
[DISCUSS] Lifecycle of ShuffleMaster and its 
Relationship with JobMaster and PartitionTracker 

Lifecycle of ShuffleMaster 
Currently, the lifecycle of ShuffleMaster seems unclear.  The ShuffleServiceFactory is loaded for each 
JobMaster instance and then ShuffleServiceFactory#createShuffleMaster will be called to create a 
ShuffleMaser instance. However, the default NettyShuffleServiceFactory always returns the same 
ShuffleMaser singleton instance for all jobs. Based on the current implementation, the lifecycle of 
ShuffleMaster seems open and depends on the shuffle plugin themselves. However, at the TM side, 
the ShuffleEnvironment is a part of the TaskManagerServices whose lifecycle is decoupled with jobs 
which is more like a service. It means there is also an inconsistency between the TM side and the 
JM side.  

From my understanding, the reason for this is that the pluggable shuffle framework is still not 
completely finished yet, for example, there is a follow up umbrella ticket  FLINK-19551 for the 
pluggable shuffle service framework and in its subtasks, there is one task (FLINK-12731) which 
aims to load shuffle plugin with the PluginManager. I think this can solve the issue mentioned 
above. After the corresponding factory  loaded by the PluginManager, all ShuffleMaster instances 
can be stored in a map indexed by the corresponding factory class name  which can be shared by 
all jobs. After that, the ShuffleMaster becomes a cluster level service which is consistent with the 
ShuffleEnvironment at the TM side.  

As a summary, we propose to finish FLINK-12731 and make the shuffle service a real cluster level 
service first. Furthermore, we add two lifecycle methods to the ShuffleMaster interface, including 
start and close responding for initialization (for example, contacting the external system) and 
graceful shutdown (for example, releasing the resources) respectively (these methods already exist 
in the ShuffleEnvironment interface at the TM side). What do you think? 

Relationship of ShuffleMaster & JobMaster 
Currently, JobMaster holds the reference to the corresponding ShuffleMaster and it can register 
partitions (allocate ShuffleDescriptor from) to ShuffleMaster by the registerPartitionWithProducer 
method. To support use cases like allocating external resources when a job starts and releasing all 
allocated resources when a job terminates, we may also need some job level initialization and 
finalization. These job level initialization and finalization are also helpful when serving multiple 
jobs simultaneously.  

As a summary,  we propose to add two job level lifecycle methods registerJob and unregisterJob 
responding for job level shuffle initialization and finalization, for example, releasing all external 
resources occupied by the corresponding job. What do you think? 

https://issues.apache.org/jira/browse/FLINK-19551
https://issues.apache.org/jira/browse/FLINK-12731
https://issues.apache.org/jira/browse/FLINK-12731


Relationship of ShuffleMaster & PartitionTracker 
Currently, the JobMasterPartitionTracker can release external result partitions through the 
releasePartitionExternally method of ShuffleMaster. However, the shuffle plugin (ShuffleMaster) 
may also need the ability of stopping  tracking some partitions depending on the status of the 
external services, for example, if the external storage node which stores some partitions crashes, 
we need to stop tracking all partitions in it to avoid reproducing the lost partitions one by one. By 
introducing something like ShuffleContext which delegates to the partition tracker, this 
requirement can be easily satisfied. Besides, for cluster partitions, we also need to have the ability 
to release them. 

As a summary, we propose to add a releaseDataSetExternally method to the ShuffleMaster 
interface which is responsible for releasing cluster partitions. Besides, we propose to add a 
ShuffleContext which can delegate to the PartitionTracker and stop tracking partitions. For the 
cluster partitions and job partitions, two separated ShuffleContext abstracts are needed.  What do 
you think? 

Interface Change Summary 

As discussed in the above sections, we propose to make some interface changes around the 
ShuffleMaster interface. The first change is to pass a ShuffleMasterContex instance to the 
ShuffleServiceFactory when creating the ShuffleMaster just like the ShuffleEnvironment creation at 
the TM side. Changes are marked with bold texts (the same below). 

public interface ShuffleServiceFactory<​
        SD extends ShuffleDescriptor, P extends ResultPartitionWriter, G extends 

IndexedInputGate> {​
​
    /**​
     * Factory method to create a specific {@link ShuffleMaster} implementation.​
     */​
    ShuffleMaster<SD> createShuffleMaster(ShuffleMasterContext 

shuffleMasterContext);​
​
    /**​
     * Factory method to create a specific local {@link ShuffleEnvironment} 

implementation.​
     */​
    ShuffleEnvironment<P, G> createShuffleEnvironment(​
            ShuffleEnvironmentContext shuffleEnvironmentContext);​
} 

The following  is the ShuffleMasterContext interface. It will be implemented by the pluggable 
shuffle framework itself and can be used by the shuffle plugin. A context Interface is more friendly if 
we want to extend it in the future. 



public interface ShuffleMasterContext {​
​
    /** Gets the cluster configuration. */​
    Configuration getConfiguration();​
​
    /** Handles the fatal error if any. */​
    void onFatalError(Throwable throwable);​
​
    /**​
     * Stops tracking the target dataset (cluster partitions), which means these 

data can not be reused anymore.​
     */​
    CompletableFuture<Void> stopTrackingDataSet(IntermediateDataSetID 

dataSetID);​
​
    /** Returns IDs of all datasets (cluster partitions) being tracked by this 

cluster currently. */​
    CompletableFuture<List<IntermediateDataSetID>> listDataSets();​
} 

 
The second part to be enhanced is the ShuffleMaster interface. Methods to be added include start, 
close, registerJob, unregisterJob and releaseDataSetExternally. In addition, because each 
ShuffleMaster instance can serve multiple jobs simultaneously, when registering partitions, one 
should also provide the corresponding JobID. The following shows the updated ShuffleMaster 
interface: 

public interface ShuffleMaster<T extends ShuffleDescriptor> extends 

AutoCloseable {​
​
    /**​
     * Starts this shuffle master, for example getting the access and connecting 

to the external​
     * system.​
     */​
    void start() throws Exception;​
​
    /** Closes this shuffle master which releases all resources. */​
    void close() throws Exception;​
​
    /** Registers the target job to this shuffle master. */​
    void registerJob(JobShuffleContext context);​
​
    /** Unregisters the target job from this shuffle master. */​
    void unregisterJob(JobID jobID);​
​
    /** Asynchronously register a partition and its producer with the shuffle 

service. */​
    CompletableFuture<T> registerPartitionWithProducer(​
            JobID jobID,​



            PartitionDescriptor partitionDescriptor,​
            ProducerDescriptor producerDescriptor);​
​
    /** Releases any external resources occupied by the given partition. */​
    void releasePartitionExternally(ShuffleDescriptor shuffleDescriptor);​
​
    /** Releases the target cluster partitions stored externally if any. */​
    void releaseDataSetExternally(IntermediateDataSetID dataSetID);​
} 

The following  is the JobShuffleContext interface. It will be implemented by the pluggable shuffle 
framework itself and can be used by the shuffle plugin. 

public interface JobShuffleContext {​
​
    /** Gets the corresponding job configuration. */​
    Configuration getConfiguration();​
​
    /** Gets the corresponding {@link JobID}. */​
    JobID getJobID();​
​
    /**​
     * Stops tracking the target result partitions, which means these partitions 

will be reproduced if used afterwards.​
     */​
    CompletableFuture<Void> stopTrackingPartitions(Collection<ResultPartitionID> 

partitionIDS);​
​
    /** Returns information of all partitions being tracked for the current job. 

*/​
    CompletableFuture<List<ResultPartitionDeploymentDescriptor>> 

listPartitions();​
} 

What do you think of these changes? Any feedback is highly appreciated. 


	[DISCUSS] Lifecycle of ShuffleMaster and its Relationship with JobMaster and PartitionTracker 
	Lifecycle of ShuffleMaster 
	Relationship of ShuffleMaster & JobMaster 
	Relationship of ShuffleMaster & PartitionTracker 
	Interface Change Summary 

