
replay.web) an embedded Web Archive reader/player for WARC and
WACZ files that uses JS Web Workers to render navigable and
searchable Websites inside your ADO. It includes also a fully
customizable selection strategy of which Files to use (e.g in case there
are a WARC and a WACZ of the same content, being WACZ real time
streaming) via JMESPATH. This extra config option is being ported to the
3D viewer/Panorama Viewer/Audio Viewer/etc because it allows users to
define exactly which files they want to be exposed to any viewer, at
metadata level. E.g: only select WebArchives files that are larger than 500
Mbytes, Updated in the last 2 weeks, that are of
"application\/vnd.datapackage+zip" mime type.

-​ Map Formatter: Uses leaflet and custom settings to render maps. Users
can select which tile sources they want to use, zoom level, max zoom
levels, etc. Geographic Data is provided via a Metadata Display Entity
that generates GeoJSON (Huge flexibility) using, e.g, the Nominatim
Webform Element and can also read GEOJSON from external URLS
referenced inside the SBF JSON.

-​ Citation Formatter: Uses twig modified input to generate via CiteProc
any existing Citation format. Includes JS that allows you to change/view
different ones at the same time.

-​ Common functionality: Every Formatter viewer can either use the
Global (per site) IIIF Server or a custom one. Which allows complex
scenarios where certain viewers are serving Images at lower resolutions
with Watermarks while the same viewer for an Curator can expose the full
size. Which JSON key provides the data is also configurable, the number
of media to expose and even the width/height of each Viewer/Formatter.
Also a JMESPATH selector allows an even finer grained option when
multiple source match the basic scenario. Embargoes can be applied to
any formatter (DATE and IP address), an alternative file display can be
used when embargo is present and

Multiple files can be grouped together to generate a semantic unity. E.g a
single Video + 2 subtitles uploaded to the same key will be assumed as
being a group.

-​ Metadata Display Entity
Probably the most important part of Archipelago after the SBF. These special
entities hold User facing/editable Twig templates. These Twig templates can be
used to generate HTML/Display facing elements in each ADO or in Views but
also Formal Metadata (Schema based). Each Metadata Display Entity also
exposes it's desired output format (XML, JSON, HTML, TEXT, CSV, TURTLE,
JSON-LD) and can also read fixed JSON (e.g a list of all available ISO
Languages, things you would not want to ingest to every ADO) from a SBF
added to the same Entity Type. These entities have “self rendering” capabilities
and are Cache Tags aware, meaning if the Source data (a SBF JSON) does not
change they are automatically returned from a previous cache. This makes huge
IIIF manifests or HTML displays to render in no time. We also push additionals
helped data into these templates, like if the user (looking at the output) is logged
in, is admin, the IIIF servers that are configured for to generate IIIF Images and
even the Names/Titles of every Webform Element used to ingest/edit the
metadata (if one decided to use the same “Labels” as during ingest). Users can
create New Metadata Display entities and use them in
Viewers/Displays/Search/Views/Maps and during Ingest via AMI. Templates can
also be used to “transform data” and then index the transformed data into Solr.
basically infinite options.

-​ Exposed Metadata Display Entities
Metadata Display Entities can also be exposed as endpoints (imagine dynamic
Datastreams) on each ADO. for an ADO that lives in your.site.com/ado/uuid you
can give a certain Metadata Display an external Name (e.g mods) and it will be
exposed at your.site.com/ado/uuid/metadata/mods/default.xml (default can be
really any name you want). This is a way of allowing other systems to use your
IIIF Manifests, allow harvesting/downloading of your MODS 3.7, Schema.org,
GeoJSON, DC, QDC, Bibframe, EAD2002, EAD3, etc. There is no limit on how
many you can have and any change on a template will immediately reflect a
cache cleanup. The exposed system is very performant and does Cache
bubbling to keep data always fresh but still cached. Also, it uses the “exposed
and desired” output of each Metadata Display to negotiate the Content-type
header and only allows the correct extensions on the endpoint (no way you can
ask for a .json if the output is XML). We are working on giving these Endpoints
extra API capabilities (REST/SWORD) so you can also configure and expose
controlled arguments (an API builder)

-​ WebAnnotations:
WE expose a full API for WebAnnotations. With add/edit/update capabilities and
temp storage that persists when you log out and come back in your session.
These API/endpoints also keep track of which Images (referenced in the SBF)
were annotated and create inside the JSON/SBF the W3C valid entries.

-​ Lazy Image Loading:
-​ Twig templates can provide image tags with a special CSS class. If that is the

case Archipelago will only request them from the IIIF backend when they enter
the View field of the user (+100px)

-​ Direct access to Files via custom IIIF (mimic) URL:
Drupal is bad at exposing non Public Files to the world. We wrap this functionality
in these modules allowing any file to be downloaded directly if the ADO allows it
in it's access rules. Also provided is a special file streaming wrapper that allows
remote (e.g S3) files to be seeked and be requested by byte ranges. This allows
huge GByte size files (e.g WACZ) to expose it's index first (in the last 64K bytes)
and then stream internals on demand in real time, video streaming, etc.This is
also very memory performant and bytes and ranges are copied and proxied
between remote and requester without consuming large buffers (allowing really
large requests to be made)

-​ View Mode to ADO type Mapper:
Since Archipelago really does not need multiple Content Types (a single Digital
Object type can describe a full range of needs of a repository) but we want that
users can decide how each Object is displayed based on the “metadata/JSON”
type definition, we provide a Drupal View Mode Mapper. Via this you can decide
that an ADO that has the “type” : “Article” JSON value uses a certain View Mode
configured with the Mirador Viewer as main Viewer and a special Object
Description Metadata Display that shows citations but a “type”: “Book” uses a
IABookreader. All this without forcing/setting per Object a View Mode. Still, you
can also, per ADO, at will, select a special View Mode that will override this
customization.

AMI: v0.4.0

​ AMI is our UI/UX batch ADO ingest/edit module. It provides Tabulated data ingest for
ADOs with customizable input plugins. Each Spreadsheet (or Google Spreadsheet) goes
through a Configuration Multi Step setup and generates at the end an AMI Set. AMI Sets then

can be enqueued or directly ingested, its generated Objects purged and reingested again, it's
source data (generated and enriched with UUIDS) CSV replaced, improved and uploaded again
and ingested.
​ The latest version of AMI also includes a Solr Importer plugin that can be used to create
AMI ingests and migrating content from existing Solr-sourcable digital repositories (such as
Islandora 7); a Linked Data Reconciliation tool that can be used to enrich your metadata with
Linked Data (LoD); and new update modes including complete Update, Replace and Append.
​

-​ AMI Setup Steps:
AMI has Ingest, Update and Patch capabilities. AMI has a plugin system to fetch
data. The data can come from multiple sources and right now (RC2) CSV/EXCEL
or Google Spreadsheets are the ones enabled. Direct from Solr was made
available in RC3, and direct from OAI/API is in the works too for future releases.
AMI can read files locally from the server, remotely from URLs or remotely from
Private Backend Storage (S3). It does parent/children validation, makes sure that
parents are ingested first, cleans broken relationships, allows arbitrary multi
relations to be generated in a single ROW (ismemberof, partOf, etc) pointing to
other rows or existing ADOs (via UUIDs) and can process rows directly as JSON
or preprocessed via a Metadata Display entity (twig template) capable of
producing JSON output. These templates can be configured by “type”, Articles
v/s 3DModel can have different ones. Even which columns contain Files can be
configured at that level.

-​ AMI Set Entity:
Ami Sets are special custom entities that hold an Ingest Strategy generated via
the previous Setup steps (as JSON with all it's settings), a CSV with data
imported from the original source (with UUIDs prepopulated if they were not
provided by the user). These AMI sets are simpler and faster than “batch sets”
because they do not have a single entry per Object to be ingested. All data lives
in a CSV. This means the CSV of an AMI set can be corrected and reuploaded.
Users can then Process a Set either putting the to be ingested ADOs in the
queue and let Hydroponics Service do the rest or directly via Batch on the UI.
ADOs generated by a set can also be purged from there. These sets can also be
created manually if needed, and any of the chosen settings modified anytime.
Which AMI set generated the Ingest is also tracked in a newly created ADO’s
JSON and any other extra data (or fixed data e.g common Rights statements, or
LoD) can be provided by a Twig Template. Ingest is amazingly fast. We
monitored Ingest with Remote URL(islandora Datastreams) files of 15Mbytes
average at a speed of 2 seconds per Object (including all post processing)
continuously for a set of 100+.

-​ Linked Data Reconciliation :
Using this tool, you can map values from your topical/subject metadata elements
to your preferred LoD vocabulary source. These mappings can then be
transformed via a corresponding Metadata Display (Twig) template to process the
values into JSON-formatted metadata for your specified AMI set.

-​ Update Modes :

Normal Update functions as before (completely replace all keys and values with
the new source data CSV). The Replace mode will replace only new keys
provided/generated by the set. The Append mode (to be used with caution) will
add values to existing one and will “array-ify” any destination. The “Keep existing
files safe" switch is provided to avoid any Update operations destroying,
modifying, messing, or removing existing files—allowing Descriptive Metadata to
be updated/changed without affecting precious (and super large) assets.

-​ Search and Replace:
This module also provides a simple search/replace text VBO action (handles
JSON as text) and a full blown JSONPATCH VBO action to batch modify ADOs.
The last one is extremely powerful permitting multiple operations at the same
time with tests. E.g replace a certain value, add another value, remove another
value only if a certain test (e.g “type”:”Article” and “date_of_digital”: “2020-09-09”)
matches. If any tests fail the whole operation will be canceled for that ADO. An
incomplete “Webform” VBO action is present but not fully functional yet. This one
allows you to choose a Webform, a certain element inside that Webform and then
find and replace using the same Interface you would see while editing/adding a
new ADO via the web form workflow. Should be ready by RC3.

Strawberry_runners: v0.4.0

This module allows heavy/long running processing on Files/metadata to be configured and
generated as a queue item/worker. Archipelago does not do nor need Derivatives for
Images/Videos/PDFs. All is generated and cached in realtime by the IIIF server. But some larger
formats like +Gbyte WARC files or expensive to process HOCR can run via this module in the
background without any user interaction in an efficient way.

-​ Processors:
Processors are configurable Plugins that can act on ADOs, Files, their Metadata
or other Processors. By default only a few Basic Plugins are provided. E.g The

Binary Processor that can execute any command (bash/script/unix command) in
your server (in our deployments the PHP-FPM docker container) using
files/metadata coming from an ADO as input. Which ADO qualifies can be
configured by many parameters. Files can be filtered by “type” and “mime type”,
etc. Output of a processor can be also configured: It can be another file, it can be
pure data, it can be JSON. Destination can be also configured, the output can be
multiple, another chained processor, Solr Index (Strawberry flavor) and File
attached back to the Original ADO that was processed, JSON back to the
Original ADO. These Processors are also hierarchical (UX) and they can be
connected/linked via the UI/UX and exported/imported and Configuration Entities.
You can add as many as you want and build complex processing pipelines.
Processors always will enqueue (smart) their desired “workers” and then
Hydroponics will do the work. Example: The paged processor will count all pages
of a given PDF. Will then chain (for each page) with the HOCR processor that will
atomically extract a single page of that PDF and output a file that will be indexed
into Solr as a Strawberry Flavor. The warc to wacz one is a Binary Plugin that will
transform a WARC into a WACZ and reattach the result into the same ADO that
provided the file.

-​ Queue Workers:
Since each process is enqueued we made sure they are totally atomic and can
fail without issues. Their “validity” is evaluated again when the turn for actual
processing comes and each one, depending on its destination has failsafe
options to avoid overwriting previous ones or running again duplicated. Queue
workers are in charge of this and provide all the logic.

General Code Base statistics
strawberryfield/strawberryfield

Language files blank comment code

PHP 90 1761 5617 9474

YAML 12 34 10 632

XML 5 0 0 218

JavaScript 1 34 11 191

JSON 1 0 0 38

Markdown 1 12 0 15

SUM: 110 1841 5638 10568

strawberryfield/format_strawberryfield

Language files blank comment code

XML 8 33 25087 129974

PHP 60 1277 3918 9104

JavaScript 18 386 440 2430

YAML 15 69 32 1358

CSS 5 20 6 138

SVG 3 0 0 42

JSON 1 0 0 24

Markdown 1 15 0 20

Twig 2 0 16 6

SUM: 113 1800 29499 143096

strawberryfield/webform_strawberryfield

Language files blank comment code

PHP 49 1466 3470 8041

XML 6 0 0 1652

JavaScript 5 78 150 336

YAML 6 2 2 169

Twig 4 1 64 62

CSS 1 4 0 36

JSON 1 0 0 25

Markdown 1 18 0 24

SUM: 73 1569 3686 10345

archipelago/ami

Language files blank comment code

PHP 44 1168 3649 8402

XML 5 0 0 381

YAML 8 24 4 249

JSON 1 0 0 39

Markdown 1 0 0 2

SUM: 59 1192 3653 9073

strawberryfield/strawberry_runners

Language files blank comment code

PHP 27 585 1712 3190

YAML 8 5 2 342

XML 5 0 0 79

JSON 1 0 0 33

Markdown 1 15 0 19

JavaScript 1 3 0 13

SUM: 43 608 1714 3676

	Archipelago Specs and Features
	Archipelago Software/Modules
	strawberryfield v1.0.0
	-​Strawberry field Type(SBF):
	-​Archipelago Digital Objects:
	-​File Entities:
	-​Events and Subscribers:
	-​Strawberry Flavors:
	-​HOCR Services:
	-​Hydroponics Service:
	-​Key name provider Plugins:
	-​Drush 10 Commands:
	-​Field Widget:

	Webform_strawberryfield v1.0.0
	-​Field Widgets
	-​Webform handler
	-​Metadata Webform Elements
	-​Webform Values override/prefill
	-​LoD API endpoints

	
	Format_strawberryfield v1.0.0
	-​Field Formatters
	-​Metadata Display Entity
	-​Exposed Metadata Display Entities
	-​WebAnnotations:
	-​Lazy Image Loading:
	-​Direct access to Files via custom IIIF (mimic) URL:
	-​View Mode to ADO type Mapper:

	AMI: v0.4.0
	-​AMI Setup Steps:
	-​AMI Set Entity:
	-​Linked Data Reconciliation :
	-​Update Modes :
	-​Search and Replace:

	Strawberry_runners: v0.4.0
	-​Processors:
	-​Queue Workers:

	
	
	
	General Code Base statistics

