

14. Transformation of charge+current 4-vector field derived from Electromagnetic 8-vector field \mathbf{F} in $\text{Cl}_{3,0}(\mathbb{R})$

(Proof that $\rho + \mathbf{J} = \nabla^X \mathbf{F}$ transforms in $\text{Cl}_{3,0}(\mathbb{R})$ like 4-vectors using hermitian conjugate formula, for the Nabla operator defined as: $\nabla^X := d/dt - (d/dx)\mathbf{g} - (d/dy)\mathbf{e} - (d/dz)\mathbf{f}$)

Stan Bleszynski

25-Jan-2020

stanbleszynski@gmail.com

Buckhorn, ON

Summary

This article presents a derivation of the transformation of the electromagnetic charge and current density vector $\mathcal{J} = \rho + \mathbf{J}$, where $\mathcal{J} = \nabla^X \mathbf{F}$ [note¹] and the electromagnetic Clifford vector field \mathbf{F} (in $\text{Cl}_{3,0}(\mathbb{R})$) is assumed to transform under length preserving coordinate change as $\mathbf{F}_2 = \exp(\mathbf{p})^* \mathbf{F}^* (\exp(\mathbf{p}))'$ [note²]. It is also assumed that the 4-vectors such as coordinates $\mathbf{q} = t + \mathbf{g}x + \mathbf{e}y + \mathbf{f}z$ and \mathcal{J} must transform as $\mathcal{J}_2 = \exp(\mathbf{p})^* \mathcal{J}^* \exp(\mathbf{p})^T$ [note³].

Introduction

Clifford Algebraic electromagnetic equation has a form of a 4-dimensional (t, x, y, z) differential operator nabla⁴ applied to the complex electromagnetic field 4-vector $\mathbf{F} = -\mathbf{S} - \mathbf{E} - i\mathbf{B}$ [see⁵], that must equal zero. This can be also expressed as

$$\mathbf{F} = \nabla^I \mathbf{a} \quad (\text{eq.1, see [4]})$$

where \mathbf{a} is defined as $\mathbf{a} = \phi + \mathbf{A}$, where ϕ is electric potential and \mathbf{A} is magnetic vector potential.

The Nabla operator that applies to 4-vector potential field \mathbf{a} is defined in [4] as⁶:

$$\nabla^I = d/dt + (d/dx)\mathbf{g} + (d/dy)\mathbf{e} + (d/dz)\mathbf{f}$$

¹ $\nabla^X := d/dt - (d/dx)\mathbf{g} - (d/dy)\mathbf{e} - (d/dz)\mathbf{f}$ [this form is assumed, to prove that it leads to correct transform for $\mathcal{J} = \nabla^X \mathbf{F}$]

² (')' is quaternion conjugate (example $\mathbf{e}' = -\mathbf{e}$ and $(\mathbf{ef})' = \mathbf{f}'\mathbf{e}'$) We restrict \mathbf{p} to be a linear combination of base vectors $\{\mathbf{g}, \mathbf{e}, \mathbf{f}, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ only.

³ (')^T is hermitian conjugate (example $\mathbf{e}^T = \mathbf{e}$ and $(\mathbf{ef})^T = \mathbf{f}^T\mathbf{e}^T$)

⁴ $\nabla = d/dt - \mathbf{g} d/dx - \mathbf{e} d/dy - \mathbf{f} d/dz$, $d/dt + \mathbf{g} d/dx + \mathbf{e} d/dy + \mathbf{f} d/dz$

⁵ \mathbf{F} = generalised EM field tensor = $-\mathbf{S} - \mathbf{E} - i\mathbf{B} = -\mathbf{S} - E_x\mathbf{g} - E_y\mathbf{e} - E_z\mathbf{f} - i(B_x\mathbf{g} + B_y\mathbf{e} + B_z\mathbf{f})$. The general full form is $\mathbf{F} = -\mathbf{S} - \mathbf{E} - i\mathbf{B} + iM$, however, the imaginary scalar component M of the Clifford EM field vector \mathbf{F} must be zero or constant in order to cancel the unobservable magnetic monopole charge density and magnetic monopole current density. With $M=0$, equation $\nabla \mathbf{F} = 0$ corresponds to the well known Maxwell equation, if we define \mathbf{S} as $\rho + \mathbf{J} = \nabla \mathbf{S}$.

⁶ Partial derivative operator applies first, then a base vector is right-multiplied to the result. The formula can be better understood if the bases $\mathbf{g}, \mathbf{e}, \mathbf{f}$ are put in the denominators ar right-divisions, that is:

$$\nabla^I = d/dt + (d/d(x\mathbf{g})) + (d/d(y\mathbf{e})) + (d/d(z\mathbf{f}))$$

Derivation of transform of \mathcal{J}

This assumes that \mathcal{J} is a derivative of some Clifford field \mathbf{F} that transforms using a formula containing quaternion conjugation). The derivation will be split in two cases: (1) Lorentz transform and (2) 3D Rotation.

1) Lorentz transform of \mathcal{J}

Let us take an arbitrary Lorentz transform generator vector \mathbf{u} that is a linear combination of base vectors $\mathbf{e}, \mathbf{f}, \mathbf{g}$. For the sake of consistency with the previously referenced articles [1] etc, it is assumed that base vector \mathbf{g} represents axis x, \mathbf{e} is axis y and \mathbf{f} is axis z.

Without losing the generality of the proof, we can assume that a general generator vector \mathbf{u} (in $\{\mathbf{g}, \mathbf{e}, \mathbf{f}\}$) is aligned with \mathbf{g} (that is there is some real U that $U\mathbf{g} = \mathbf{u}$). The reference frame can always be rotated to align \mathbf{u} with \mathbf{g} (we leave that without proof)

We will indicate the transformed vectors or coordinates with the subscript 2.

The time-space 4-vector $\mathbf{q} = t + \mathbf{g}x + \mathbf{e}y + \mathbf{f}z$ transform as

$$\begin{aligned} \mathbf{q}_2 &= \exp(\mathbf{u}) \mathbf{q} \exp(\mathbf{u}) \\ \mathbf{q}_2 &= \exp(\mathbf{u}) \mathbf{q} \exp(\mathbf{u}) = \exp(2\mathbf{u})t + \exp(2\mathbf{u})x + \mathbf{e}y + \mathbf{f}z = \quad [\text{note}^7] \\ &\quad t^* \cosh 2U + x^* \sinh 2U + \quad // t_2 \\ &\quad x^* \cosh 2U * \mathbf{g} + t^* \sinh 2U * \mathbf{g} + \quad // x_2 \mathbf{g} \\ &\quad \mathbf{e}y + \quad // y_2 \mathbf{e} \\ &\quad \mathbf{f}z \quad // z_2 \mathbf{f} \end{aligned}$$

(where $U := \mathbf{u}/\mathbf{g}$)

therefore:

$$\begin{aligned} t_2 &= t^* \cosh 2U + x^* \sinh 2U \\ x_2 &= x^* \cosh 2U + t^* \sinh 2U \\ y_2 &= y \\ z_2 &= z \end{aligned}$$

We will transform $\mathcal{J} = \nabla^x \mathbf{F} \leftarrow \mathcal{J}_2 = \nabla^x \mathbf{F}_2$ in reverse, starting with the formula :

$$\mathcal{J} = \nabla^x \mathbf{F} = \frac{d\mathbf{F}}{dt} - \frac{d\mathbf{F}}{dx} \mathbf{g} - \frac{d\mathbf{F}}{dy} \mathbf{e} - \frac{d\mathbf{F}}{dz} \mathbf{f}$$

and evaluating the inner terms.

⁷ We use the following property of exponential function: $\exp(\mathbf{g}U)^* \mathbf{g} = \mathbf{g}^* \exp(\mathbf{g}U)$, For perpendicular vectors (i.e. for anti-commuting vectors), for example \mathbf{g} and \mathbf{e} it follows $\exp(\mathbf{g}U)^* \mathbf{e} = \mathbf{e}^* \exp(-\mathbf{g}U)$

$$\frac{d\mathbf{F}}{dt} = (\frac{d\mathbf{F}}{dt_2})^*(\frac{dt_2}{dt}) + (\frac{d\mathbf{F}}{dx_2})^*(\frac{dx_2}{dt}) + (\frac{d\mathbf{F}}{dy_2})^*(\frac{dy_2}{dt}) + (\frac{d\mathbf{F}}{dz_2})^*(\frac{dz_2}{dt}) = \\ (\frac{d\mathbf{F}}{dt_2})^*(\cosh 2U) + (\frac{d\mathbf{F}}{dx_2})^*(\sinh 2U)$$

$$\frac{d\mathbf{F}}{dx} = (\frac{d\mathbf{F}}{dt_2})^*(\frac{dt_2}{dx}) + (\frac{d\mathbf{F}}{dx_2})^*(\frac{dx_2}{dx}) + (\frac{d\mathbf{F}}{dy_2})^*(\frac{dy_2}{dx}) + (\frac{d\mathbf{F}}{dz_2})^*(\frac{dz_2}{dx}) = \\ (\frac{d\mathbf{F}}{dt_2})^*(\sinh 2U) + (\frac{d\mathbf{F}}{dx_2})^*(\cos 2U)$$

$$\frac{d\mathbf{F}}{dy} = (\frac{d\mathbf{F}}{dt_2})^*(\frac{dt_2}{dy}) + (\frac{d\mathbf{F}}{dx_2})^*(\frac{dx_2}{dy}) + (\frac{d\mathbf{F}}{dy_2})^*(\frac{dy_2}{dy}) + (\frac{d\mathbf{F}}{dz_2})^*(\frac{dz_2}{dy}) = (\frac{d\mathbf{F}}{dy_2}) \\ \frac{d\mathbf{F}}{dz} = (\frac{d\mathbf{F}}{dt_2})^*(\frac{dt_2}{dz}) + (\frac{d\mathbf{F}}{dx_2})^*(\frac{dx_2}{dz}) + (\frac{d\mathbf{F}}{dy_2})^*(\frac{dy_2}{dz}) + (\frac{d\mathbf{F}}{dz_2})^*(\frac{dz_2}{dz}) = (\frac{d\mathbf{F}}{dz_2})$$

Now, we will substitute the \mathbf{F} expressed in terms of the reverse transformed \mathbf{F}_2 into the above formulae, that is: $\mathbf{F} = \exp(-\mathbf{u}) \mathbf{F}_2 \exp(+\mathbf{u})$. This will yield:

$$\begin{aligned} \mathcal{J} = \nabla^x \mathbf{F} = & \exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dt_2})^* \cosh 2U + (\frac{d\mathbf{F}_2}{dx_2})^* \sinh 2U \exp(+\mathbf{u}) + \\ & -\exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dt_2})^* \sinh 2U + (\frac{d\mathbf{F}_2}{dx_2})^* \cosh 2U \exp(+\mathbf{u})^* \mathbf{g} + \\ & -\exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dy_2})^* \exp(+\mathbf{u})^* \mathbf{e} + \\ & -\exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dz_2})^* \exp(+\mathbf{u})^* \mathbf{f} \\ = & \exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dt_2})^* (\cosh 2U - \sinh 2U^* \mathbf{g}) + \\ & -\exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dx_2})^* (\cosh 2U - \sinh 2U^* \mathbf{g})^* \mathbf{g} \exp(+\mathbf{u}) + \\ & -\exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dy_2})^* \mathbf{e} \exp(-\mathbf{u}) + \\ & -\exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dz_2})^* \mathbf{f} \exp(-\mathbf{u}) \\ = & \exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dt_2})^* \exp(-2\mathbf{u}) \exp(+\mathbf{u}) + \\ & -\exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dx_2})^* \mathbf{g} \exp(-2\mathbf{u}) \exp(+\mathbf{u}) + \\ & -\exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dy_2})^* \mathbf{e} \exp(-\mathbf{u}) + \\ & -\exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dz_2})^* \mathbf{f} \exp(-\mathbf{u}) \\ = & \exp(-\mathbf{u})^* (\frac{d\mathbf{F}_2}{dt_2} + (\frac{d\mathbf{F}_2}{dx_2}) \mathbf{g} + (\frac{d\mathbf{F}_2}{dy_2}) \mathbf{e} + (\frac{d\mathbf{F}_2}{dz_2}) \mathbf{f}) \exp(-\mathbf{u}) = \\ = & \exp(-\mathbf{u})^* (\nabla^x_2 \mathbf{F}_2) \exp(-\mathbf{u}) \\ = & \exp(-\mathbf{u})^* (\mathcal{J}_2) \exp(-\mathbf{u}) \end{aligned}$$

therefore, finally:

$$\boxed{\mathcal{J}_2 = \exp(\mathbf{u})^* (\mathcal{J}) \exp(\mathbf{u})}$$

Therefore, Lorentz transform of \mathcal{J} follows 4-vector transform and is consistent with the hermitian conjugate formula.

2) Rotation transform of \mathcal{J} . [note⁸]

We take as previously, a generator vector \mathbf{v} aligned with the base vector \mathbf{g} (x axis), except this time \mathbf{v} has imaginary coefficient. $\mathbf{v} = i V \mathbf{g}$ where V is a real number and i is imaginary unit (also $i = \mathbf{e} \mathbf{f} \mathbf{g}$)

$$\begin{aligned}
 \mathbf{q}_2 &= \exp(\mathbf{v}) \mathbf{q} \exp(-\mathbf{v}) \\
 \mathbf{q}_2 &= \exp(\mathbf{v}) \mathbf{q} \exp(-\mathbf{v}) = \mathbf{t} + \mathbf{g}\mathbf{x} + \exp(2\mathbf{v})\mathbf{e}\mathbf{y} + \exp(2\mathbf{v})\mathbf{f}\mathbf{z} = \quad [\text{note}^9] \\
 &\quad \mathbf{t} + \\
 &\quad \mathbf{g}\mathbf{x} + \\
 &\quad \mathbf{e}\mathbf{y}^*\cos(2V) - \mathbf{f}\mathbf{y}^*\sin(2V) + \\
 &\quad \mathbf{f}\mathbf{z}^*\cos(2V) + \mathbf{e}\mathbf{z}^*\sin(2V) \\
 &\quad = \\
 &\quad \mathbf{t} + \quad // \mathbf{t}_2 \\
 &\quad \mathbf{g}\mathbf{x} + \quad // \mathbf{x}_2\mathbf{g} \\
 &\quad \mathbf{e}\mathbf{y}^*\cos(2V) + \mathbf{e}\mathbf{z}^*\sin(2V) + \quad // \mathbf{y}_2\mathbf{e} \\
 &\quad \mathbf{f}\mathbf{z}^*\cos(2V) - \mathbf{f}\mathbf{y}^*\sin(2V) \quad // \mathbf{z}_2\mathbf{f}
 \end{aligned}$$

therefore:

$$\begin{aligned}
 \mathbf{t}_2 &= \mathbf{t} \\
 \mathbf{x}_2 &= \mathbf{x} \\
 \mathbf{y}_2 &= \mathbf{y}^*\cos(2V) + \mathbf{z}^*\sin(2V) \\
 \mathbf{z}_2 &= \mathbf{z}^*\cos(2V) - \mathbf{y}^*\sin(2V)
 \end{aligned}$$

We will transform now (in reverse) the $\mathcal{J} = \nabla^I \mathbf{F}$:

$$\mathcal{J} = \nabla^X \mathbf{F} = d\mathbf{F}/dt - (d\mathbf{F}/dx)\mathbf{g} - (d\mathbf{F}/dy)\mathbf{e} - (d\mathbf{F}/dz)\mathbf{f}$$

$$\begin{aligned}
 d\mathbf{F}/dt &= (d\mathbf{F}/dt_2)^*(dt_2/dt) + (d\mathbf{F}/dx_2)^*(dx_2/dt) + (d\mathbf{F}/dy_2)^*(dy_2/dt) + (d\mathbf{F}/dz_2)^*(dz_2/dt) = (d\mathbf{F}/dt_2) \\
 d\mathbf{F}/dx &= (d\mathbf{F}/dt_2)^*(dt_2/dx) + (d\mathbf{F}/dx_2)^*(dx_2/dx) + (d\mathbf{F}/dy_2)^*(dy_2/dx) + (d\mathbf{F}/dz_2)^*(dz_2/dx) = (d\mathbf{F}/dx_2) \\
 d\mathbf{F}/dy &= (d\mathbf{F}/dt_2)^*(dt_2/dy) + (d\mathbf{F}/dx_2)^*(dx_2/dy) + (d\mathbf{F}/dy_2)^*(dy_2/dy) + (d\mathbf{F}/dz_2)^*(dz_2/dy) = \\
 &\quad (d\mathbf{F}/dy_2)^*(\cos 2V) - (d\mathbf{F}/dz_2)^*(\sin 2V) \\
 d\mathbf{F}/dz &= (d\mathbf{F}/dt_2)^*(dt_2/dz) + (d\mathbf{F}/dx_2)^*(dx_2/dz) + (d\mathbf{F}/dy_2)^*(dy_2/dz) + (d\mathbf{F}/dz_2)^*(dz_2/dz) = \\
 &\quad (d\mathbf{F}/dz_2)^*(\cos 2V) + (d\mathbf{F}/dy_2)^*(\sin 2V)
 \end{aligned}$$

Now, we will substitute the \mathbf{F} expressed in terms of the inverse-transformed \mathbf{F}_2 into the above formulae: $\mathbf{F} = \exp(-\mathbf{v}) \mathbf{F}_2 \exp(\mathbf{v})$. This will yield:

$$\mathcal{J} = \nabla^X \mathbf{F} = \exp(-\mathbf{v})^* (d\mathbf{F}_2/dt_2)^* \exp(\mathbf{v}) +$$

⁸ This chapter is almost identical as in ref [13], because rotation transform is the same for EM field Clifford 8-vector \mathbf{F} as for 4-vectors such as \mathbf{a} and \mathcal{J} .

⁹ We use the following property of exponential function: $\exp(\mathbf{g}\mathbf{U})^* \mathbf{g} = \mathbf{g}^* \exp(\mathbf{g}\mathbf{U})$, For perpendicular vectors (i.e. for anti-commuting vectors), for example \mathbf{g} and \mathbf{e} it follows $\exp(\mathbf{g}\mathbf{U})^* \mathbf{e} = \mathbf{e}^* \exp(-\mathbf{g}\mathbf{U})$

$$\begin{aligned}
& -\exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial x_2)^* \exp(\mathbf{v})^* \mathbf{g} + \right. \\
& -\exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial y_2)^* (\cos 2V) - (\partial \mathbf{F}_2 / \partial z_2)^* (\sin 2V) \right)^* \exp(\mathbf{v})^* \mathbf{e} + \\
& -\exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial z_2)^* (\cos 2V) + (\partial \mathbf{F}_2 / \partial y_2)^* (\sin 2V) \right)^* \exp(\mathbf{v})^* \mathbf{f} \\
& = \\
& \exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial t_2)^* \exp(\mathbf{v}) + \right. \\
& -\exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial x_2)^* \exp(\mathbf{v})^* \mathbf{g} + \right. \\
& -\exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial y_2)^* (\cos 2V)^* \mathbf{e} - (\partial \mathbf{F}_2 / \partial z_2)^* (\sin 2V)^* \mathbf{e} + \right. \\
& \quad \left. (\partial \mathbf{F}_2 / \partial z_2)^* (\cos 2V)^* \mathbf{f} + (\partial \mathbf{F}_2 / \partial y_2)^* (\sin 2V)^* \mathbf{f} \right)^* \exp(-\mathbf{v}) \\
& = \\
& \exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial t_2)^* \exp(\mathbf{v}) + \right. \\
& -\exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial x_2)^* \mathbf{g}^* \exp(\mathbf{v}) + \right. \\
& -\exp(-\mathbf{v})^* \left((\cos 2V)^* (\partial \mathbf{F}_2 / \partial y_2)^* \mathbf{e} + (\sin 2V)^* (\partial \mathbf{F}_2 / \partial y_2)^* \mathbf{g}(\mathbf{g}\mathbf{f}) + \right. \\
& \quad \left. (\cos 2V)^* (\partial \mathbf{F}_2 / \partial z_2)^* \mathbf{f} - (\sin 2V)^* (\partial \mathbf{F}_2 / \partial z_2)^* \mathbf{g}(\mathbf{g}\mathbf{e}) \right)^* \exp(-\mathbf{v}) \quad //\text{note}^{10} \\
& = \\
& \exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial t_2)^* \exp(\mathbf{v}) + \right. \\
& -\exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial x_2)^* \mathbf{g}^* \exp(\mathbf{v}) + \right. \\
& -\exp(-\mathbf{v})^* \left((\cos 2V)^* (\partial \mathbf{F}_2 / \partial y_2)^* \mathbf{e} - (\sin 2V)^* (\partial \mathbf{F}_2 / \partial y_2)^* \mathbf{g}(\mathbf{e}\mathbf{f}) + \right. \\
& \quad \left. (\cos 2V)^* (\partial \mathbf{F}_2 / \partial z_2)^* \mathbf{f} - (\sin 2V)^* (\partial \mathbf{F}_2 / \partial z_2)^* \mathbf{g}(\mathbf{f}\mathbf{e}) \right)^* \exp(-\mathbf{v}) \\
& = \\
& \exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial t_2)^* \exp(\mathbf{v}) + \right. \\
& -\exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial x_2)^* \mathbf{g}^* \exp(\mathbf{v}) + \right. \\
& -\exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial y_2)^* (\cos 2V) - \mathbf{g}^* (\sin 2V)^* \mathbf{e} + \right. \\
& \quad \left. (\partial \mathbf{F}_2 / \partial z_2)^* (\cos 2V) - \mathbf{g}^* (\sin 2V)^* \mathbf{f} \right)^* \exp(-\mathbf{v}) \\
& = \\
& \exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial t_2)^* \exp(\mathbf{v}) + \right. \\
& -\exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial x_2)^* \mathbf{g}^* \exp(\mathbf{v}) + \right. \\
& -\exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial y_2)^* \exp(-2\mathbf{v})^* \mathbf{e}^* + (\partial \mathbf{F}_2 / \partial z_2)^* \exp(-2\mathbf{v})^* \mathbf{f} \right)^* \exp(-\mathbf{v}) \\
& = \\
& \exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial t_2)^* \exp(\mathbf{v}) + \right. \\
& \exp(-\mathbf{v})^* \left(-(\partial \mathbf{F}_2 / \partial x_2)^* \mathbf{g}^* \exp(\mathbf{v}) + \right. \\
& \exp(-\mathbf{v})^* \left(-(\partial \mathbf{F}_2 / \partial y_2)^* \mathbf{e}^* \exp(+2\mathbf{v}) - (\partial \mathbf{F}_2 / \partial z_2)^* \mathbf{f}^* \exp(+2\mathbf{v}) \right)^* \exp(-\mathbf{v}) = \\
& \exp(-\mathbf{v})^* \left((\partial \mathbf{F}_2 / \partial t_2) - (\partial \mathbf{F}_2 / \partial x_2)^* \mathbf{g} - (\partial \mathbf{F}_2 / \partial y_2)^* \mathbf{e} - (\partial \mathbf{F}_2 / \partial z_2)^* \mathbf{f} \right)^* \exp(+\mathbf{v}) \\
& = \exp(-\mathbf{v})^* (\nabla^X_2 \mathbf{F}_2)^* \exp(\mathbf{v}) \\
& = \exp(-\mathbf{v})^* (\mathcal{J}_2)^* \exp(+\mathbf{v}) \\
\end{aligned}$$

Finally

¹⁰ $\mathbf{g}\mathbf{f} = -\mathbf{f}\mathbf{g} = -\mathbf{e}\mathbf{e}\mathbf{f}\mathbf{g} = -\mathbf{e}\mathbf{i}$ and $\mathbf{g}\mathbf{e} = \mathbf{g}\mathbf{e}\mathbf{f}\mathbf{f} = \mathbf{e}\mathbf{f}\mathbf{g}\mathbf{f} = \mathbf{i}\mathbf{f}$

$$\mathcal{J}_2 = \exp(+\mathbf{v})^*(\mathcal{J})^*\exp(-\mathbf{v})$$

Conclusion

In a general case, we can combine the \mathbf{u} and \mathbf{v} cases in one formula that employs the Hermitian conjugate $(\cdot)^T$ [note¹¹]

$$\mathcal{J}_2 = \exp(\mathbf{p})^*(\mathcal{J})^*(\exp(\mathbf{p}))^T$$

References:

- 1) "Representing 3D vectors, 4-vectors, rotation and Lorentz transform using Clifford Algebra $\text{Cl}_{3,0}(\mathbb{R})$.", Stan Bleszynski, 4-March-2018 <https://goo.gl/wuB43b>
- 2) reserved
- 3) "Zero Length Bases in Clifford Algebra $\text{Cl}_{3,0}(\{1,h\})$ ", Stan Bleszynski 16-April-2018 (Updated 15/06/2018) link: <https://goo.gl/kTh5jb>
- 4) "Electromagnetics in Clifford Algebra" Stan Bleszynski, David Coffey, 13-Jan-2019, <https://docs.google.com/document/d/1ki-N2au3AVE5Mo7KR6CVY6TZDwwkxcnJYg0mJ-K58M/edit>
- 5) "Hamilton Equation in Clifford $\text{CL}_{3,0}(\mathbb{R})$ ", Stan Bleszynski 17/10/2019] https://docs.google.com/document/d/1_jWOF3cku0K8FwpMcgCUtkz69uJy0_emsQdblJdF9lg/edit?usp=sharing
- 6) "Standard model physics from an algebra?" by C. Furey PhD thesis, Waterloo, Ontario, Canada, 2015 <https://arxiv.org/pdf/1611.09182.pdf>

¹¹ $\exp(\mathbf{p}) := \exp(\mathbf{u})^*\exp(\mathbf{v})$, and $\exp(\mathbf{u})^*\exp(\mathbf{v})' = \exp(\mathbf{v}')^*\exp(\mathbf{u}')$

13) Proof that EM Clifford 8-vector field F transforms in $Cl_{3,0}(R)$ differently, using quaternion conjugate formula, unlike Clifford 4-vectors transforming using hermitian conjugate formula.

https://docs.google.com/document/d/1e37GgeSA9JOr9nNNRrosEGmPmlhhJX1dBQzuvS8B_04/edit?usp=sharing