
Let's create some relational algebra queries for a hospital management system. I'll define a 
simplified schema first. 

Simplified Schema: 

●​ Patient: (PatientID, Name, Address, Phone, DOB) 
●​ Doctor: (DoctorID, Name, Specialization) 
●​ Appointment: (AppointmentID, PatientID, DoctorID, Date, Time, Diagnosis) 
●​ Department: (DepartmentID, DepartmentName, Location) 
●​ DoctorDepartment: (DoctorID, DepartmentID) (To link doctors to departments) 

Example Queries and Relational Algebra: 

1.​ Find the names and addresses of all patients: 

Code snippet 

π Name, Address (Patient) 

2.​ Find the names of all doctors specializing in Cardiology: 

Code snippet 

π Name (σ Specialization = 'Cardiology' (Doctor)) 

3.​ Find the names of all patients who have an appointment with Dr. Smith: 

Code snippet 

π Name (Patient ⋈ PatientID (σ DoctorID = (SELECT DoctorID FROM Doctor 
WHERE Name = 'Dr. Smith') (Appointment))) 

(Note: The subquery finds Dr. Smith's ID) 

4.​ Find the date and time of all appointments for patient 'John Doe': 

Code snippet 

π Date, Time (Appointment ⋈ PatientID (σ Name = 'John Doe' (Patient))) 

5.​ Find the names of all doctors in the Cardiology department: 

Code snippet 

π Name (Doctor ⋈ DoctorID (DoctorDepartment ⋈ DepartmentID (σ 
DepartmentName = 'Cardiology' (Department)))) 

(This joins Doctor, DoctorDepartment, and Department to link doctors to 
departments) 

6.​ Find the names of all patients who have an appointment on '2024-03-15': 



Code snippet 

π Name (Patient ⋈ PatientID (σ Date = '2024-03-15' (Appointment))) 

7.​ Find the names of all doctors who have seen at least one patient: 

Code snippet 

π Name (Doctor ⋈ DoctorID Appointment) 

8.​ Find the names of all patients who have not had any appointments: 

Code snippet 

π Name (Patient) - π Name (Patient ⋈ PatientID Appointment) 

9.​ Find the names of doctors and the number of appointments they have: This one 
is a bit more complex and usually requires aggregation, which is not strictly part of 
basic relational algebra. However, some extended versions have aggregation 
operators. Here's a conceptual representation: 

10.​_G DoctorID; count(AppointmentID) (Doctor ⋈ DoctorID Appointment) 

(_G represents grouping, and count is an aggregate function. This is a simplified 
representation of how aggregation might be incorporated). In SQL, this would be 
done with GROUP BY and COUNT. 

11.​Find the name of the department located in 'New York': 

Code snippet 

π DepartmentName (σ Location = 'New York' (Department)) 
 


